
Good practices

 for Tango DeviceServers

development

Alain BUTEAU – Synchrotron SOLEIL

Software for Controls and Data Acquisition group leader

On behalf the Tango team

1 PC APAC 2014 – ANKA

SOLEIL and Tango
 SOLEIL started a collaboration with ESRF on TANGO in

2002

 Nowadays, SOLEIL operates 30 Tango Control System:

1 for accelerators

1 for each beamline

 The ICA team (aout 20 people) is in charge of the

development , maintenance and operation of software for

Controls and Data Acquisition

Software engineering skills

From Tango controls

Up to GUI (See COMETE framework presentation on Friday)

Data management at the application levels (for data storage

and data retrieval)

03/18/2013
PCaPAC : KIT – October 2014 2

Steering Committee – Program Control System - INF-DIR-PST-3128 3

Writing a Tango Server

is easy.

So what ?

PC APAC 2014 – ANKA

Developing a DeviceServer in 5

minutes
 Use POGO to generate the code skeleton

 Implement the relevant methods to read/write attributes

 Implement the relevant methods to execute commands

 Compile and link with Tango libraries

 Declare the DeviceServers and its associated devices

within jive

 Start the binary

 Run you client application (for instance ATKPanel)

 That’s fine you can remotely control your equipement

It is easy !! No ?

 4 PCaPAC : KIT – October 2014

That's how we started in 2002 at

SOLEIL
 We had to develop a Control system for our Accelerators and for 30

beamlines and no single line of code to do it

 We started developing our first Tango DeviceServers with the

previous method

 Because we had to learn how to do it properly

We were “regular” “young” “software developers” : (N.I.H syndrom, God vision

when developing code, etc..)

 Because we had a lot of pressure from our users to be able to control their

equipments

 But we already knew this method is not sufficient when you plan to :

 Use Tango devices as a “LEGO” bricks that will have to be reused and

recomposed in various contexts

Maintain the code for 30 years

Obtain very high rates of software reliability (which is mandatory if you plan to

deliver 6000 hours of beam per year)

 Be able to automate user processes in a reliable and reproductible manner

5 PCaPAC : KIT – October 2014

03/18/2013
Steering Committee – Program Control System - INF-DIR-PST-3128 6

Why using Guidelines

for design and

implementation ?

Then software engineering practices are

mandatory to achieve such results

 At SOLEIL we developed about 400 different Tango DeviceServer

 Interfacing all kind of equipment's (power supply , motion systems, beam

diagnostics, etc.)

 Interfacing “pure software” devices (such as Scanning engine, Calculation

routines, etc..)

 This development work has been done by more than 10 different

developers

 with different skills and knowledge on Java and C++ programming

 We also had an operational feedback on what we did

 Being in daily contact with Machine and Beamline users

 Doing also “On call” duties 6000 hours per year

 We accumulated an important “in house experience” of developing

“Good” TangoDeviceServer

 In 2012 we had the opportunity thanks to our collaboration with

MAX-IV to hhire external experienced software engineers to

summarise this experience in a document for the Tango Community

7 PCaPAC : KIT – October 2014

Tango Guidelines

03/18/2013
ICALEPCS 2013 – Tango workshop 8

Standardizing design and

coding practices is a win-win

approach
 At the community level:

To be able to reuse « good quality » DeviceServers

developed by other institutes

 Avoiding the cost of « redoing » everything on our own

To ease Tango usage for newcomers

Which helps enlarging then the community

At the institute level

To be able to easily integrate new software

developers resources

 The « Tango design guidelines » is quite a dense

document which you must take time to understand

and read carefully

03/18/2013

PCaPAC : KIT – October 2014 9

03/18/2013
Steering Committee – Program Control System - INF-DIR-PST-3128 10

Overview of the

 “Tango DeviceServers

design and

implementation

Guidelines”

document

03/18/2013
PCaPAC : KIT – October 2014 11

Tango concepts revisited

Device : Concept
 Historically a device is an entity to control

(Hardware or software)

 device = 1 polymorphous object

1 equipement (ex: 1 power supply)

1 collection of equipment (ex: 1 motor + 1 coder)

 A pure software component e.g :

A scan device

A data fitter device

03/18/2013
ICALEPCS 2013 – Tango workshop 12

Recommandations :
• A Tango device allows to make an
abstraction of the equipment nature and

implementation details
• 1 Device = 1 service = 1 element

• of the system

Device : Hierarchy

03/18/2013
ICALEPCS 2013 – Tango workshop 13

Recommandation : Design your Tango Control system with a
hierarchical view in mind (even if technically Tango doesn’t impose

this structure)

User applications
User’s development environments

Java applications :
configuration,

monitoring, logging,
system administration

Tango
java
ATK

« Ready to use »
high level applications

Archiving
Service

SCADA

Device

 Equipment and subsystem devices

 Process & calculation devices

 Device

TANGO Software bus

 A Tango control system can be logically hierarchically

organized

At higher level the devices are logical to :
 Manage and represent subsets of the control system

 To perform sequences of actions on low level devices

These higher level of device must evolve regardless of real hardware

Vocabulary

misunderstandings
 Sometimes, there are misuses of language regarding the

concepts of: device, device server and TANGO class.

 TANGO class:

a class defining the interface and implementing the device control

or the implementation of a software treatment.

 Device:

An instance of a TANGO class giving access to the services of

the class.

 Device Server:

A process in which one or more TANGO classes are executed.

03/18/2013
ICALEPCS 2013 – Tango workshop 14

Recommandation : These three concepts
are closely related, but they express

different and important concepts of Tango.
Take time to clearly understand them!

• Attribute : Definition
– Physical unit produced or administrated by the device

– ex: motor position, power emitted by a power supply, …

– The main purpose of an attribute is to replace getters
and setters.

• Command: Definition
– A command is associated with an action. On, Off, Start,

Stop are commons examples

Attributes and commands

Recommandation : To get an information produced by a device
prefer Attributes (that can be archived or monitored in trends) than

Commands

• A TANGO device has a UNIQUE state (meaning a
finite state machine).

• The device state is a key element in its integration
into the control system.

• Therefore, you should be very careful in the
management of state transitions in the device
implementation

States

Recommandations :
• The device state must, at any time, reflect the internal state of the

system it represents.
• The state should represent any change made by a client’s

request.
• Use always the same set of states for similar conditions .At

SOLEIL:
• all Actuators are MOVING (when moving)
• all Sensors are “RUNNING” (when acquiring data)

• Be careful to “non desired” transient state that will raise problem
on higher level

States

03/18/2013
Steering Committee – Program Control System - INF-DIR-PST-3128 18

Design recommendations

• Estimates systematically, before coding a device, the
possibility of reusing a device available in the code
repositories

• Design the device as reusable/extensible as possible
because it may interest the others developers in the
community.

Reusability

Recommandations :
• Configurable: (e.g.: no port number “hard coded”, but use of a

parameter via a property)
• Self-supporting: the device must be usable outside the private

programming environment (eg: all the necessary elements to use
the device (compile, link) must be provided to the community).

• The use of the GPL should be considered, and the use of
proprietary libraries should be avoided if possible

• Portable: the device code must be (as much as possible)
independent of the target platform unless it depends on platform
specific drivers

• Documented in English

• The device must be as generic as possible which means
the definition of its interface should reflect the service
rather its underlying implementation.

For example, a command named “WriteRead” reflects the

communication service of a bus (type: message exchange),

while a command named “NI488_Send” reflects a specific

implementation of the supplier.

 Show the general characteristics (attributes and

commands) of a common type of equipment that it

represents.

For example, a command ”On” reflects the action of powering on a

PowerSupply while a command named “BruckerPSON” reflects a

specific implementation which must be avoided.

Generic interface

programming

• Do not make assumptions about the
nature of the clients!
• The behavior of the Device must the same if I use a

client that reads a single attribute or a client that
reads them all

• Do not make assumptions on the number of
clients connected to a Device

• At the beginning 1 client is connected

• But in real operation after a few months or years ,
you may end with tens of clients on a single device

Performances related design
recommendations

Recommandation : The response time of the device should be
minimized and in any case lower than the default Tango timeout

Recommandations for the

specifications/design/development

phases

During the specification process define the
attributes, commands, states of your Device

Write test cases focusing on error scenarios

Use usual UML diagrams :

To clarify data relationship within the internal device

software objects

Use sequence/state diagrams when state transitions

are complex

Make a pair code review and cross check with the

Recommendations Guidelines

General Code implementation Consideration

Don‟t forget that the TANGO interface is
only a mean to insert a service in a control
system.

Therefore, it is necessary to think the
device internal design like any other
application and just add the TANGO as an
interface on top of it.

As a rule of thumb if the code implemented
within the POGO markers is too long, a
good practice is to move it to another class.

Then Pogo generated methods will be only a few

lines of code long.
Recommandations :

• In practice, it is necessary to avoid mixing the generated code by
POGO and the developer‟s one.

Language

The TANGO community is
international and the developments
could be shared with the community,
so it is recommended to use
ENGLISH for a device development.

Recommandations :
English will be used for:
• The interfaces definition (attributes and commands)
• The device documentation (online help for command usage and

attributes description)
• The comments inserted in the code by the developer
• The error messages
• The name of variables and internal methods added by the

developer.

Code generation : POGO is

mandatory

Recommandations :
• The use of POGO is mandatory for

creating or modifying the device
interface.

• Every command, attribute, property
or device state must be fully
documented; this documentation is
done via the POGO tool.

• The automatically generated code by
POGO must not be modified by the
developer.

• The developer must include its own
code in the “PROTECTED REGION”
specified parts.

Tango interface : naming

rules
Having homogeneous conventions for naming

attributes, commands and properties is a good
way to promote DeviceServers reuse inside
the Tango collaboration (or in your institute)

Recommandations :
• The Tango class name is obtained by concatenating the fields

that compose it – each field beginning with a capital letter:
 Eg : MyDeviceClass

Tango interface : naming

rules

The command naming recommendations are:
• Name composed of at least two characters
• Only alphanumeric characters are allowed (no underscore, no

dashes)
• Start with a uppercase letter, In case of a composite name, each

sub-words must be capitalized
• Prohibit any use of vague terms (eg: Control).

The attribute naming recommendations are:
 Name composed of at least two characters
 Only alphanumeric characters are allowed (no underscore, no

dashes)
 Start with a lowercase letter
 In case of a composite name, each sub-words must be

capitalized (except the first letter)
 Prohibit any use of vague terms (eg: readValue).

Tango interface : naming

rules
It is a good practice that a particular signal

type is always named in a similar way in

various DeviceServers.
For example the intensity of a current should always be name

“intensity” (and not “intens”, “intensity”, “current”,”I”

depending on the DeviceServers).

This allow the user to quickly make the link between the

software information and the physical sensor and reciprocally.

The choice between the Expert or the

Operator level for an interface must be

thoughtful.

All basic commands must be accessible at the

OPERATOR level

03/18/2013
Steering Committee – Program Control System - INF-DIR-PST-3128 29

Implementation

Guidelines

Tango polling mechanism
 TANGO implements a mechanism called polling which

alleviates the problem of equipment response time

 (which is usually the weak point in terms of performance).

 From the perspective of the device activity, the polling

is in direct competition with client requests. The client

load is therefore competing with polling activity

This means that polling activity has to be tuned in order to keep

some device free time to answer client requests.

Recommandations :
• The recommendation for device polling tuning is to keep the

device free 40% of time.

Tango threading mechanism

 Threading is a possible solution for the load problem

 a thread (managed by the device developer) supports communication with the

material (polling or other) and the data obtained are put in the “cache”.

 You can now produce the “last known value” to the client at any time and

optimize the response time..

 This approach, however, has a limit where it is necessary to reread the

hardware to assure clients that the returned value is the system “current state”.

Recommandations :
• When the design of the Tango class requires threading:
• • in case of simple thread usage, in C++ the recommendation is to

use a C++11 thread
• • In case of acquisition thread with messages exchange in C++

the recommendation is to use Yat4TANGO::DeviceTask class..

Use Yat and Yat4Tango

libraries
 YAT library offers many utilities for :
Portability
Threading
Active Objects features
Timers
Date/Time
Etc..

 YAT4Tango offers utilities linked with Tango

 logging , exception helpers, etc ..

 Both are :

hosted within the tango-cs repository

actively developed and supported by SOLEIL

03/18/2013
ICALEPCS 2013 – Tango workshop 32

Recommandation :Use Yat and YAT4Tango when
portability (Windows /linux) is required or to benefit from

advanced features for threading , etc ..

Error handling : Use Tango

logging system

The introduction of logging in the device code

enables easy development, bug research and the

user

understanding of the device operations

DEBUG_STREAM : for software developpers

 INFO_STREAM : user info (start/stop of a measurement, a

process)

WARN_STREAM : warning messages (degraded mode ,etc)

ERROR_STREAM : general error

FATAL_STREAM : fatal error : software does not behave as

expected

It is not mandatory, but highly recommended to add
an attribute named “log” in the device interface,
which tracks all the internal activity of the device (as

defined in TANGO Logging).

Exception handling
 The developer has to ensure:

 That any exception is caught, completed (TANGO allows it) and

spread (use of the rethrow_exception method),

 If an error occur it must be logged using the Tango Logging Service

 That the return code of a function is always analyzed,

 That the device Status is always coherent with the State,

 That the error messages are understandable for the final user

 The Status is the indicator that will help the user to find the

error reason.

 But do not throw exception in the init_device method !! (the

device must be kept alive in all cases)

 Of course , imagine all errors scenarios (cabling problem with

the equipment, ..)

Exception handling

 It is a good practice to standardise

the Reason Field of the Tango

exception

Nom standardisé pour les types d’erreur

OUT_OF_MEMORY

HARDWARE_FAILURE

SOFTWARE_FAILURE

HDB_FAILURE

DATA_OUT_OF_RANGE

COMMUNICATION_BROKEN

OPERATION_NOT_ALLOWED

DRIVER_FAILURE

UNKNOW_ERROR

CORBA_TIMEOUT

TANGO_CONNECTION_FAILED

TANGO_COMMUNICATION_ERROR

TANGO_WRONG_NAME_SYNTAX_ERROR

TANGO_NON_DB_DEVICE_ERROR

TANGO_WRONG_DATA_ERROR

TANGO_NON_SUPPORTED_FEATURE_ERROR

TANGO_ASYNC_CALL_ERROR

TANGO_ASYNC_REPLY_NOT_ARRIVED_ERROR

TANGO_EVENT_ERROR

TANGO_DEVICE_ERROR

CONFIGURATION_ERROR

DEPENDENCY_ERROR

NO_DEPENDENCY

03/18/2013
Steering Committee – Program Control System - INF-DIR-PST-3128 36

Resources available to

work within the Tango

community

Documentation
 The Tango reference manual is the

best entry point !!

Please RTFM (“Read this Fucking

Manual”)

There are tutorials on the

“Tango www site”

 A document “ Tango

DeviceServers design

consideration”

Tries to summarize all the question you

must think about before coding

This document tries to summary years

of mistakes and unanswered questions

on the “How To” develop “good” Tango

DeviceServers

37

03/18/2013

Steering Committee – Program Control System - INF-DIR-PST-3128

Community tools
 The Tango “Pink” site is the central place to find

documentations, examples, etc ..

 It is unfortunately managed on a “best effort” basis and it may be

sometimes outdated

Moreover the navigation on this Web site is sometimes strange : Use

Google !!

 The mailing list (tango@esrf.fr) is the best way to have

fast responses to technical problems

 It is an active mailing list (a few hundreds of post per year)

And the spirit is quite professional and avoid the (usual ?) religious war

on software language

So feel free to post . Tango dancers are proud of Tango and usually help

 The Tango meetings

Are important because you physically meet the Tango dancers

They last 1,5 days and the program is usually the following

 Status on each institute Tango activity , resources, projects ,etc .

 Status on Tango work packages

 New technical ideas or projects
38

03/18/2013

Steering Committee – Program Control System - INF-DIR-PST-3128

03/18/2013
Steering Committee – Program Control System - INF-DIR-PST-3128 39

Source Code Management

Release policy and download site
 Tango Core

There is a major release each 18 months

The technical roadmap were defined by the E.C following the

proposal of the Collaboration Coordinator

This major release is downloadable on the official Tango site

 and integrates new versions of most the workpackage new releases

Other Tango workpackages

Have their own lifecycle mostly driven by the institute in charge

requirements constraints

For exemple the “Tango Archiving system” is released 5 times per

year

 Because a new version is deployed on the SOLEIL accelerator 5 times

per year

They should be (in theory) accessible through the

official Tango site

Or on SOLEIL Maven repository

Or on E.S.RF http
40

03/18/2013

Steering Committee – Program Control System - INF-DIR-PST-3128

Source code repositories : 2 different SVN

repositories
 For each software module an SVN structure has been

defined

in trunks, tags, branches “directories”

 The tango-cs http://sourceforge.net/projects/tango-cs
 hosts Tango Core system and the workpackages defined previously

 Write access is granted only to Tango projects contributor

 Repository organization mimics Tango workpackages organization

 Tango-ds (http://sourceforge.net/projects/tango-ds/)

hosts Tango DeviceServers which may be of common

interest

because they do not rely on particular memory mapping or

specific electronics

Most of them control commercial instruments

 Ex : motor controllers, Agilent instruments, ADC boards,etc ..

Or generic software processes or calculations

 Data fitting, image analysis, etc ..

41

03/18/2013

Steering Committee – Program Control System - INF-DIR-PST-3128

http://sourceforge.net/projects/tango-cs
http://sourceforge.net/projects/tango-cs
http://sourceforge.net/projects/tango-cs
http://sourceforge.net/projects/tango-cs
http://sourceforge.net/projects/tango-cs
http://sourceforge.net/projects/tango-ds/
http://sourceforge.net/projects/tango-ds/
http://sourceforge.net/projects/tango-ds/
http://sourceforge.net/projects/tango-ds/

Tango-ds repository organization

AcceleratorComponen

ts

Acquisition

BeamDiagnostics

BeamlineComponents

Calculation

Communication

CounterTimer

InputOutput

MagneticDevices

MeasureInstruments

Motion

42

03/18/2013

Steering Committee – Program Control System - INF-DIR-PST-3128

OtherInstruments

PowerSupply

RadioProtection

SampleEnvironment

Security

Simulators

SoftwareSystem

StandardInterfaces

Temperature

Training

Vacuum

 List is available :

http://www.tango-controls.org/device-servers

Tango-ds resources

 There are hundreds of Tango DeviceServers stored

there

With a large variability in terms of quality and reusability

 Nevertheless please store your project on this repository

if it may be reused elsewhere

i.e not direcly linked to a specific hardware

Interface a commercial instrument

Or a generic “software” component

43

03/18/2013

Steering Committee – Program Control System - INF-DIR-PST-3128

03/18/2013
Steering Committee – Program Control System - INF-DIR-PST-3128 44

Conclusion

Conclusion

 Tango is a very intuitive system from the user point of view

 It is also easy to understand for software developers

 Nevertheless , to get high quality results , software

engineering methods are mandatory at all phases

(specifications, design, implementation, code

management,etc.)

 Entry cost in the Tango community decreases in the last

years because of :

Documentation efforts (Tango Book and Guidelines)

Community Help

Development of the eco system of applications, libraries ,

development tools (POGO), code repositories, etc..

 But you still have to learn and make efforts

45

03/18/2013

Steering Committee – Program Control System - INF-DIR-PST-3128

