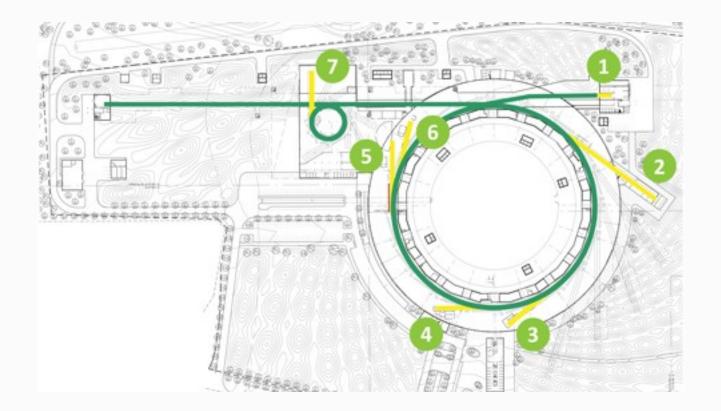
MAX IV Laboratory Status

Kontrollsystem & IT Services (KITS) Tango Workshop, ALBA, 23rd May 2013

Kontrolls & IT Services (KITS)

We are a small group

- Controls Software
 - Vincent Hardion,
 - Andreas Persson,
 - Mirjam Lindberg,
 - Antonio Milan
 - (+2 recruitments)
- Controls Hardware
 - Julio Lidon-Simon,
 - Jerzy Jamroz
 - (+2)
- Networks, Servers, Systems
 - Tobias Lundquist,
 - Daniel Liikamaa (+2)
- _IT Support
 - Tor Auster, Andras Vancsa,
- _ Strategy, Scientific & Information Management Systems
 - Krister Larsson, Jason Brudvik (+1)
- Currently agreed total group size of 19 for MAX IV
 - _ Based on initial facility with 7 beam lines



MAX IV Design Features

- Full energy linac
 - Free Electron Laser planned later in 2018 onwards
- Short pulse facility at end of linac
 Femtosecond time resolved experiments
- Two storage rings (1.5GeV and 3GeV)
 Favoring the large soft X-ray community
- Integrated multibend acromat magnets

 Part of reducing accelerator component scale

MAX IV Topology

8 Beam Lines

- Vinue och Alice
 Image: Construct of Alice

 Vallenbergs
 Image: Construct of Alice

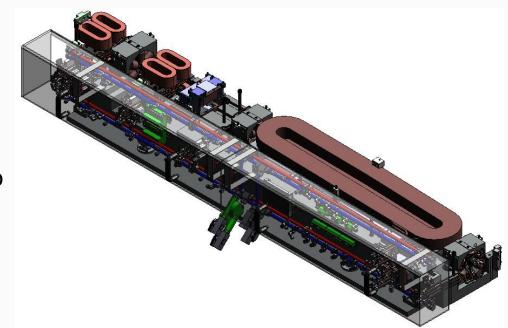
 Vallenbergs
 Image: Construct of Alice

 Image: Construct of Alice
 Image: Construct of Alice

 Image: Construct of Alice
- BioMAX Protein Crystallography
- VERITAS Resonant Inelastic X-ray scattering
- HIPPIE High Pressure High Resolution Electron Spectroscopy
- NanoMAX micro and nano beams for imaging, diffraction scattering, fluorescence
- FemtoMAX femtosecond experiments
- ARPES (1.5GeV) angle-resolved photoelectron spectroscopy
- BALDER hard X-ray absorption spectroscopy
- FinEstBeams (1.5GeV) Finnish Estonian materials science

MAX IV Main Milestones

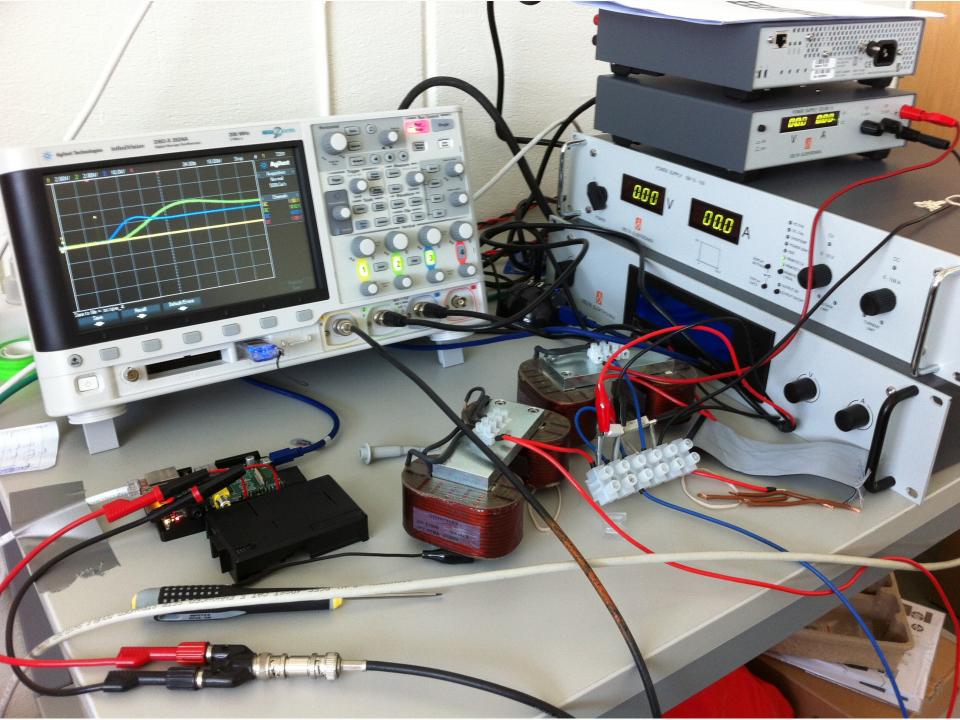
- Linac installation access mid-May 2013
 - Mobile phone coverage and fibre connection being installed.
- Linac commissioning start March 2014
- Femtomax (SPF) end of 2014.
- Storage rings commissioning March 2015
- MAX IV open 21st June 2016


MAX IV Accelerator Sub-systems

- Power supplies
- Timing
- RF
- vacuum, safety, magnets, machine protection, cooling, diagnostic, waveguides, laser, accelerator units, LLRF....

Magnet Power Supplies

- Specification for 1008 magnet power supplies
- Ranges from 10W to 234kW, 16-18bit
- Chose 'PolyAmp' (Delta), 'Danfysik' and 'Itest'.
 - We are writing the Tango devices
- Coils for fast orbit correction may be installed?



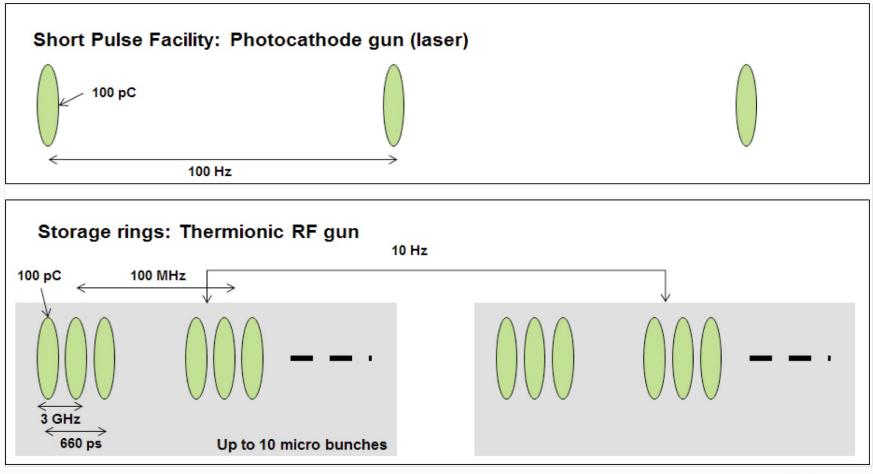
Power Supplies

- Site Acceptance Tests (|Itest, Delta Elektronika and Danfyisk)
 - _ No tango testing itself
 - _ Itest (c++ library delivered)
 - _ Delta elektronika (library developed with similar interface)
 - _ Attempt to converge towards standard interface later
 - _ Stress testing and performance/response time testing (using scopes)
 - _ Danfysik yet to come
- Results
 - _ Itest passed all the tests
 - Delta elektronika has 3 or 4 different interface models, less functional than itest (triggers)

Timing System

 Original design based on trigger boxes from Berkley Nucleonics (BNC)

– Only linac RF and injection into storage rings considered


• New design proposed by Julio and Jerzy

– Takes into account femtomax and future SPF

- Also covers future needs of storage rings and special mode
- Uses MRF system in combination with DG645 boxes in original design
- _ Inspired after visit to XPP (pump probe) beam line at SLAC
- Cost low due to using EVGs from libera brilliance

Bunch structures

Motion Controllers

- Max IV chose IcePAP
 - Currently loaning 30 racks from ESRF
 - Linac, femtomax beam line
 - Starting procurement of 50 racks
 - Storage rings and future beam lines
- Control with Sardana and Tango device server

Ongoing Projects with Tango

- MAX IV Injection Test Gun
- EPU 61 undulator (SPECIES beam line)
- Magnets Power supplies

MAX IV Test Gun

- Both Thermionic and Cathode Guns needed
 - _ photocathode Gun for SPF (injection at 100Hz)
 - _ Thermionic laser gun needed for storage rings injection (10 Hz)
- Commissioning happening with MAX III
 - _ Controlled from original MAX control room
- Controls Perspective... using Taurus interface to
 - _ Plc interface to power supplies (RSView via OPC)
 - _ Vacuum controller (gamma vacuum SPCe small pump controller)
 - _ Eurotherm via ModBus PyPLC from ALBA
 - _ Temperature control circulator (phoenix2) via serial port
 - _ Cameras (LIMA)
 - _ Motorised screens to Trinamic motor

Test Gun & LIMA

- LIMA integration
 - Linac beam viewers point grey gigE cameras plugin implemented
 - Teething troubles to get first production server in use.
 - Changing modes etc, cause blocking of communication
 - Configuration of the camera buffering to get best results
 - Learning to fit the camera behaviour into the LIMA model
 - Using Tango 8 events to get image stream from server to client
 - Economises some network bandwidth
 - Seems reliable

EPU 61 Undulator

- No in house experience, therefore use framework contract and hire CosyLab
 - 3-4 visits
 - Setting requirements
 - Development with real hardware
 - Testing and Site acceptance (>30 documented test cases)
- EPU 61 was installed on i511 on schedule with no problems
 - Scientists happy, disturbance compared to old undulator the same but with no correction coils

SPECIES on MAX II

- MAX IV standards on existing MAX II beam line
 - Our opportunity to test our MAX IV strategy
 - But an extra project not planned!

Thankyou..

Questions?

