
May 2014Sergi Rubio Manrique, 28th Tango Meeting

PANIC, The ALBA Alarm System

Sergi Rubio Manrique, ALBA Controls Section

May 2014Sergi Rubio Manrique, 28th Tango Meeting

What an Alarm System should do:

 - Verification of a set of conditions.

 - Notification.

 - Keep a log of what happened.

 - Take automatic actions?

 - Tools for configuration/visualization.

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Alarm Life Cycle

 - Condition: CIRCE_PRESSURE:BL24/VC/VGCT-01/P1>3e-5

 - Incidence
 - Notification
 - Logging

 - Recovery
 - Reminder

 - Acknowledge

 - Reset
 - Logging

 - Further Actions?

May 2014Sergi Rubio Manrique, 28th Tango Meeting

PANIC, The Alba Alarm System

● Distributed in PyAlarm Device Servers, each managing a collection of alarm formulas.
● Each Alarm is unique in the system and can be managed by only 1 PyAlarm device.
● Each PyAlarm device performs locally both Logging and Notification (email/SMS)
● Additional actions are passed to external devices (SnapArchiver, PopupDevice)
● Configuration is stored in the Tango Database.
● Alarm logging in the Tango Snapshoting database.
● The Panic API provides an homogeneous view of the system for devices and GUI.

host1

DS

PyAlarm

DS
DS

Tango / Panic API

Database

PyAlarm

BL24/VC/VGCT-01/P1>3e-5

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Yet another Alarm System??

The core of Panic is the PyAlarm device, developed
in 2007 as an SMS Notification Device for Tango
Alarm System (Elettra's)

Both Panic and Elettra Alarm Systems evaluate
evaluate formulas of Tango attributes and return
boolean results. Both are capable of triggering
commands on other devices.

Unlike Tango Alarm System (as it was in 2007), PANIC
is distributed and doesn't require other database
than Tango. It was developed to use no-db device
servers in isolated machines

Like Soleil's alarm system it can be configured to
trigger alarms based on Attribute qualities, and do
not require any client as the devices operate stand-
alone.

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Declaring Alarms

Each Alarm is defined by:

 TAG,
 Formula,
 Description,
 Receivers,
 Severity,
 {Configuration})

Those are stored using device properties
of PyAlarm devices.

CIRCE_PRESSURE: tbl2401:10000/BL24/VC/VGCT-01/P1>3e-5

CIRCE_LOST: BL24/VGCT-01/State == UNKNOWN

CIRCE_TEMP: BL24/EPS/PLC-01/T1.quality == ATTR_ALARM

CIRCE_VALVE: FE24/VC/PNV-01/State.delta!=0

Alarm formulas:

May 2014Sergi Rubio Manrique, 28th Tango Meeting

any([t>85 for t in FIND(ID13/EPS/PLC-01/TTAP*_VAL)])

any([min(t)<50 and 70<max(t)<1000 for t in
[FIND(ID13/VC/Elotech*/Temperature_[0-9])]])

any([t==ATTR_ALARM for t in
FIND(ID13/VC/Elotech*/Temperature_[0-9].quality)])

GROUP(BL24/CT/ALARMS/CIRCE_*)

Full Tango Attribute URL:

[tango:host/][device/]Attribute[.value/quality/delta/time/exception/all]g

Declaring Alarms with Regular Expressions

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Yet another fandango.eval format ...

fandango.dynamic.DynamicDS
(PyPLC, PySignalSimulator, PyAttributeProcessor, PyStateComposer, ...)

MaxP=DevBoolean(XATTR('tbl24:10000/BL24/VC/VGCT-01/P1')>MaxV)
CCGs=DevVarStringArray([d+'/P'+a for a in '12' for d in DEVICES if 'VG' in d])
AlarmP=DevBoolean(any(Q(c) for c in CCGs)
AnyP=DevBoolean(MaxP or AlarmP)

It allows to use commands and attributes within a Tango device.
Parsed/executed by Device commands, tied to DevImpl class methods
Variables isolated between instances, kept only when needed

fandango.tango.TangoEval (PyAlarm , Panic UI)

MaxP=BL24/VC/VGCT-01/P1>3e-5
AlarmP=any(q in (ATTR_ALARM,) for q in FIND(BL/VC/VG-*/P*.quality))
AnyP=MaxP or AlarmP

Same eval object within devices and clients
Simplified syntax, enabling wildcards and delta/quality/time comparison
Keeps cache and values for all evaluated objects, shared between instances
Both approaches use lazy polling by expiration date (CachedAttributeProxy)

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Database dependency
PyAlarm uses TANGO as Alarms Configuration Database, storing the Alarm
configurations using Device and Class properties (Phonebook, SMSConfig):

● Pro: It just needs the TANGO database (or a no-db file) to work.

● Cons: It is filling the Tango database with a lot of ugly information.

● Merging with Elettra's database has been delayed for years.

Thanks to Panic API the device server and the GUI are completely independent
from the database. It will allow us to adapt our servers to some tools developed
by Elettra and viceversa (when needed).

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Browsing existing alarms

The AlarmAPI is a dictionary-like object containing Alarm objects for each registered Alarm
tag. In addition the AlarmAPI.get method allows caseless search by tag, device, attribute
or receiver:

alarms.get(self, tag='', device='', attribute='', receiver='')

alarms.get(device='boreas')
Out[232]:
[Alarm(BL29-BOREAS_STOP:The BakeOut controller has been stop),
 Alarm(BL29-BOREAS_PRESSURE_1:),
 Alarm(BL29-BOREAS_PRESSURE_2:),
 Alarm(BL29-BOREAS_START: BL29-BOREAS bakeout started
 …]

alarms.get(receiver='eshraq')
Out[234]:
[Alarm(RF_LOST_EUROTHERM:),
 Alarm(OVEN_COMMS_FAILED:Oven temperatures not updated in the last
5 minutes),
 Alarm(RF_PRESSURE:The pressure in the cavity exceeds Range),
 Alarm(OVEN_TEMPERATURE:The Temperature of the Oven exceeds
Range),
 Alarm(RF_EUROTHERM:),
 Alarm(RF_LOST_MKS:),
 Alarm(RF_TEMPERATURE_MAX2:),
 ...]
alarms['RF_LOST_MKS'].receivers
Out[237]: '%SRUBIO,%ESHRAQ,%VACUUM,%LOTHAR,%JNAVARRO'

The Panic Module
Panic contains the python AlarmAPI for managing the
PyAlarm device servers from a client application or a python
shell. The panic module is part of the Panic bliss package.

import panic
alarms = panic.api()

http://pc148.cells.es:8077/ct_alarms/wiki/PyAlarm

May 2014Sergi Rubio Manrique, 28th Tango Meeting

The Panic tool shows the list of active or declared alarms. It provides several filters to
search alarms: by state (active/inactive), severity, subsystem, receiver or historic values.

A text search is also provided that allow to locate alarms by any of the attributes used in
formula or words used in description.

For each alarm the menu allows to Reset the alarm or show the attribute values that
triggered it.

Panic User Interface

May 2014Sergi Rubio Manrique, 28th Tango Meeting

UI Editor and Preview

May 2014Sergi Rubio Manrique, 28th Tango Meeting

If alarm history is enabled, (SNAP Receiver or UseSnaps+CreateNewContext property) then
attribute values will be recorded every time that the alarm is triggered.

The alarm will create a context in the Tango Snapshoting database with all the attributes that
appear in the formula. It can be modified later to include additional attributes.

Alarm history can be viewed either from Panic or PyTangoArchiving.widget.snap widgets.

Record/View Alarm History using Snaps

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Alarm Life Cycle

 - Condition: CIRCE_PRESSURE:BL24/VC/VGCT-01/P1>3e-5

 - Incidence
 - Notification
 - Archiving

 - Recovery
 - Reminder

 - Acknowledge

 - AutoReset

 - Actions?

May 2014Sergi Rubio Manrique, 28th Tango Meeting

PyAlarm Device Properties

Enabled may be True or a time (e.g. 120 seconds) to
Ignore alarms already enabled during startup.

PollingPeriod controls the frequency of update.
AlarmThreshold controls alarm triggering and .delta
AutoReset time will reset the alarm if condition recovers

Reminder/AlertOnRecover for extra notifications
FlagFile/LogFile/HtmlFolder controls local logging.

Alarm history controlled by CreateNewContexts/UseSnap
UseEvents replaced by UseTaurus; which is set
to False by default

IgnoreExceptions/RethrowAttribute/State
control whether exceptions should
trigger alarm or not or be replaced by
None.

UseProcess (python subprocess) still under development

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Alarm Life Cycle

 - Condition: CIRCE_PRESSURE:BL24/VC/VGCT-01/P1>3e-5

 - Incidence
 - Notification
 - Archiving

 - Recovery
 - Reminder

 - Acknowledge

 - AutoReset

 - Actions?

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Receivers can be set in AlarmReceivers property. When using tags previously declared
in PyAlarm.Phonebook class, theneach tag will be replaced by its mailing list..

%BEEP:ACTION(alarm:command,mach/alarm/beep/play,$DESCRIPTION)

%CONTROLROOM:operators@cells.es,SMS:+34646291497

%CTRLMV:oncall@cells.es,SMS:+34682793983

%CTRL3:oncall@cells.es,SMS:+34682793983

%PLCMV:plc@cells.es,SMS:+34638420276

Declaring Receivers in Phonebook

mailto:oncall@cells.es

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Receivers: Executing Actions and/or External Notifications

AlarmsList:

 BL_FE_OPEN:
 bl/ct/plc-01/FE_AUTO and
 host:10000/chan/ct/fe/value and
 bl/ct/plc-01/BL_READY and not bl/ct/plc-01/fe_open and
 not bl/ct/-plc-01/fe_control_disabled

AlarmsReceivers:

 BL_FE_OPEN:
 ACTION(alarm:attribute,bl/ct/plc-01/OPEN_FE,1),

 ACTION(alarm:command:test/notif/blmachine/popup
 ,$ALARM,$DESCRIPTION,15)

May 2014Sergi Rubio Manrique, 28th Tango Meeting

ProcessProfiler
 - Provides CPU stats (cpuUsage, memUsage, ...)
 - Can be used to trigger alarms (complementary to Nagios)

FestivalDS
 - Beeping (using OS)
 - Speech synthesizer (using festival linux package)
 - Beep+Speech
 - Pop-up notifications, using libnotify
 - FestivalDS must run with the same user that is managing the desktop

e.g. ACTION(alarm:command:test/notif/controls01/popup,$ALARM,$DESCRIPTION,15)

Fandango.tango.*

● Caseless regular expression parsing/sorting/matching (cached, offline when possible)
 e.g. get_matching_[device/attributes/labels/alias/properties/hosts/...](regexp)

● TangoEval (evaluation of alarm-like code; with user-macros like FIND or GROUP)
● Smart singletons: TangoCommand, CachedAttributeProxy, TangoedValues
● ProxiesDict when UseTaurus = False

Related Projects

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Alarm Pop-ups

May 2014Sergi Rubio Manrique, 28th Tango Meeting

 - Multiprocess
 - Use alarms to switch synoptics
 - Use own DB for configuration and logging
 - Persistent notification history
 - Easier alarm-on-dropped-attributes-quality
 - Events receiving/filtering/pushing
 - Alarms Expiration Date (now using T(date))
 - PhoneBook System-Wide
 - Alarm based config instead of Device
 - Taurus Toolbar (best way to compact information?)
 - Web-based config tool

PANIC still evolving ...

TODO ...

May 2014Sergi Rubio Manrique, 28th Tango Meeting

Summary

● PyAlarm running at ALBA since 2007
● Panic UI deployed in the machine since 2011

● Panic is both Distributed and System-consistent
● DB optional (may work as a no-db device server)
● Dynamic, formulas and devices modifiable online
● Regular expression matching
● Full Attribute value access (value, time, quality, delta, exception)
● Selective exception management

● PyAlarm triggers 4 different messages/actions:
● ALARM, REMINDER, ACKNOWLEDGE, RESET

● It also uses 4 different severities:
● INFO, WARNING, ERROR in DEBUG
● DEBUG alarms don't trigger receivers

● Logging in local files and in the Snapshoting Database
● Extended by interaction with other Tango devices.

More info and SVN links at www.tango-controls.org

http://www.tango-controls.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

