

Solaris status

Piotr Goryl, on behalf of CSiIT group and all the Solaris team

Kraków, 20.05.2015

- About the project
- Peaople and collaboration
- Tools
- Summary

The Project

Overview

Solaris is a replica of the MAX IV 1.5 GeV Storage Ring and parts of the injection system being concurrently built in Sweden.

First electrons - December, 19th, 2014

First light - June 2015

Firs users – March 2016

Agreement established between Jagiellonian and Lund Universities for mutual cooperation in the construction of Solaris based on MAX IV.

Solaris team was hosted at MAX-lab and participate in project activities and training.

Sharing of mutual resources.

Procurements for Solaris are as options in MAX IV tenders.

The Machine

Injector:

- 550MeV linear accelerator
- Thermionic electron gun
- 6 S-band normal conducting structures

Storage Ring:

- Energy: 1.5GeV
- Current: 500mA
- Emmitance: 6nmrad
- Circumference: 96m
- 12 straight sections

Beamlines

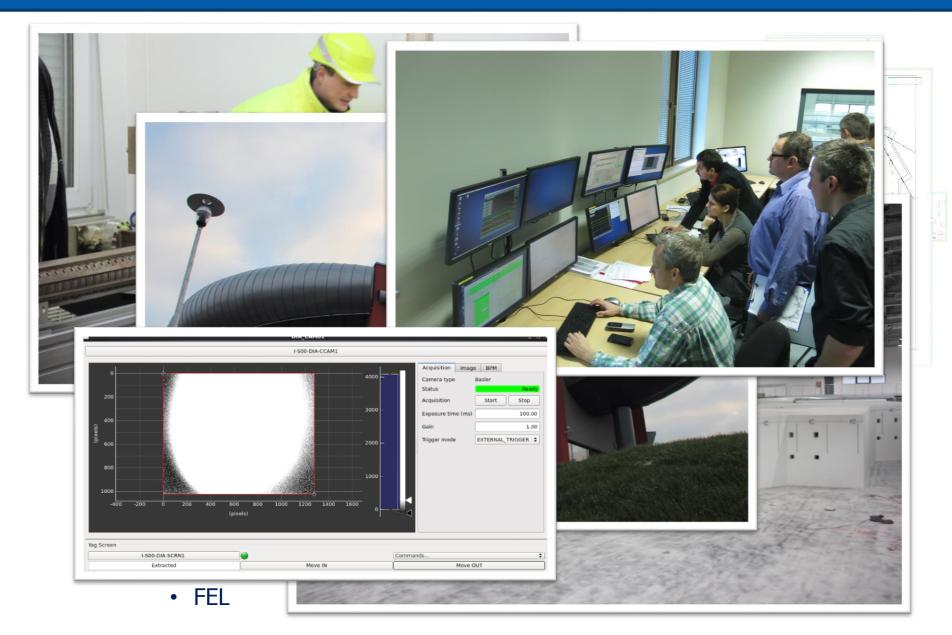
BL-04BM – PEEM • Banding magnet based

- · banding magnet bas
- In assembly
- EMITEC end-station
- XAFS endstation

BL-05ID – UARPES

- Turnkey delivery by Elettra
- Undulator ID
- Control system commissioning (Cosylab)
- PREVAC end-station

Previous Meetings


Previous Meetings

Who

Solaris people involved in the CS related work

- Krzysztof, Piotr Ga.
 - Machine ProtectionSystem
 - Personal Safety System
- Michal, Piotr K.
 - IT infrastructure and services
 - Help-desk
- Lukasz Z., Lukasz D., Wojtek
 - Control system software
 - Outsourced Tango and students software development coordination
 - Motion control
- Julia (PhD. Student in IT, 30% of time)
 - General software development
 - Database applications
 - Students: non-critical tasks, GUIs, helper tools,

- Students' projects coordination
- Ada, Arek, Maciek (diagnostic group)
 - High level software
 - Diagnostic instrumentation
- **Tadeusz** (hired within the PL-Grid Plus project)
 - SynchroGrid coordination
 - HPC services
- Piotr Go.
 - Coordination
 - Virtual accelerator

Tasks outsourced to:

- MAX-IV
 - Requirements gathering
 - General expertise, training
 - System design
 - Device servers and part of physics scripts development
- Elettra
 - Expert support
 - PSS concept and software development
 - Ramping software development
- Cosylab
 - Control system integration
 - GUI and supplementary tango software development
 - Timing system design and delivery
- Installation company (ZSK)
 - PLC systems executive design, fabrication and installation
 - Signals and IT cabling

Outsourcing minimized risk related to lack of expertise

by moving it to operation period due to small team!

In mitigation with documentation provided by the Cosylab and students involvements

Collaboration

MAX-IV (Lund, Sweden) –Collaboration agreement

- design of the machine
- tendering and purchasing
- development

ELETTRA (Trieste, Italy) – The Expertise Service Contract

- Personal Safety System
- Energy ramping
- Various reports

ALBA (Barcelona, Spain) – MoU

• vacuum systems

PSI (Villigen, Switzerland) - MoU

- RF systems
- Experimental Beamiline

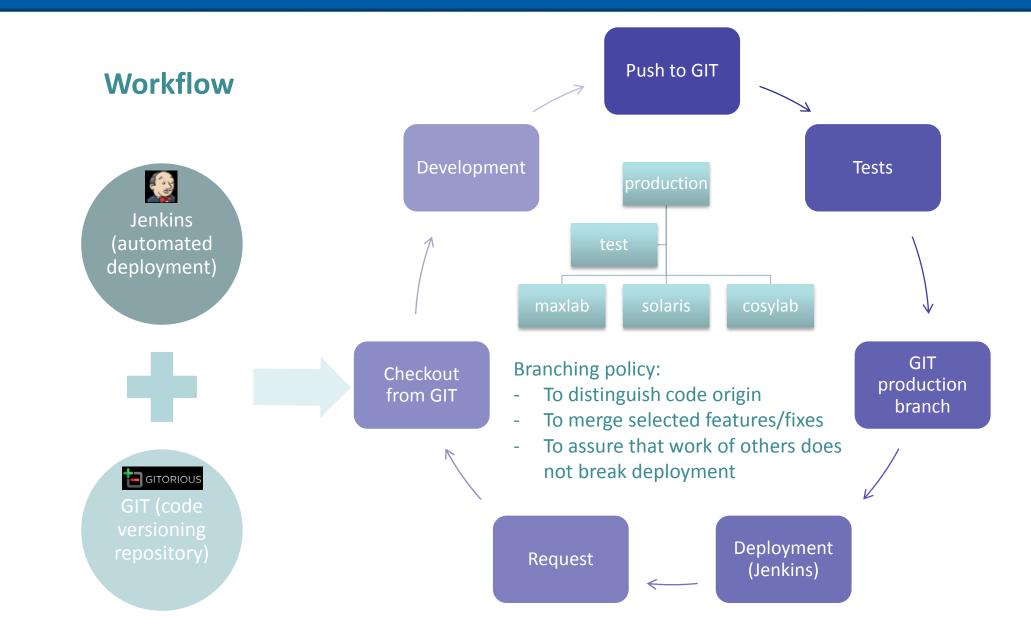
CERIC initiative – Central European Research Infrastructure Consortium

PL-Grid – HPC support, strorage services

TANGO Collaboration

	IT and Control Systems										
	Overview	Activity	Roadmap	Issues	New issue	Gantt	Plan	News	Wiki	Contacts	
Overview											

This project cover all issues regarding to control system and IT for Solaris synchrotron facility during its project phase. It will be divided into sub-projects.


 Subprojects: Beamline Control, Digital User Office, General and Office systems, IT infrastructure, Machine Control, SynchroGrid

Tools

Packages included in base contract and extension

Defined list of device server packages (Low level)

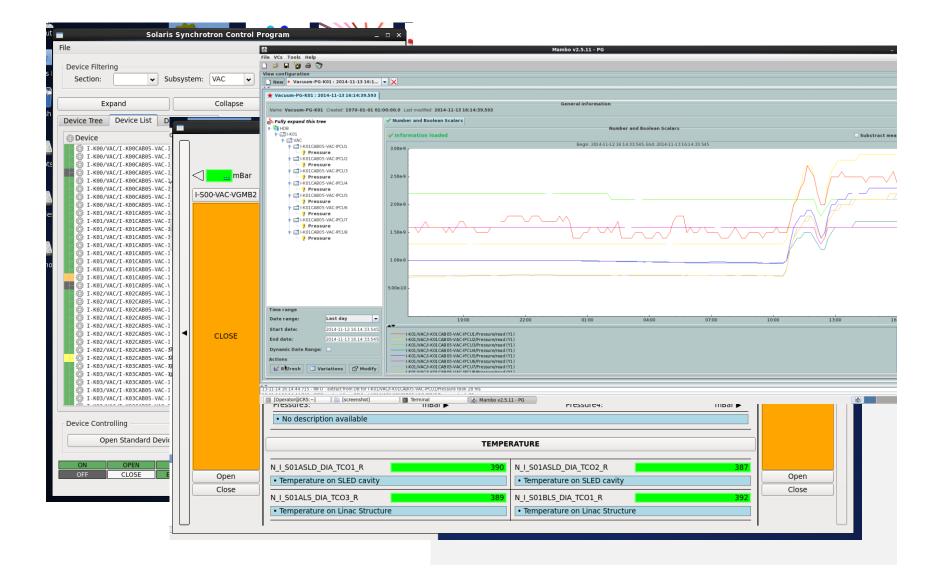
- Tango base software packages including historical, temporary and snapshot archiving
- Get Test Delivery Deploy Start
- Development: Danfysik power supplies, RF transmitters, Pulsed power supplies, diagnostic difference between UARPES and PEEM beamline

•Control room applications

- Engineering screens
- Menu to access
- Other GUIs within an agile package

Agile work (defined as men-weeks available)

- On-site support (120 man-days)
 - Additional manpower for day to day work
 - Solving issues efficiently
 - Direct contact with our team
- Off-site support (110 man-days)
 - Work not defined in packages
 - Adopting MAX-IV changes
- Covers HLS physics and not well defined work


Status

- Machine integrated.
- Agile 130 men-days has been almost fully used
- We are taking responsibility for handling the software
- Beamlines upon integration
- MML in preparation

Status summary

We are in commissioning stage	
•Working to inject and make first turn couple of weeks	ືອ in
•Some integrated system test are on going	I
99% of the machine is integrated	
•RF system integration is in progress	
Beamlines are upon integration	Fu
Preparations for users	
Tango Community tools we use	
•Tango 8.1.2	
•Taurus	
•HDB/TDB/SNAP/Bensikin/Mambo	
•Sardana for beamlines	
•JDDD – deployment in progress	
•Device servers	
•	

Challenges

•Network infrastructure procured in times of low budget

•Small team

•Some technical issues: 100%CPUS, timeouts in PLCs, shortcuts of pole-face strips in the integrated mahnets

•Difficulties to judge importance of issues

uture

•Operation through CERIC

•Stage II – waiting for a call

Projects establishing

•New features in the current system

•Mobile/Web Tango

•Building Management System – Machine PLC system integration

•...

Thank You

Special credits to Darren Spruce and the whole MAX-IV KITS group

Projekt współfinansowany przez Unię Europejską, ze Środków Europejskiego Funduszu Rozwoju Regionalnego i z budżetu państwa, w ramach Programu Operacyjnego Innowacyjna Gospodarka 2007-2013