Tango Integration of Modern 2D Detectors

Yuelong Yu

Outline

- > Background
- > Challenges
- > Hardware
- > Software implementation
 - Architecture
 - Software core
 - Detector Module
 - Tango integration
- > Summary and Outlook

Background

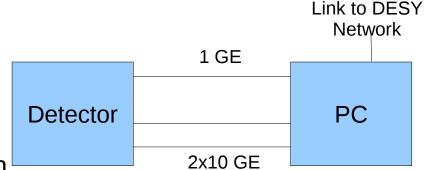
- Motivation
 - Provide detector with high sensitivity, high resolution, high frame rate and large area
- > New detector development
 - LAMBDA 2D detector
 - Developed by DESY.
 - Based on the Medipix3 readout chip
 - Single Module:1536 x 512 pixels
 - Support both 12 and 24 bit image modes
 - Maximum frame rate:2000 frames/second with 12 bit mode

Large Area Medipix Based Detector Array
(LAMBDA)

Other detectors (e.g. AGIPD) are under development as well

Challenges

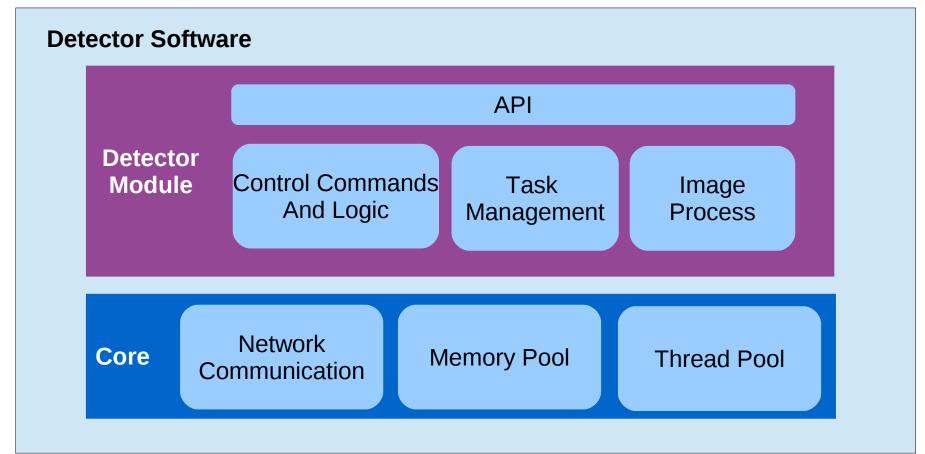
- > Large amounts of data from LAMBDA
 - Data transmission via UDP protocol
 - Each raw image: ~1.2 MBytes
 - With maximum frame rate: 2.4 GBytes/s
 - How do we receive reliably such amounts of data?
- > Multiple modules compatibility
 - LAMBDA: full size module (1536 x 512 Pixels) half size module (768 x 512 Pixels) three modules system
 - Other high speed detector (e.g. AGIPD) with same data transmission protocol
 - How do we generalize the software and make it reusable?



Hardware

- > Detector PC
 - Dell PowerEdge R620 Server
 - Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz X 12 cores
 - RAM: 256 GBytes
 - Hard disk: 4 TBytes
 - 6 X 10 GE NICs
 - 2 X 1 GE NICs

- > LAMBDA system Overview
 - 1 GE TCP link, slow control
 - 10 GE UDP link, data transmission



Software Architecure

> Architecture

Divided into core and module dependent parts

Software Core

> Network communication

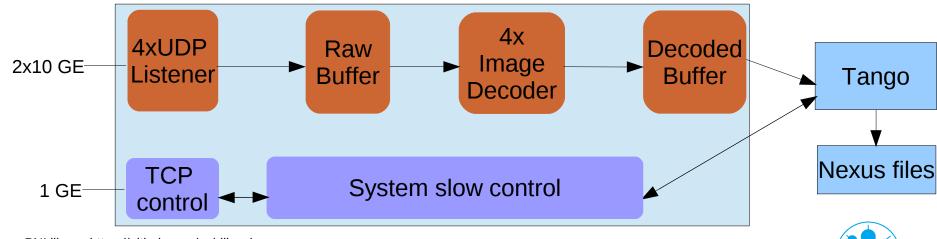
- Based on Linux socket API
- Data receiving and sending methods are implemented

> Memory pool

- Based on boost fast pool allocator
- Support different data types by using generic programming technology
- FIFO circular buffer without overwriting

> Thread pool

- Based on boost thread implementation
- Used to support variable tasks (e.g. data receiving, image decoding)


Detector Module

- > Module dependent control
 - Detector control commands are implemented (e.g. setting shutter time)
 - Basic control logics are implemented (e.g. start acquisition)
- > Task management
 - Create tasks for parallel computing (e.g. UDP listener, image decoding)
 - Created tasks are pushed to thread pool
- > Image process
 - Provide image process related method (e.g. decoding image, distortion correction)
- > API for further integration
 - Interface for developing user applications (e.g. tango server)

Tango Integration

- > Tango server implementation
 - Based on the interface of detector software, tango attributes are created
 - Based on PNI library, data are saved to local disk with Nexus format
- > LAMBDA system workflow
 - 4 x UDP listeners;4 x Image Decoders
 - Parallel running: UDP receiving data, image decoding, saving data to disk
 - Maximum images to take: 150,000 images (75 seconds)

Summary and Outlook

- > Successfully integrated into tango control system at PETRA3 in DESY
- > Works reliably with high speed(2000 fps) data acquisition mode
- > Bottleneck on data compression, local file saving slowly
- > The core part of the software is reused in AGIPD
- > With this software, integration to LIMA is possible
- > Increase compression speed with parallel running HDF5 external filter
- > In future, with help of the GPFS file system from IBM. The data will be saved to DESY central storage rather than local disk
- Three module LAMBDA system is being developed and will be integrated into tango

Thank you

