TANGO: AN OBJECT ORIENTED CONTROL TOOLKIT BASED ON CORBA

J-M. Chaize, A. Götz, W-D. Klotz, J. Meyer, M. Perez, E. Taurel, P. Verdier

ESRF, BP220, Grenoble, 38043, FRANCE

Abstract

TANGO
 is an object oriented control system toolkit based on CORBA
 presently under development at the ESRF. It replaces the ESRF TACO
 toolkit. In this paper, the basic TANGO philosophy is presented. All the existing tools developed around TANGO will also be presented. This includes a code generator, a WEB interface to TANGO objects (including the database), a device test system and a gateway between the running TACO system and the new TANGO system.

1 INTRODUCTION

The task of building a control system in today’s world has been heavily influenced by the ever increasing choice of Commodity off the Shelf products. Many of the control problems (hardware and software) have been solved and can be brought ready to use off-the-shelf. This has advantage in terms of price, functionality and time to be ready. However the products have to be integrated in order to form a control system. System integration is therefore one of the main tasks of a control system builder today. TANGO has been developed with system integration as one of its main design goals.

In TANGO system integration is achieved by wrapping. Wrapping means inserting a layer of software between the product to be integrated and the system in which it has to be integrated. The wrapper layers runs on the product platform and communicates with the control system via the network. The wrapper software needs to be multi-platform, network based and language independent. TANGO has chosen CORBA as its wrapper software.

2 THE CORBA MIDDLEWARE

CORBA is what the software industry called a middleware. This means that it is not a software designed to build end-user application neither a software designed to drive hardware, it is rather a layer which allows end-user application to communicate with other end-user application or with utilities hiding all the communication protocol. Practically, CORBA is a definition of how to write Object Request Broker (ORB). This definition is managed by the Object Management Group (OMG [1]) where all the majors computer industry members are represented. The CORBA definition uses the object approach to deal with the communication problem. Object interfaces are defined using a language called IDL (Interface Definition Language). An object interface defines all the kind of requests that the object supports coming from the external world. CORBA defines language mappings from IDL to the main programming languages e.g. C++, Java, C, COBOL, Smalltalk. On top of that, the OMG has also defined a number of common services for various commonly needed functions like naming, events, trading. Various commercial and non-commercial implementations exist for CORBA for all the mainstream operating systems. Since its release 2.0, the OMG has defined the IIOP
 protocol which makes all the implementations respecting this norm inter-operable over the network. Since release 2.3, it has also defined a clear distinction between network objects and the language object allowing CORBA applications to scale.

At the ESRF, we have tested various free and commercial CORBA ORB’s. We have chosen ORBacus from OOC [2] as our ORB. It is now fully CORBA 2.3 compliant, has C++ and Java support. It is free for non-commercial use and comes with full source. In addition, it is reliable and has good support.

3 TANGO philosophy

As CORBA is a middleware, one could imagine that the choice to base a control system on CORBA is sufficient. Unfortunately not. CORBA obviously does not treat control system specific problems. It is very rich (especially since its release 2.3) and offers a large number of services with low interest for control system. The object interface definition and the services choice is what makes the control system’s philosophy and flavour. The TANGO philosophy could be summarised in the following points:

· Hide CORBA details from the end-user application and from the device access software programmer. The idea is that knowledge of the computing language is enough to write software using Tango. This is achieved by providing programmers with a Device pattern for implementing new control classes and an API
 for implementing physics applications. The device pattern and the API wraps the CORBA specific knowledge required to communicate to a server.

· Define only one type of network object. This means only a single IDL file and only a single type of object to support as far as the communication layer is concerned. All controlled objects will inherit from this base class. This ensures all objects support the same basic interface and functionality. Support for multiple versions will be added with the inheritance model supported by the IDL language. This uniqueness of object control interface allows writing of generic application which can be used whatever the controlled device is.

· Group controlled objects in processes called device servers. All device server processes have the same architecture based on a well defined device pattern. This makes software easily understandable between different device server programmers once the device pattern is known and understood. It also hides in the device server architecture functionalities which will automatically be inherited by all device server process.

· Keep a high degree of flexibility by using a database for device specific information and description. This flexibility is also enhanced by a database driven device server processes configuration.

· Use only freely available software – In order to collaborate with external groups, expensive commercial ORB’s or database have been avoided.

4 The TANGO object interface (IDL)

Only one IDL file is defined as there is only one interface to support. This IDL file contains mainly the definition of the Device interface. Actions are performed on devices by executing commands. Each command is defined by its name and has one input and one output parameter (which could be void). These parameters must be one of a list of 20 data types supported by TANGO. Commands are sent to the device via a command_inout operation defined in the IDL. The use of CORBA Any object allows the same device operation to transmit different data types once data are inserted/extracted from the Any object. Commands can be executed synchronously or asynchronously. Asynchronous commands have to supply a Callback object to receive the answer. Devices also support a list of attributes which could be read or write. Every device also supports utility calls like returning its name, its state, its location or the contents of its black box where the last n received requests are registered. Device also supports describing calls like command_list_query or get_attribute_config which enables generic application to deal with any kind of devices.

5 The device pattern

Writing software to interface a new kind of device means writing a new implementation of the TANGO device pattern. The TANGO device pattern provide the control programmer with a framework in which s/he can develop new control objects derived from the Device class. This device pattern uses other well known design patterns like the Singleton, Command and Factory pattern [4]. It creates the following hierarchy of classes:

Command: A base class for each command to implement based on the Command pattern. For each command supported by the device, a class must be created inheriting from Command. It must implement two methods called is_allowed() and execute().

DeviceClass: A singleton class per device class which creates the list of commands and attributes and stores them in vectors. The derived class (MyDeviceClass) has factory methods for creating the list of commands, attributes and devices (retrieved from the database)

DeviceImpl: A base class for the device class implementing the hardware access necessary for each command. The execute() method of the Command inherited classes force execution of methods defined in classes inherited from DeviceImpl.

Attribute and MultiAttribute: Classes use for the attribute implementation. There is one instance of the MultiAttribute class par device pattern. This class is an aggregate of Attribute classes with one instance per supported attributes.

6 Attributes and properties

In addition to commands, TANGO devices also support normalised data called attributes. Data transferred by commands are not normalised and can be any of the TANGO types with no restriction on what each byte means. This leads to difficulties while interpreting the output of a command in terms of what kind of value it represents. Generic display program needs information about the data meaning, its units, its maximum authorised value. TANGO attributes are zero, one or two dimensional data with a fixed set of properties e.g. minimum and maximum authorised value, high and low alarm value, description, units etc. They are transferred in a special TANGO type and can be read and/or write according to their definition. Attributes and their properties are defined at the device class level but can be redefined at the device level if necessary.

TANGO devices have properties. They represent device specific information like a hardware address, a speed acceleration, the name of a physical I/O used to controlled the device etc. They are stored in a database and can be retrieved, updated or deleted by executing commands on the device server interfacing the TANGO database. Properties can be any simple type from the TANGO data type list.

7 Device server process

A device server is an operating system process with one or several user implementations of the TANGO device pattern. Following a predefined main() or winmain() structure, the device access software programmer merges all the device pattern implementation s/he want to run within the same process. Each device server process has automatically one implementation of the device pattern for a class called DServer with one device. This class offered some administration commands like restarting device pattern implementation, aborting the process, changing its verbose level etc. Device name and number for each device pattern implementation is defined in the database and is retrieved during the process startup sequence. Several instance of the same device server process may run within a single TANGO system. Each instance has an instance name specified when the process is started. The couple process executable name/instance name uniquely defined a device server.

8 Database

As described previously, TANGO uses a database to store device properties and device attribute properties. In addition, it is also used to store permanent information like device name, device network address called an Interoperable Object Reference (IOR) and list of devices with their class for each device server process.

TANGO uses MySQL [3] as its database product. It is a relational database which implements a subset of the SQL language (transaction are not supported). It is free for non commercial use and has good performance. It is available on a wide range of platform and provided at source or binary level. The database is accessed like any other device. Nevertheless, as it is a key device used by nearly all program running within a TANGO system, a special API has been written on top of the database device commands. This eases its usage by providing a high level interface.

9 Naming

Naming and finding network objects is a fundamental service. TANGO uses a 6 fields naming scheme [//facility/]domain/class/member[/attribute.property]. Because TANGO has its own database, it has its own repository for names and does not use the CORBA naming service. Device names and network address (as a stringified CORBA IOR) are stored in the database when the device server starts up. Clients only need to connect to the database in order to retrieve any device network address from the device name. The database device is the anchor of the system and is started on a known host and port. Clients connect to it using the Corbaloc naming style. Once a client knows the device network address, it can build and maintain a connection to it. This two step bootstrapping system is hidden by the TANGO API.

10 Data types and API

TANGO supports a fixed set of data type for transferring data using commands. All simple types and sequences of simple types are supported. In addition, TANGO supports two mixed types which are a sequence of strings and longs, and a sequence of strings and doubles. For attributes, only four types of data are supported. These types are short, long, double or strings (in zero, one or two dimension arrays)

TANGO clients can be programmed using only the CORBA API. Nevertheless, CORBA knows nothing about TANGO and programming at this level means that clients have to know all the details about CORBA programming like retrieving the device network object address stored in the database as a stringified IOR, building a connection to the device, setting the device command time-out etc. The TANGO philosophy is to hide these recipes in an API. The API is implemented as a set of C++ classes or as a Java package. This API also implements automatic reconnection between clients and server in case of server restart or frontend computer reboot. It also implements pseudo-network objects like device or attribute groups which provides multi devices or attribute access in a single API class method invocation.

11 Platforms/Performance

TANGO is supported on 4 platforms presently Linux (Suse), Windows NT, Solaris and HP-UX. All features of TANGO are supported on all platforms. This means device server, database and clients can run on all platforms. Frontends computer run Linux (on CPCI
 or industrial PC’s) or Windows. Clients run on PCs, workstation or server machines.

Table 1 : Performance – Tango performance figures measured on Windows/NT on a Pentium III @ 450 Mhz, Linux on a Pentium @ 600 Mhz, Solaris on an Sun Entreprise 450 computer. Note the times presented here represent the minimum overhead to trigger an action and to transfer 8 bytes of data. The time to execute the action in the server has to be added to this
	From - to
	network
	Time

	Linux - Linux
	Same computer
	0.5 ms

	Linux - Linux
	100baseT
	0.7 ms

	Solaris - Solaris
	Same computer
	0.8 ms

	Solaris - Linux
	100baseT
	1 ms

	WinNT - WinNT
	10baseT
	0.9 ms

12 Backwards compatibility

The running ESRF control system is presently based on the predecessor of TANGO – TACO [5]. Porting all the classes and clients to TANGO is out of the question. In addition, it must be possible to integrate TANGO servers and clients in a running TACO system without shutting down the TACO system. Fortunately, TANGO is very similar to TACO in its basic concepts (object oriented access). This allows a smooth integration of TANGO objects within a running TACO system using gateways. The TANGO to TACO compatibility is obtained via a gateway process which translate TANGO requests to TACO requests when it is possible. The choice to access the gateway is automatically handled by the TANGO device API. The TACO to TANGO compatibility is achieved via an update of the TACO API. According to device name, the API will translate TACO requests into TANGO requests when devices are implemented using TANGO.

13 POGO: A Tango device pattern generator

In order to ease the work of device access software programmer, a TANGO device pattern code generator has been written. This generator is called pogo. It is a graphical tool built using Java and Swing. Once commands, attribute properties and device states has been clearly defined for a new device to be interfaced, it is possible to use pogo to generate a complete framework of the device pattern implementation for this class of device. Using a user friendly graphical interface, the programmer can enter all the commands, attributes, properties and states. The tool will generate C++ or Java classes and an HTML framework for documentation. Obviously, the code specific to the device is still in the programmer hands! Pogo is also able to analyse a device pattern implementation which it has not generated or to analyse a device pattern which has been modified by the programmer if s/he follow some very basic rules. This allows the usage of Pogo from the beginning to the end when developing a device pattern implementation.

14 JIVE: A generic WEB Tango device interface

Jive is a basic tool used by each TANGO programmer or user. It is made of three different parts which are:

· A generic device menu. Once a device has been selected and, using device configuration commands, Jive displays the list of command/attribute supported by the device. The user is able to execute any command or to read/write any attribute. This is very useful to test new devices or to check the functionalities of existing devices.

· A graphical interface to the TANGO database. The database is a key point of a TANGO control system and a user friendly interface is absolutely necessary to insert/update/delete data stored in this database. Jive offers a graphical interface to all the database functionalities like defining new properties, updating properties value, attaching a new device to a device server process, browsing devices and properties, etc

· A device wizard. This is a help tool system for TANGO user. These wizards will give all the information necessary to a TANGO user when s/he want to add a new device to its control system. Each device class for which a device pattern implementation has been written, also has a customised wizard page giving all the details about adding/removing a device of this class and setting its properties.

The first two parts of this tool are written using Java and a servlet/applet couple. The graphical possibilities offered by HTML are not well adapted to the needs of such a program. Therefore, an applet has been written. The drawback of applet is its loading time and all its security restriction. In this architecture, the applet communicates with a servlet running within an Apache WEB server. Communication with the TANGO device is done by the servlet. The applet communicates with the servlet using the traditional doPost/doGet HTTP
 request. This has a timing penalty but access time is not a key point when testing a device, checking its functionalities or browsing the database. Device wizards are classical HTML pages using their own servlet to interface the database if necessary.

Figure 1 : Jive structure[image: image1.wmf]Computer A

Computer B

Computer C

WEB browser

HTTPD server

Servlet

Device server

 when accessing device server
15 ASTOR: Administrating a complete TANGO control system

Once the control system has several device servers, an administration tool is needed. Within TANGO toolkit, this tool is named Astor. It allows an easy starting/stopping of device server processes even on remote hosts. This is achieved by a specific device server called Starter. The starter device supports commands to start, stop device server process running on the same host. For a correct usage of Astor, each host involved in the control system must have a Starter device server. In contrary of other device server, the starter device server is able to start even if the TANGO database is not running. It will automatically connect to the database when it is started.

For a correct start up/shutdown of complex TANGO control system, a level can be associated to each device server process. These levels are stored in the database. Starting or stopping the control system using Astor will ensure the sequencing of action according to these levels.

Astor is also a Java application written using Swing.

16 A device test language

In order to check all TANGO functionalities (especially when new developments are added), a TANGO test system has been developed. This test system is based on specific test device servers(s), specific client(s) and tests scenarios. A test scenario is written using a well defined grammar. Using this grammar, you specify the command to be executed on a device or the attribute to be read/written as well as the command return value or attribute value. These test scenarios are interpreted by a Java program and orders are sent to the test clients. Test clients execute the order and compared the returned value with the theoretical one entered in the scenario. The grammar and the test clients also support a looping mode to test memory usage, generating test reports as HTML pages, computing response time to check performance, etc. Using such a tool, testing TANGO functionalities simply means write scenarios, run them within the test system and analyse the results.

[image: image2.wmf]Computer B

Computer A

Java test client

C++ test client

Test

sequence

motor

Test

D. server

D. server

17 Conclusion

Even if CORBA has a steep learning curve, it is easy to use for building simple types of network objects like our Device. Performance of CORBA is more than enough for an object oriented control system. The paradigm of device oriented access has again proved to be very powerful and adopted to control system problems.

TANGO offers significant improvements compared to TACO e.g. its support for modern protocols (IIOP) and language (Java and C++), immediate reconnection, openness to emerging WEB technologies. In the near future, new developments and improvements e.g. monitors, data caching, other generic applications, will take place only in TANGO and not in TACO in order to encourage TACO users to move to the 21st century.

18 REFERENCES

 [1] OMG home page – http://www.omg.org
 [2] OOC home page – http://www.ooc.com
 [3] MySQL home pqge – http://www.mysql.com
 [4] “Design pattern” by E.Gamma, R.Helm, R.Johnson, and J.Vlissides (Addison – Wesley 1999)

 [5] TACO home page – http://www.esrf.fr/taco
 [6] TANGO home page – http://www.esrf.fr/tango

Figure 2: The TANGO test system diagram

� EMBED MSDraw.1.01 ���

� EMBED MSDraw.1.01 ���

� TANGO – TAco Next Generation Object

� CORBA – Common Object Request Broker Architecture

� TACO – Telescope and Accelerator Controlled with Object

� IIOP – Internet Inter ORB Protocol

� API – Application Programmer Interface

� Compact Peripheral Control Interface

� HTTP – Hyper Text Transfer Protocol

[image: image3.wmf]Computer B

Computer A

Java test client

C++ test client

Test

sequence

motor

Test

D. server

D. server

[image: image4.wmf]Computer A

Computer B

Computer C

WEB browser

HTTPD server

Servlet

Device server

_1032248034.bin

_1032247092.bin

