
Writing a Device Server

Tutorial

How to write a device server in
1 hour

is a bit like

How to dance the tango in 5
minutes !

http://www.bbc.co.uk/broadband/mediawrapper/consoles/strictlycomedancing/
nb_rm_console.shtml?pack4-tango_16x9

Tutorial

Tutorial Goals

● Understand :
– the concept of Device Servers
– the Ultimate Question
– abstract and concrete classes
– commands and attributes

● Know how to :
– start POGO and generate a device server
– generate an abstract class
– implement a concrete class
– define a device in the database
– add a command to a device server
– add an attribute to a device server
– compile a device server on Linux

Device Server concepts

● Device servers implement services which are accessed in a
standardised way

● For developers : a device server is code which is linked into
a process which implements functions which are accessed
via a standard protocol over the network

● Device servers are not totally new - remember subroutines,
remote procedure calls, client-server, SOA, ...

Device Server concepts

● Device Servers are part of TANGO framework i.e. they are
part of libraries, there are support programs, they can be
scripted, there are tools for developing them and glueing
them together

● Some of the advantages of devices servers are :
– software is loosely coupled
– they are very flexible i.e. they can offer any service
– the framework takes care of all the system details
– they can be easily implemented, extended and

maintained (thanks to the framework)

Our Example

Apple iSight ieee 1394 camera

Device Server Preparation

● Requirements
– find out what the user wants as service

● Hardware
– identify the hardware you have

● Software
– find out what software libraries you have and

whether they provide the necessary functionality

Apple iSight Camera

● Requirements
– read an image
– get/set features

● Hardware
– ccd camera
– ieee 1394 interface
– iidc compatible

● Software
– libdc1394 for Linux can get/set camera images

and parameters :
● http://sourceforge.net/projects/libdc1394/

Device Server DESIGN

● THE ULTIMATE QUESTIONS

– my device “IS A ...” ?

– my device “HAS A ...” ?

Device Server Design
Abstract vs. Concrete

“THINK ABSTRACT”

● Try to identify the family of the device i.e. the device type
e.g. DigitalInputOutput, AnalogInput, Powersupply, Vacuum
Pump, Temperature Controller, Linac

● This will define the AbstractClass of your device
● If someone has already implemented an abstract class

adopt or adapt it
● If no AbstractClass exists then define one

● Determine if your device “IS A xyz”

Device Server Design
Thinker's Dilemma

CCD ?POWERSUPPLY ?

 VACUUM PUMP ?

STEPPER MOTOR ?

BPM ?

RGA ?

SIGNAL GENERATOR ?

Device Server Designers
all too often ...

CCD ?POWERSUPPLY ?
 VACUUM PUMP ?
STEPPER MOTOR ?BPM ?RGA ?SIGNAL GENERATOR ?

Apple iSight Camera

● It is a Camera with an Ieee 1394 interface
● An AbstractClass exists for cameras called

Ccd

● Design decision :
– we will inherit from the Ccd abstract class
– we will call our concrete class Ccd1394

Apple iSight Class Diagram

Commands, Attributes and
Properties

● Commands
– are actions e.g. On, Off, Start, Stop

● Attributes
– are data e.g. current, voltage, position
– can be READ, WRITE, READ_WRITE or

READ_WITH_WRITE
– have standard properties e.g. min, max, ...

● Properties
– are descriptive values stored in the database

e.g. gpib address, serial line descriptor, ...

Command sequence diagram

16

Ccd1394
(CORBA Obj.)

Ccd1394Class
(Device Class)

always_executed_hook

ResetClass
(Command)

is_allowed

command_inout

CORBA::Any command_handler

CORBA::Any

execute
CORBA::Any

reset
Void

Void
CORBA::Any

CORBA::Any

CORBA::Any

is_Reset_allowed

Read attribute sequence
diagram

read_attributes(Shutter)

Ccd1394
(CORBA Obj.)

always_executed_hook

read_attr_hardware (Attr1, Attr2)

is_Shutter_allowed (Attr1)

read_Shutter (Attr)

Data types
● Commands

– boolean, short, long, float, double, string, unsigned short,
unsigned long, array of these, string+long, string+double
and State data type

● Attributes
– boolean, unsigned char, short, unsigned short, long,

float, double, string, State
– scalar (one value), spectrum (an array of one

dimension), image (an array of 2 dimensions)
● Properties

– boolean, short, long, float, double, unsigned short,
unsigned long, string, arrays of short, long, float, double,
string

State Machine

● every Device Server has a State Machine

● the State Machine :
– restricts which commands and attributes can be executed

in which states

– every command and attribute has a boolean is_allowed()
method which is called before execution

– state changes are implemented in the commands or
attributes

Allowed States

ON
OFF
CLOSE
OPEN
INSERT
EXTRACT
MOVING
STANDBY
FAULT
INIT
RUNNING
ALARM
DISABLE
UNKNOWN

POGO - THE ONE program to
know

● Pogo – code generator for TANGO device
servers :

What do you have to code ?

● init_device() - device creation method

● commands() - implementation of command

● read_attr() - read attribute

● write_attr() - write attribute

Reporting errors

● throw an exception :
– Tango::Except::re_throw_exception(Tango::DevFailed &ex,

 string &reason,
 string &desc,
 string &origin);

● use the logging streams :
– FATAL_STREAM, ERROR_STREAM, WARN_STREAM, INFO_STREAM,

DEBUG_STREAM

– DEBUG_STREAM << “Hola amigo, que tal ?” << endl;

● C printf style
– LOG_FATAL, LOG_ERROR, LOG_WARN, LOG_INFO, LOG_DEBUG
– LOG_DEBUG((“Still %d minutes until lunch !\n”,nb_minutes))

Compiling

● Linux/Solaris
– use Pogo generated Makefile
– change the TANGO_HOME variable
– use Eclipse as IDE ;-)

● Windows
– make a Visual C++ project
– follow the instructions in the TANGO manual

Debugging

● Use an IDE
– Eclipse on Linux
– Visual C++ on Windows

● GDB
– vivez la “command line” !

● Logviewer
– a “chainsaw” application for dissecting logging

messages

POGO - DEMONSTRATION

1.Generate simple class + compile + test
2.Inherit from Ccd Abstract class
3.Generate code + compile + test
4.Add code to implement reading image
5.Compile + test
6.Add attributes to concrete class
7.Generate code + compile + test
8.Generate documentation

Defining Devices in the
Database

● Database makes the link
between the device and
the device server

● Two possibilities :
– define the list of devices

served by a server in the
database using Jive

– start the device server without
any devices and use the
wizard in Jive to create them
on-the-fly

Jive

Database

Ccd1394/test
test/ccd1394/1

Ccd1394 test

Sharing the code

● Put it on SourceForge cvs (project tango-ds)

● Write the documentation

● Publish it to the tango@esrf.fr mailing list

Writing more Device Servers

● This session has only given you a very brief introduction
to device servers

● Build new device servers out of existing ones by
answering the QUESTION – device “HAS A xyz?”

● There are over 200 existing concrete classes and 5
abstract classes (project tango-ds on sourceforge.net)

● What kind of TANGO dancer will you be ?

