
The TANGO Control System Manual
Version 7. 2

The TANGO Team

September 23, 2010

Contents

1 Introduction 28
1.1 Introduction to device server . 28
1.2 Device server history . 29

2 Getting Started 30
2.1 A Java TANGO client . 30
2.2 A C++ TANGO client . 31
2.3 A TANGO device server . 32

2.3.1 The commands and attributes code in C++ . 32
2.3.1.1 The DevSimple command . 33
2.3.1.2 The DevArray command . 33
2.3.1.3 The DevString command . 34
2.3.1.4 The DevStrArray command . 34
2.3.1.5 The DevStruct command . 35
2.3.1.6 The three attributes . 36

2.3.2 The commands and attributes code in java . 37
2.3.2.1 The DevSimple command . 38
2.3.2.2 The DevArray command . 38
2.3.2.3 The DevString command . 39
2.3.2.4 The DevStrArray command . 39
2.3.2.5 The DevStruct command . 39
2.3.2.6 The three attributes . 40

3 The TANGO device server model 44
3.1 Introduction to CORBA . 44
3.2 The model . 45
3.3 The device . 45

3.3.1 The commands . 45
3.3.2 The TANGO attributes . 46
3.3.3 Command or attributes ? . 46
3.3.4 The CORBA attributes . 46
3.3.5 The remaining CORBA operations . 47
3.3.6 The special case of the device state and status . 47
3.3.7 The device polling . 47

3.4 The server . 48
3.5 The Tango Logging Service . 48
3.6 The database . 48
3.7 The controlled access . 49
3.8 The Application Programmers Interfaces . 49

3.8.1 Rules of the API . 49
3.8.2 Communication between client and server using the API 50
3.8.3 Tango events . 50

1

CONTENTS 2

4 Writing a TANGO client using TANGO APIs 53
4.1 Introduction . 53
4.2 Getting Started . 53
4.3 Basic Philosophy . 53
4.4 Data types . 53
4.5 Request model . 54

4.5.1 Synchronous model . 55
4.5.2 Asynchronous model . 55

4.6 Events . 56
4.6.1 Introduction . 56
4.6.2 Event definition . 56
4.6.3 Event types . 56
4.6.4 Event filtering . 57
4.6.5 Application Programmer’s Interface . 58

4.6.5.1 Configuring events . 59
4.6.5.1.1 change . 59
4.6.5.1.2 periodic . 59
4.6.5.1.3 archive . 59

4.6.5.2 C++ Clients . 59
4.6.5.2.1 Subscribing to events . 60
4.6.5.2.2 The CallBack class . 60
4.6.5.2.3 Unsubscribing from an event 61
4.6.5.2.4 Extract buffered event data 61
4.6.5.2.5 Example . 62

4.6.5.3 Java Clients . 63
4.6.5.3.1 Using CallBack . 64
4.6.5.3.2 Using listeners . 64

4.7 Group . 65
4.7.1 Getting started with Tango group . 65
4.7.2 Forward or not forward? . 68
4.7.3 Executing a command . 68

4.7.3.1 Obtaining command results . 68
4.7.3.2 Case 1: a command, no argument . 69
4.7.3.3 A few words on error handling and data extraction 70
4.7.3.4 Case 2: a command, one argument . 75
4.7.3.5 Case 3: a command, several arguments 76

4.7.4 Reading attribute(s) . 80
4.7.4.1 Obtaining attribute values . 80
4.7.4.2 A few words on error handling and data extraction 80

4.7.5 Writing an attribute . 83
4.7.5.1 Obtaining acknowledgement . 83
4.7.5.2 Case 1: one value for all devices . 83
4.7.5.3 Case 2: a specific value per device . 86

4.8 Device locking . 88
4.9 Reconnection and exception . 89
4.10 Compiling and linking a Tango client . 89

5 TANGO Java API 91
5.1 Introduction . 92

5.1.1 Description . 92
5.1.2 Basic Philosophy . 92
5.1.3 Classes . 93

5.1.3.1 Data object classes . 93
5.1.3.2 Asynchronous callback related classes 93

CONTENTS 3

5.1.3.3 Devices and Database access classes 93
5.1.4 Reporting errors . 93
5.1.5 Compiling a Java client . 94

5.1.5.1 Supported java release . 94
5.1.5.2 Setting CLASSPATH and other environment variables 94

5.2 Data object classes . 94
5.2.1 DeviceData class . 94

5.2.1.1 Public methods . 94
5.2.1.1.1 public DeviceData() . 94
5.2.1.1.2 public void insert(<Tango type> argin) 94
5.2.1.1.3 insertion for unsigned. 94
5.2.1.1.4 public <TangoType> extract<Tango type>() 95

5.2.1.2 Example . 95
5.2.2 DeviceDataHistory . 95

5.2.2.1 Public fields . 95
5.2.2.2 Public methods . 96

5.2.2.2.1 public DeviceDataHistory(String cmdname, DevCmdHistory cmd_histo) 96
5.2.2.2.2 public DeviceDataHistory(DevAttrHistory att_histo) 96
5.2.2.2.3 public TimeVal getTimeVal() 96
5.2.2.2.4 public long getTimeValSec() 96
5.2.2.2.5 public long getTime() . 96
5.2.2.2.6 public AttributeValue getAttributeValueObject() 96
5.2.2.2.7 public AttrQuality getAttrQuality() 96
5.2.2.2.8 public int getDimX() . 96
5.2.2.2.9 public int getDimY() . 96

5.2.3 CommandInfo . 96
5.2.3.1 Public fields . 96

5.2.4 AttributeInfo . 96
5.2.4.1 Public fields . 97

5.2.5 AttributeInfoEx . 97
5.2.5.1 Public fields . 97

5.2.6 AttributeAlarmInfo . 97
5.2.6.1 Public fields . 98

5.2.7 AttributeEventInfo . 98
5.2.7.1 Public fields . 98

5.2.8 ChangeEventInfo . 98
5.2.8.1 Public fields . 98

5.2.9 PeriodicEventInfo . 98
5.2.9.1 Public fields . 98
5.2.9.2 Public fields . 99

5.2.10 DbDatum . 99
5.2.10.1 Public fields . 99
5.2.10.2 public methods . 99

5.2.10.2.1 public DbDatum(String name) 99
5.2.10.2.2 public DbDatum(String name, <Tango type> value) 99
5.2.10.2.3 public void insert(<Tango type> value) 99
5.2.10.2.4 public boolean is_empty() . 99
5.2.10.2.5 public <TangoType> extract<Tango type>() 99

5.2.10.3 Example . 100
5.2.11 DbAttribute Class . 100

5.2.11.1 Public fields . 100
5.2.11.2 Public methods . 100

5.2.11.2.1 public DbAttribute(String name) 100
5.2.11.2.2 public int size() . 100

CONTENTS 4

5.2.11.2.3 public DbDatum datum(int idx) 100
5.2.11.2.4 public DbDatum datum(String name) 100
5.2.11.2.5 public boolean is_empty(String name) 100
5.2.11.2.6 public String get_value(String name) 100
5.2.11.2.7 public String[] get_property_list() 101
5.2.11.2.8 public void add(String name, String value) 101
5.2.11.2.9 public void add(String name, short value) 101
5.2.11.2.10 public void add(String name, long value) 101
5.2.11.2.11 public void add(String name, double value) 101

5.2.11.3 Example . 101
5.2.12 DeviceAttribute . 102

5.2.12.1 Public methods . 102
5.2.12.1.1 public DeviceAttribute(AttributeValue attrval) 102
5.2.12.1.2 public DeviceAttribute(String name, <Tango type> value) . . . 102
5.2.12.1.3 public DeviceAttribute(String name, <Tango type array> value, int dim_x, int dim_y)102
5.2.12.1.4 public void insert(<Tango type> value) 102
5.2.12.1.5 public void insert(<Tango type array> value) 102
5.2.12.1.6 public <Tango type> extract<Tango type>() 102
5.2.12.1.7 public int getDimX() . 102
5.2.12.1.8 public int getDimY() . 102
5.2.12.1.9 public String getName() . 102
5.2.12.1.10 public AttrQuality getQuality() 103
5.2.12.1.11 public TimeVal getTimeVal() 103
5.2.12.1.12 Example . 103

5.2.13 DbDevInfo Class . 103
5.2.13.1 Public fields . 103
5.2.13.2 Public methods . 103

5.2.13.2.1 public DbDevInfo() . 103
5.2.13.2.2 public DbDevInfo(String name, String _class, String server) . 103

5.2.13.3 Example . 103
5.2.14 DbDevImportInfo class . 103

5.2.14.1 Public fields . 104
5.2.14.2 Public methods . 104

5.2.14.2.1 public DbDevImportInfo() 104
5.2.14.3 Example . 104

5.2.15 DbDevExportInfo class . 104
5.2.15.1 Public fields . 104
5.2.15.2 Public methods . 104

5.2.15.2.1 public DbDevExportInfo() 104
5.2.15.2.2 public DbDevExportInfo(String name, String ior, String host, String version)104

5.2.15.3 Example . 104
5.3 Asynchronous callback related classes . 105

5.3.1 CallBack class . 105
5.3.1.1 Public methods . 105

5.3.1.1.1 public void cmd_ended(CmdDoneEvent evt) 105
5.3.1.1.2 public void attr_read(AttrReadEvent evt) 105
5.3.1.1.3 public void attr_written(AttrWrittenEvent evt) 105
5.3.1.1.4 public void push_event(EventData evt) 105

5.3.2 CmdDoneEvent class . 105
5.3.2.1 Public fields . 105

5.3.3 AttrReadEvent class . 105
5.3.3.1 Public fields . 105

5.3.4 AttrWrittenEvent class . 106
5.3.4.1 Public fields . 106

CONTENTS 5

5.3.5 EventData class . 106
5.3.5.1 Public fields . 106

5.4 Devices access . 106
5.4.1 DeviceProxy class . 106

5.4.1.1 Tango database management for Tango device. 106
5.4.1.1.1 public DeviceProxy(String devname) 106
5.4.1.1.2 public DeviceProxy(String devname, String hostname, String port)107
5.4.1.1.3 public DbDevImportInfo import_device() 107
5.4.1.1.4 public void export_device(DbDevExportInfo devinfo) 107
5.4.1.1.5 public void add_device(DbDevInfo devinfo) 107
5.4.1.1.6 String[] get_property_list(String wildcard) 107
5.4.1.1.7 public DbDatum[] get_property(String[] propnames) 107
5.4.1.1.8 public DbDatum get_property(String propname) 107
5.4.1.1.9 public DbDatum[] get_property(DbDatum[] properties) 108
5.4.1.1.10 public void put_property(DbDatum[] properties) 108
5.4.1.1.11 public void delete_property(String[] propnames) 108
5.4.1.1.12 public void delete_property(String propname) 108
5.4.1.1.13 public void delete_property(DbDatum[] properties) 108
5.4.1.1.14 public void put_attribute_property(DbDatum[] properties) . . 108
5.4.1.1.15 public void delete_attribute_property(String[] propnames) . . 108
5.4.1.1.16 public void delete_attribute_property(String propname) 108
5.4.1.1.17 public void delete_attribute_property(DbDatum[] properties) . 108
5.4.1.1.18 public DbDatum[] get_attribute_property(String[] propnames) 108
5.4.1.1.19 public DbDatum get_attribute_property(String propname) . . . 108
5.4.1.1.20 public DbDatum[] get_attribute_property(DbDatum[] properties)109
5.4.1.1.21 public void delete_attribute(String attname) 109
5.4.1.1.22 public String name() . 109

5.4.1.2 The exported device management methods 109
5.4.1.2.1 public int get_timeout_millis() 109
5.4.1.2.2 public void set_timeout_millis(int nb_millis) 109
5.4.1.2.3 public set_transparency_reconnection(boolean mode) 109
5.4.1.2.4 public get_transparency_reconnection() 109
5.4.1.2.5 public DeviceData command_inout(String command, DeviceData data)109
5.4.1.2.6 public DeviceData command_inout(String command) 110
5.4.1.2.7 public String[] black_box(int depth) 110
5.4.1.2.8 public int ping() . 110
5.4.1.2.9 public DevInfo info() . 110
5.4.1.2.10 public CommandInfo[] command_list_query() 110
5.4.1.2.11 public CommandInfo command_list_query() 110
5.4.1.2.12 public String status() . 110
5.4.1.2.13 public DevState state() . 110
5.4.1.2.14 public String adm_name() . 110
5.4.1.2.15 public String description() 111
5.4.1.2.16 public int get_idl_version() 111

5.4.1.3 Attribute methods . 111
5.4.1.3.1 public String[] get_attribute_list() 111
5.4.1.3.2 public AttributeInfo[] get_attribute_info() 111
5.4.1.3.3 public AttributeInfoEx[] get_attribute_info_ex() 111
5.4.1.3.4 public AttributeInfo[] get_attribute_info(String[] attnames) . . 111
5.4.1.3.5 public AttributeInfoEx[] get_attribute_info_ex(String[] attnames)111
5.4.1.3.6 public AttributeInfo get_attribute_info(String attname) 111
5.4.1.3.7 public AttributeInfoEx get_attribute_info_ex(String attname) . 112
5.4.1.3.8 public void set_attribute_info(AttributeConfig[] config) 112
5.4.1.3.9 public void set_attribute_info(AttributeConfigEx[] config) . . 112

CONTENTS 6

5.4.1.3.10 public DeviceAttribute read_attribute(String attname) 112
5.4.1.3.11 public DeviceAttribute read_attribute(String[] attnames) . . . 112
5.4.1.3.12 public void write_attribute(DeviceAttribute devattr) 112
5.4.1.3.13 public void write_attribute(DeviceAttribute[] devattr) 112

5.4.1.4 Polling methods. 113
5.4.1.4.1 public set_source(DevSource src) 113
5.4.1.4.2 public DevSource get_source() 113
5.4.1.4.3 public void poll_command(String cmdname, int period) 113
5.4.1.4.4 public void poll_attribute(String attname, int period) 113
5.4.1.4.5 public void stop_poll_command(String cmdname) 113
5.4.1.4.6 public void stop_poll_attribute(String attname) 113
5.4.1.4.7 public String[] polling_status() 113
5.4.1.4.8 public DeviceDataHistory[] command_history(String cmdname) 113
5.4.1.4.9 public DeviceDataHistory[] command_history(String cmdname, int nb)114
5.4.1.4.10 public DeviceDataHistory[] attribute_history(String attname) . 114
5.4.1.4.11 public DeviceDataHistory[] attribute_history(String attname, int nb)114

5.4.1.5 Asynchronous command oriented methods 114
5.4.1.5.1 public int command_inout_asynch(String cmdname) 114
5.4.1.5.2 public int command_inout_asynch(String cmdname, boolean forget)115
5.4.1.5.3 public int command_inout_asynch(String cmdname, DeviceData argin)115
5.4.1.5.4 public int command_inout_asynch(String cmdname, DeviceData argin, boolean forget)115
5.4.1.5.5 public DeviceData command_inout_reply(int id) 115
5.4.1.5.6 public DeviceData command_inout_reply(int id, int timeout) . 115
5.4.1.5.7 public void command_inout_asynch(String cmdname, CallBack cb)116
5.4.1.5.8 public void command_inout_asynch(String cmdname, DeviceData argin, CallBack cb)116

5.4.1.6 Asynchronous attribute related methods 117
5.4.1.6.1 public int read_attribute_async(String attname) 117
5.4.1.6.2 public int read_attribute_async(String[] attnames) 117
5.4.1.6.3 public DeviceAttribute[] read_attribute_reply(int id) 117
5.4.1.6.4 public DeviceAttribute[] read_attribute_reply(int id, int timeout) 118
5.4.1.6.5 public void read_attribute_asynch(String attname, CallBack cb) 118
5.4.1.6.6 public void read_attribute_asynch(String[] attnames, CallBack cb)118
5.4.1.6.7 public int write_attribute_assynch(DeviceAttribute attr) 119
5.4.1.6.8 public int write_attribute_assynch(DeviceAttribute attr, boolan forget)119
5.4.1.6.9 public int write_attribute_assynch(DeviceAttribute[] attr) . . . 119
5.4.1.6.10 public int write_attribute_assynch(DeviceAttribute attr, boolan forget)119
5.4.1.6.11 public void write_attribute_reply(int id) 119
5.4.1.6.12 public void write_attribute_reply(int id, int timeout) 119
5.4.1.6.13 public void write_attribute_asynch(DeviceAttribute attr, CallBack cb)119
5.4.1.6.14 public void write_attribute_asynch(DeviceAttribute[] attr, CallBack cb)120

5.4.1.7 Miscellaneous asynchronous related methods 120
5.4.1.7.1 public int pending_asynch_call(int type_req) 120
5.4.1.7.2 public void get_asynch_replies() 120
5.4.1.7.3 public void get_asynch_replies(int timeout) 121

5.4.1.8 Event related methods . 121
5.4.1.8.1 public int subscribe_event(String attr_name, int event, EventCallBack callback, String[] filters)121
5.4.1.8.2 public void unsubscribe_event(int event_id) 121

5.4.1.9 Logging related methods . 121
5.4.1.9.1 public void add_logging_target(String target) 121
5.4.1.9.2 public void remove_logging_target(String target_type, String target_name)121
5.4.1.9.3 public String[] get_logging_target() 121
5.4.1.9.4 public void set_logging_level(int level) 122
5.4.1.9.5 public int get_logging_level() 122
5.4.1.9.6 Logging example . 122

CONTENTS 7

5.4.1.10 TACO Device access . 122
5.4.1.10.1 public DeviceData command_inout(String command, DeviceData data)123
5.4.1.10.2 public DeviceData command_inout(String command) 123
5.4.1.10.3 Supported arguments for command_inout methods. 123
5.4.1.10.4 public DevCmdInfo[] command_list_query() 124
5.4.1.10.5 public int get_timeout_millis() 124
5.4.1.10.6 public String status() . 124
5.4.1.10.7 public DevState state() . 124
5.4.1.10.8 public String[] dev_inform() 124
5.4.1.10.9 public void dev_rpc_protocol(int mode) 124
5.4.1.10.10 public String[] get_attribute_list(String wildcard) 124
5.4.1.10.11 public AttributeConfig[] get_attribute_config(String[] attnames) 124
5.4.1.10.12 public AttributeConfig get_attribute_config(String attname) . . 125
5.4.1.10.13 public DeviceAttribute read_attribute(String attname) 125
5.4.1.10.14 public DeviceAttribute read_attribute(String[] attnames) . . . 125

5.4.2 AttributeProxy class . 125
5.4.2.0.15 public AttributeProxy(String attname) 126

5.4.2.1 Attribute access related methods . 126
5.4.2.1.1 public String fullName() . 126
5.4.2.1.2 public String name() . 126
5.4.2.1.3 public DbAttribute get_property() 126
5.4.2.1.4 public void put_property(DbDatum property) 126
5.4.2.1.5 public void put_property(DbDatum[] properties) 126
5.4.2.1.6 public void delete_property(String propname) 126
5.4.2.1.7 public void delete_property(String[] propnames) 126
5.4.2.1.8 public AttributeInfo get_info() 126
5.4.2.1.9 public AttributeInfoEx get_info_ex() 126
5.4.2.1.10 public void set_info_ex(AttributeInfo attr) 126
5.4.2.1.11 public void set_info_ex(AttributeInfoEx attr) 126
5.4.2.1.12 public DeviceAttribute read() 127
5.4.2.1.13 public void write(DeviceAttribute devattr) 127
5.4.2.1.14 public DeviceDataHistory[] history(int nb) 127
5.4.2.1.15 public DeviceDataHistory[] history() 127
5.4.2.1.16 public void poll(int period) 127
5.4.2.1.17 public void stop_poll() . 127

5.4.2.2 Asynchronous call related methods. 127
5.4.2.2.1 public int read_asynch() . 127
5.4.2.2.2 public void read_asynch(CallBack cb) 127
5.4.2.2.3 public DeviceAttribute[] read_reply(int id) 127
5.4.2.2.4 public DeviceAttribute[] read_reply(int id, int timeout) 127
5.4.2.2.5 public int write_asynch(DeviceAttribute attr) 128
5.4.2.2.6 public int write_asynch(DeviceAttribute attr, boolean forget) . 128
5.4.2.2.7 public void write_asynch(DeviceAttribute attr, CallBack cb) . 128
5.4.2.2.8 public void write_reply(int id) 128
5.4.2.2.9 public void write_reply(int id) 128
5.4.2.2.10 public void write_reply(int id, int timeout) 128

5.4.2.3 Events related methods . 128
5.4.2.3.1 public int subscribe_event(int event, EventCallBack callback, String[] filters)128
5.4.2.3.2 public void unsubscribe_event(int event_id) 128

5.5 Utility classes . 129
5.5.1 ApiUtil class . 129

5.5.1.0.3 static public Database get_db_obj() 129
5.5.1.0.4 static public Database get_db_obj(String hostname, String port) 129
5.5.1.0.5 static public int pending_asynch_call(int type_req) 129

CONTENTS 8

5.5.1.0.6 static public void get_asynch_replies() 129
5.5.1.0.7 static public void get_asynch_replies(int timeout) 129
5.5.1.0.8 static public void set_asynch_cb_sub_model(int model) 129
5.5.1.0.9 static public int get_asynch_cb_sub_model() 130
5.5.1.0.10 static public String stateName(DevState state) 130

5.6 Multiple devices access . 130
5.6.1 The Group class . 130

5.6.1.1 Constructor . 130
5.6.1.1.1 Group (String name) . 130

5.6.1.2 Group Management Related Methods 130
5.6.1.2.1 void add (Group group) . 130
5.6.1.2.2 void add (String pattern) . 130
5.6.1.2.3 void add (String[] patterns) 130
5.6.1.2.4 void remove (String pattern, boolean fwd) 131
5.6.1.2.5 void remove (String[] patterns, bool fwd) 131
5.6.1.2.6 void remove_all () . 131
5.6.1.2.7 boolean contains (String pattern, boolean fwd) 131
5.6.1.2.8 DeviceProxy get_device (String device_name) 132
5.6.1.2.9 DeviceProxy get_device (int idx) 132
5.6.1.2.10 Group get_group (String group_name) 132
5.6.1.2.11 int get_size (boolean fwd) . 132
5.6.1.2.12 String[] get_device_list (boolean fwd) 132

5.6.1.3 "A la" DeviceProxy Methods . 133
5.6.1.3.1 boolean ping (boolean fwd) 133
5.6.1.3.2 GroupCmdReplyList command_inout (String c, boolean fwd) . 133
5.6.1.3.3 GroupCmdReplyList command_inout (String c, DeviceData d, boolean fwd)133
5.6.1.3.4 DeviceData[] get_command_specific_argument_list (boolean fwd)134
5.6.1.3.5 GroupCmdReplyList command_inout (String c, DeviceData[] d, boolean fwd)134
5.6.1.3.6 int command_inout_asynch (String c, boolean fgt, boolean fwd) 134
5.6.1.3.7 int command_inout_asynch (String c, DeviceData d, boolean fgt, boolean fwd)134
5.6.1.3.8 int command_inout_asynch (String c,DeviceData[] d,boolean fgt,boolean fwd)134
5.6.1.3.9 GroupCmdReplyList command_inout_reply (int req_id, int timeout_ms)135
5.6.1.3.10 GroupAttrReplyList read_attribute (String a, boolean fwd) . . 135
5.6.1.3.11 int read_attribute_asynch (String a, boolean fwd) 135
5.6.1.3.12 GroupAttrReplyList read_attribute_reply (int req_id, int timeout_ms)135
5.6.1.3.13 GroupReplyList write_attribute (DeviceAttribute d, boolean fwd)135
5.6.1.3.14 DeviceAttribute[] get_attribute_specific_value_list (boolean fwd)136
5.6.1.3.15 GroupReplyList write_attribute (String a, DeviceAttribute[] d, boolean fwd)136
5.6.1.3.16 int write_attribute_asynch (DeviceAttribute d, boolean fwd) . . 136
5.6.1.3.17 int write_attribute_asynch (String a, DeviceAttribute[] d, boolean fwd)136
5.6.1.3.18 GroupReplyList write_attribute_reply (int req_id, int timeout_ms)137

5.7 Event related classes . 137
5.7.1 TangoEventsAdapter class . 137

5.7.1.0.19 Public void addTangoPeriodicListener(ITangoPeriodicListener listener, String attr_name, String[] filters)137
5.7.1.0.20 Public void removeTangoPeriodicListener(ITangoPeriodicListener listener, String attr_name)137
5.7.1.0.21 Public void addTangoChangeListener(ITangoChangeListener listener, String attr_name, String[] filters)137
5.7.1.0.22 Public void removeTangoChangeListener(ITangoChangeListener listener, String attr_name)138
5.7.1.0.23 Public void addTangoArchiveListener(ITangoArchiveListener listener, String attr_name, String[] filters)138
5.7.1.0.24 Public void removeTangoArchiveListener(ITangoArchiveListener listener, String attr_name, String[] filters)138

5.7.2 ITangoPeriodicListener interface . 138
5.7.2.0.25 public void periodic(TangoPeriodicEvent evt) 138

5.7.3 ITangoChangeListener interface . 138
5.7.3.0.26 public void change(TangoChangeEvent evt) 138

5.7.4 ITangoArchiveListener interface . 138

CONTENTS 9

5.7.4.0.27 public void archive(TangoArchiveEvent evt) 138
5.7.5 TangoPeriodicEvent class . 139

5.7.5.0.28 public DeviceAttribute getValue() 139
5.7.6 TangoChangeEvent class . 139

5.7.6.0.29 public DeviceAttribute getValue() 139
5.7.7 TangoArchiveEvent class . 139

5.7.7.0.30 public DeviceAttribute getValue() 139
5.8 Database access classes . 139

5.8.1 Database class . 139
5.8.1.1 General information methods . 139

5.8.1.1.1 Creating a Database object 139
5.8.1.1.2 String get_info() . 139
5.8.1.1.3 String[] get_host_list() . 139
5.8.1.1.4 String[] get_host_list(String wildcard) 140
5.8.1.1.5 String[] get_server_list() . 140
5.8.1.1.6 String[] get_server_list(String wildcard) 140
5.8.1.1.7 String[] get_host_server_list(String hostname) 140
5.8.1.1.8 String[] get_server_class_list(String servname) 140
5.8.1.1.9 void put_server_info(DbServInfo info) 140
5.8.1.1.10 DbServInfo get_server_info(String servname) 141

5.8.1.2 Object property methods . 141
5.8.1.2.1 DbDatum[] get_property(String name, String[] propnames) . . 141
5.8.1.2.2 DbDatum get_property(String name, String propname) 141
5.8.1.2.3 DbDatum[] get_property(String name, DbDatum[] properties) 141
5.8.1.2.4 void put_property(String name, DbDatum[] properties) 142
5.8.1.2.5 void delete_property(String name, String[] propnames) 142
5.8.1.2.6 void delete_property(String name, String propname) 142
5.8.1.2.7 void delete_property(String name, DbDatum[] properties) . . . 142

5.8.1.3 Device Methods . 143
5.8.1.3.1 void add_device(DbDevInfo devinfo) 143
5.8.1.3.2 void delete_device(String devname) 143
5.8.1.3.3 DbDevImportInfo import_device(String devname) 143
5.8.1.3.4 void unexport_device(String servname) 143
5.8.1.3.5 void export_device(DbDevExportInfo devinfo) 143
5.8.1.3.6 String[] get_device_class_list(String servname) 143
5.8.1.3.7 String[] get_device_name(String servname, String classname) 144
5.8.1.3.8 String[] get_device_domain(String wildcard) 144
5.8.1.3.9 String[] get_device_family(String wildcard) 144
5.8.1.3.10 String[] get_device_member(String wildcard) 144

5.8.1.4 Device property methods . 145
5.8.1.4.1 String[] get_device_property_list(String devname, String wildcard)145
5.8.1.4.2 DbDatum[] get_device_property(String name, String[] propnames)145
5.8.1.4.3 DbDatum get_device_property(String name, String propname) 145
5.8.1.4.4 DbDatum[] get_device_property(String name, DbDatum[] properties)145
5.8.1.4.5 void put_device_property(String name, DbDatum[] properties) 146
5.8.1.4.6 void delete_device_property(String name, String[] propnames) 146
5.8.1.4.7 void delete_device_property(String name, String propname) . 146
5.8.1.4.8 void delete_device_property(String name, DbDatum[] properties)146

5.8.1.5 Device attribute methods . 147
5.8.1.5.1 String[] get_device_attribute_list(String devname, String wildcard)147
5.8.1.5.2 DbAttribute[] get_device_attribute_property(String name, String[] attnames)147
5.8.1.5.3 DbAttribute get_device_attribute_property(String name, String attname)147
5.8.1.5.4 void put_device_attribute_property(String name, DbAttribute[] attr)148
5.8.1.5.5 void put_device_attribute_property(String name, DbAttribute[] attr)148

CONTENTS 10

5.8.1.5.6 void delete_device_attribute_property(String name, String[] propnames)148
5.8.1.5.7 void delete_device_attribute_property(String name, String propname)148
5.8.1.5.8 void delete_device_attribute_property(String name, DbAttribute[] attr)148
5.8.1.5.9 void delete_device_attribute_property(String name, DbAttribute attr)149
5.8.1.5.10 void delete_device_attribute(String devname, String attname) . 149

5.8.1.6 Server methods . 149
5.8.1.6.1 void add_server(String servname, DbDevInfo[] devinfos) . . . 149
5.8.1.6.2 void delete_server(String servname) 149
5.8.1.6.3 void export_server(DbDevExportInfo[] devinfos) 149
5.8.1.6.4 void unexport_server(String devname) 149

5.8.1.7 Class property methods . 149
5.8.1.7.1 String[] get_class_property_list(String classname, String wildcard)149
5.8.1.7.2 DbDatum[] get_class_property(String name, String[] propnames)150
5.8.1.7.3 DbDatum get_class_property(String name, String propname) . 150
5.8.1.7.4 DbDatum[] get_class_property(String name, DbDatum[] properties)150
5.8.1.7.5 void put_class_property(String name, DbDatum[] properties) . 150
5.8.1.7.6 void delete_class_property(String name, String[] propnames) . 150
5.8.1.7.7 void delete_class_property(String name, String propname) . . 150
5.8.1.7.8 void delete_class_property(String name, DbDatum[] properties) 150

5.8.1.8 Class attribute Methods . 151
5.8.1.8.1 String[] get_class_attribute_list(String classname, String wildcard)151
5.8.1.8.2 DbAttribute[] get_class_attribute_property(String name, String[] attnames)151
5.8.1.8.3 DbAttribute get_class_attribute_property(String name, String attname)151
5.8.1.8.4 void put_class_attribute_property(String name, DbAttribute[] attr)152
5.8.1.8.5 void put_class_attribute_property(String name, DbAttribute attr)152
5.8.1.8.6 void delete_class_attribute_property(String name, String[] propnames)152
5.8.1.8.7 void delete_class_attribute_property(String name, String propname)152
5.8.1.8.8 void delete_class_attribute_property(String name, DbDatum[] properties)152

5.8.2 DbClass class . 153
5.8.2.1 Class property methods . 153

5.8.2.1.1 DbClass(String classname) 153
5.8.2.1.2 String[] get_property_list(String wildcard) 153
5.8.2.1.3 DbDatum[] get_property(String[] propnames) 153
5.8.2.1.4 DbDatum get_property(String propnames) 153
5.8.2.1.5 DbDatum[] get_property(DbDatum[] properties) 153
5.8.2.1.6 void put_property(DbDatum[] properties) 153
5.8.2.1.7 void delete_property(String[] propnames) 153
5.8.2.1.8 void delete_property(String propname) 153
5.8.2.1.9 void delete_property(DbDatum[] properties) 153

5.8.2.2 Class attribute methods . 153
5.8.2.2.1 String[] get_attribute_list(String wildcard) 153
5.8.2.2.2 void put_attibute_property(DbAttribute attr) 154
5.8.2.2.3 void put_attibute_property(DbAttribute attr) 154
5.8.2.2.4 void delete_attribute_property(String[] propnames) 154
5.8.2.2.5 delete_attribute_property(String propname) 154
5.8.2.2.6 delete_attribute_property(DbDatum[] properties) 154
5.8.2.2.7 DbDatum[] get_attribute_property(String[] propnames) 154
5.8.2.2.8 DbAttribute[] get_attribute_property(String[] attnames) 154
5.8.2.2.9 DbAttribute get_attribute_property(String propname) 154
5.8.2.2.10 DbDatum[] get_attribute_property(DbDatum[] properties) . . 155

5.8.2.3 General information methods . 155
5.8.2.3.1 String name() . 155

5.8.2.4 Device aliases related methods . 155
5.8.2.4.1 public String[] get_device_alias_list(String wildcard) 155

CONTENTS 11

5.8.2.4.2 String[] get_device_alias(String devname) 155
5.8.2.4.3 public String get_alias_device(String alias) 155
5.8.2.4.4 public void put_device_alias(String devname, String aliasname) 155
5.8.2.4.5 public void delete_device_alias(String alias) 155

5.8.2.5 Device aliases related methods. 155
5.8.2.5.1 String[] get_attribute_alias_list(String wildcard) 155
5.8.2.5.2 public String get_attribute_alias(String attname) 156
5.8.2.5.3 public void put_attribute_alias(String attname, String aliasname)156
5.8.2.5.4 public void delete_attribute_alias(String alias) 156

5.8.3 DbServer class . 156
5.8.3.0.5 public DbServer(String servname) 156
5.8.3.0.6 public DbServer(String servname, Database dbase) 156
5.8.3.0.7 String[] get_class_list() . 156
5.8.3.0.8 public DbServInfo get_info() 156
5.8.3.0.9 public void put_info(DbServInfo info) throws DevFailed . . . 157
5.8.3.0.10 String[] get_device_class_list() 157
5.8.3.0.11 String[] get_device_name(String classname) 157
5.8.3.0.12 public String name() . 157

6 The TANGO C++ Application Programmer Interface 158
6.1 Tango::DeviceProxy() . 158

6.1.1 Constructors . 158
6.1.1.1 DeviceProxy::DeviceProxy(string &name, CORBA::ORB *orb=NULL) 158
6.1.1.2 DeviceProxy::DeviceProxy(const char *name, CORBA::ORB *orb = NULL)158

6.1.2 Miscellaneous methods . 158
6.1.2.1 DeviceInfo DeviceProxy::info() . 158
6.1.2.2 DevState DeviceProxy::state() . 159
6.1.2.3 string DeviceProxy::status() . 159
6.1.2.4 int DeviceProxy::ping() . 159
6.1.2.5 void DeviceProxy::set_timeout_millis(int timeout) 159
6.1.2.6 int DeviceProxy::get_timeout_millis() 160
6.1.2.7 int DeviceProxy::get_idl_version() . 160
6.1.2.8 void DeviceProxy::set_source(DevSource source) 160
6.1.2.9 DevSource DeviceProxy::get_source() 160
6.1.2.10 vector<string> *DeviceProxy::black_box(int n) 160
6.1.2.11 string DeviceProxy::name() . 160
6.1.2.12 string DeviceProxy::adm_name() . 160
6.1.2.13 string DeviceProxy::dev_name() . 160
6.1.2.14 string DeviceProxy::description() . 160
6.1.2.15 DbDevImportInfo DeviceProxy::import_info() 161
6.1.2.16 void DeviceProxy::set_transparency_reconnection(bool flag) 161
6.1.2.17 bool DeviceProxy::get_transparency_reconnection() 161
6.1.2.18 string DeviceProxy::alias() . 161

6.1.3 Synchronous command oriented methods . 161
6.1.3.1 CommandInfo DeviceProxy::command_query(string command) 161
6.1.3.2 CommandInfoList *DeviceProxy::command_list_query() 161
6.1.3.3 DeviceData DeviceProxy::command_inout(string) 162
6.1.3.4 DeviceData DeviceProxy::command_inout(const char *) 162
6.1.3.5 DeviceData Deviceproxy::command_inout(string, DeviceData &) 162
6.1.3.6 DeviceData DeviceProxy::command_inout(const char *, DeviceData &) 162
6.1.3.7 vector<DeviceDataHistory> *command_history(string &, int) 162
6.1.3.8 DeviceDataHistoryList *command_history(const char *, int) 163

6.1.4 Synchronous attribute related methods . 163
6.1.4.1 Compatibility between Tango release 4 and release 5 regarding attribute properties163

CONTENTS 12

6.1.4.2 AttributeInfoEx DeviceProxy::attribute_query(string attribute) 163
6.1.4.3 AttributeInfoList * DeviceProxy::attribute_list_query() 163
6.1.4.4 AttributeInfoListEx * DeviceProxy::attribute_list_query_ex() 163
6.1.4.5 vector<string> *DeviceProxy::get_attribute_list() 163
6.1.4.6 AttributeInfoList *DeviceProxy::get_attribute_config(vector<string>&) 164
6.1.4.7 AttributeInfoListEx *DeviceProxy::get_attribute_config_ex(vector<string>&)164
6.1.4.8 AttributeInfoEx DeviceProxy::get_attribute_config(string&) 165
6.1.4.9 void DeviceProxy::set_attribute_config(AttributeInfoList &) 165
6.1.4.10 void DeviceProxy::set_attribute_config(AttributeInfoListEx &) 165
6.1.4.11 vector<DeviceAttribute> *DeviceProxy::read_attributes(vector<string>&)166
6.1.4.12 DeviceAttribute DeviceProxy::read_attribute(string&) 166
6.1.4.13 DeviceAttribute DeviceProxy::read_attribute(const char *) 166
6.1.4.14 void DeviceProxy::write_attributes(vector<DeviceAttribute>&) 166
6.1.4.15 void DeviceProxy::write_attribute(DeviceAttribute&) 167
6.1.4.16 DeviceAttribute DeviceProxy::write_read_attribute(DeviceAttribute&) . 167
6.1.4.17 vector<DeviceAttributeHistory> *DeviceProxy::attribute_history(string &, int)167
6.1.4.18 vector<DeviceAttributeHistory> *DeviceProxy::attribute_history(const char *, int)168

6.1.5 Asynchronous command oriented methods . 168
6.1.5.1 long DeviceProxy::command_inout_asynch(string &name, bool forget) . 168
6.1.5.2 long DeviceProxy::command_inout_asynch(const char *name, bool forget)168
6.1.5.3 long DeviceProxy::command_inout_asynch(string &name, DeviceData &argin, bool forget)168
6.1.5.4 long DeviceProxy::command_inout_asynch(const char *name, Devicedata &argin, bool forget)168
6.1.5.5 DeviceData DeviceProxy::command_inout_reply(long id) 168
6.1.5.6 DeviceData DeviceProxy::command_inout_reply(long id, long timeout) 169
6.1.5.7 void DeviceProxy::command_inout_asynch(string &name, CallBack &cb)169
6.1.5.8 void DeviceProxy::command_inout_asynch(const char *name, CallBack &cb)169
6.1.5.9 void DeviceProxy::command_inout_asynch(string &name, DeviceData &argin, CallBack &cb)169
6.1.5.10 void DeviceProxy::command_inout_asynch(const char *name, DeviceData &argin, Callback &cb)170

6.1.6 Asynchronous attribute related methods . 170
6.1.6.1 long DeviceProxy::read_attribute_asynch(string &name) 170
6.1.6.2 long DeviceProxy::read_attribute_asynch(const char *name) 170
6.1.6.3 long DeviceProxy::read_attributes_asynch(vector<string> &names) . . . 170
6.1.6.4 DeviceAttribute *DeviceProxy::read_attribute_reply(long id) 170
6.1.6.5 DeviceAttribute *DeviceProxy::read_attribute_reply(long id, long timeout)170
6.1.6.6 vector<DeviceAttribute> *DeviceProxy::read_attributes_reply(long id) . 170
6.1.6.7 vector<DeviceAttribute> *DeviceProxy::read_attributes_reply(long id, long timeout)171
6.1.6.8 long DeviceProxy::write_attribute_asynch(DeviceAttribute &argin) . . . 171
6.1.6.9 long DeviceProxy::write_attributes_asynch(vector<DeviceAttribute> &argin)171
6.1.6.10 void DeviceProxy::write_attribute_reply(long id) 171
6.1.6.11 void DeviceProxy::write_attribute_reply(long id, long timeout) 171
6.1.6.12 void DeviceProxy::write_attributes_reply(long id) 172
6.1.6.13 void DeviceProxy::write_attributes_reply(long id, long timeout) 172
6.1.6.14 void DeviceProxy::read_attribute_asynch(string &name, CallBack &cb) 172
6.1.6.15 void DeviceProxy::read_attribute_asynch(const char *name, CallBack &cb)172
6.1.6.16 void DeviceProxy::read_attributes_asynch(vector<string> &names, CallBack &cb)172
6.1.6.17 void DeviceProxy::write_attribute_asynch(DeviceAttribute &argin, CallBack &cb)172
6.1.6.18 void DeviceProxy::write_attributes_asynch(vector<DeviceAttribute> &argin, CallBack &cb)172

6.1.7 Miscellaneous asynchronous related methods . 172
6.1.7.1 long DeviceProxy::pending_asynch_call(asyn_req_type req) 172
6.1.7.2 void DeviceProxy::get_asynch_replies() 173
6.1.7.3 void DeviceProxy::get_asynch_replies(long timeout) 174
6.1.7.4 void DeviceProxy::cancel_asynch_request(long id) 174
6.1.7.5 void DeviceProxy::cancel_all_polling_asynch_request() 174

6.1.8 Polling related methods . 174

CONTENTS 13

6.1.8.1 bool DeviceProxy::is_command_polled(string &cmd_name) 174
6.1.8.2 bool DeviceProxy::is_command_polled(const char *cmd_name) 174
6.1.8.3 bool DeviceProxy::is_attribute_polled(string &attr_name) 174
6.1.8.4 bool Deviceproxy::is_attribute_polled(const char *attr_name) 174
6.1.8.5 int DeviceProxy::get_command_poll_period(string &cmd_name) 174
6.1.8.6 int DeviceProxy::get_command_poll_period(const char *cmd_name) . . 174
6.1.8.7 int DeviceProxy::get_attribute_poll_period(string &attr_name) 174
6.1.8.8 int Deviceproxy::get_attribute_poll_period(const char *attr_name) . . . 174
6.1.8.9 vector<string> *DeviceProxy::polling_status() 175
6.1.8.10 void DeviceProxy::poll_command(string &cmd_name,int period) 175
6.1.8.11 void DeviceProxy::poll_command(const char *cmd_name, int period) . 175
6.1.8.12 void DeviceProxy::poll_attribute(string &attr_name, int period) 175
6.1.8.13 void DeviceProxy::poll_attribute(const char *attr_name, int period) . . . 175
6.1.8.14 void DeviceProxy::stop_poll_command(string &cmd_name) 175
6.1.8.15 void DeviceProxy::stop_poll_command(const char *cmd_name) 175
6.1.8.16 void DeviceProxy::stop_poll_attribute(string &attr_name) 175
6.1.8.17 void DeviceProxy::stop_poll_attribute(const char *attr_name) 175

6.1.9 Event related methods . 176
6.1.9.1 int DeviceProxy::subscribe_event(const string &attribute, EventType event, CallBack *cb, const vector<string> &filters)176
6.1.9.2 int DeviceProxy::subscribe_event(const string &attribute, EventType event, CallBack *cb, const vector<string> &filters, bool stateless)176
6.1.9.3 int DeviceProxy::subscribe_event(const string &attribute, EventType event, int event_queue_size, const vector<string> &filters, bool stateless)176
6.1.9.4 void DeviceProxy::unsubscribe_event(int event_id) 177
6.1.9.5 void DeviceProxy::get_events(int event_id, CallBack *cb) 177
6.1.9.6 void DeviceProxy::get_events(int event_id, EventDataList &event_list) . 177
6.1.9.7 void DeviceProxy::get_events(int event_id, AttrConfEventDataList &event_list)177
6.1.9.8 void DeviceProxy::get_events(int event_id, DataReadyEventDataList &event_list)177
6.1.9.9 int DeviceProxy::event_queue_size(int event_id) 177
6.1.9.10 TimeVal DeviceProxy::get_last_event_date(int event_id) 178
6.1.9.11 bool DeviceProxy::is_event_queue_empty(int event_id) 178

6.1.10 Property related methods . 178
6.1.10.1 void DeviceProxy::get_property (string&, DbData&) 178
6.1.10.2 void DeviceProxy::get_property (vector<string>&, DbData&) 178
6.1.10.3 void DeviceProxy::get_property(DbData&) 178
6.1.10.4 void DeviceProxy::put_property(DbData&) 178
6.1.10.5 void DeviceProxy::delete_property (string&) 178
6.1.10.6 void DeviceProxy::delete_property (vector<string>&) 178
6.1.10.7 void DeviceProxy::delete_property(DbData&) 179
6.1.10.8 void DeviceProxy::get_property_list(const string &filter,vector<string> &prop_list)179

6.1.11 Logging related methods . 179
6.1.11.1 void DeviceProxy::add_logging_target(const string &target_type_target_name)179
6.1.11.2 void DeviceProxy::add_logging_target (const char *target_type_target_name)179
6.1.11.3 void DeviceProxy::remove_logging_target(const string &target_type_target_name)179
6.1.11.4 void DeviceProxy::remove_logging_target (const char *target_type_target_name)179
6.1.11.5 vector<string> DeviceProxy::get_logging_target () 179
6.1.11.6 int DeviceProxy::get_logging_level () 179
6.1.11.7 void DeviceProxy::set_logging_level (int level) 180

6.1.12 Locking related methods . 180
6.1.12.1 void DeviceProxy::lock(int lock_validity = 10) 180
6.1.12.2 void DeviceProxy::unlock(bool force = false) 180
6.1.12.3 string DeviceProxy::locking_status() 180
6.1.12.4 bool DeviceProxy::is_locked() . 180
6.1.12.5 bool DeviceProxy::is_locked_by_me() 181
6.1.12.6 bool DeviceProxy::get_locker(LockerInfo &li) 181

6.2 Tango::DeviceData . 181

CONTENTS 14

6.2.1 Operators . 181
6.2.2 bool DeviceData::is_empty() . 184
6.2.3 int DeviceData::get_type() . 185
6.2.4 void DeviceData::exceptions(bitset<DeviceData::numFlags>) 185
6.2.5 bitset<DeviceData::numFlags> exceptions() . 185
6.2.6 void DeviceData::reset_exceptions(DeviceData::except_flags fl) 185
6.2.7 void DeviceData::set_exceptions(DeviceData::except_flags fl) 185
6.2.8 ostream &operator<<(ostream &, DeviceData &) 186

6.3 Tango::DeviceDataHistory . 186
6.3.1 bool DeviceDataHistory::has_failed() . 186
6.3.2 TimeVal &DeviceDataHistory::get_date() . 186
6.3.3 const DevErrorList &DeviceDataHistory::get_err_stack() 186
6.3.4 ostream &operator<<(ostream &, DeviceDataHistory &) 186

6.4 Tango::DeviceAttribute . 187
6.4.1 Constructors . 187
6.4.2 Data Extraction and Insertion : Operators and Methods 189
6.4.3 bool DeviceAttribute::is_empty() . 195
6.4.4 void DeviceAttribute::exceptions(bitset<DeviceAttribute::numFlags>) 196
6.4.5 bitset<DeviceAttribute::numFlags> exceptions() 196
6.4.6 void DeviceAttribute::reset_exceptions(DeviceAttribute::except_flags fl) 196
6.4.7 void DeviceAttribute::set_exceptions(DeviceAttribute::except_flags fl) 196
6.4.8 bool DeviceAttribute::has_failed() . 196
6.4.9 const DevErrorList &DeviceAttribute::get_err_stack() 197
6.4.10 string &DeviceAttribute::get_name() . 198
6.4.11 void DeviceAttribute::set_name(string &) . 198
6.4.12 void DeviceAttribute::set_name(const char *) . 198
6.4.13 AttrQuality &DeviceAttribute::get_quality() . 198
6.4.14 int DeviceAttribute::get_dim_x() . 198
6.4.15 int DeviceAttribute::get_dim_y() . 198
6.4.16 int DeviceAttribute::get_written_dim_x() . 198
6.4.17 int DeviceAttribute::get_written_dim_y() . 199
6.4.18 AttributeDimension DeviceAttribute::get_r_dimension() 199
6.4.19 AttributeDimension DeviceAttribute::get_w_dimension() 199
6.4.20 long DeviceAttribute::get_nb_read() . 199
6.4.21 long DeviceAttribute::get_nb_written() . 199
6.4.22 TimeVal &DeviceAttribute::get_date() . 199
6.4.23 int DeviceAttribute::get_type() . 199
6.4.24 AttrDataFormat DeviceAttribute::get_data_format() 200
6.4.25 ostream &operator<<(ostream &, DeviceAttribute &) 200

6.5 Tango::DeviceAttributeHistory . 200
6.5.1 ostream &operator<<(ostream &, DeviceAttributeHistory &) 200

6.6 Tango::AttributeProxy() . 201
6.6.1 Constructors . 201

6.6.1.1 AttributeProxy::AttributeProxy(string &name) 201
6.6.1.2 AttributeProxy::AttributeProxy(const char *name) 201

6.6.2 Miscellaneous methods . 201
6.6.2.1 DevState AttributeProxy::state() . 201
6.6.2.2 string AttributeProxy::status() . 202
6.6.2.3 int AttributeProxy::ping() . 202
6.6.2.4 string AttributeProxy::name() . 202
6.6.2.5 DeviceProxy *get_device_proxy() . 202

6.6.3 Synchronous related methods . 202
6.6.3.1 AttributeInfo AttributeProxy::get_config() 202
6.6.3.2 void AttributeProxy::set_config(AttributeInfo &) 203

CONTENTS 15

6.6.3.3 DeviceAttribute AttributeProxy::read() 203
6.6.3.4 void AttributeProxy::write(DeviceAttribute&) 203
6.6.3.5 DeviceAttribute AttributeProxy::write_read(DeviceAttribute&) 203
6.6.3.6 vector<DeviceAttributeHistory> *AttributeProxy::history(int) 203

6.6.4 Asynchronous methods . 204
6.6.4.1 long AttributeProxy::read_asynch() . 204
6.6.4.2 DeviceAttribute *AttributeProxy::read_reply(long id) 204
6.6.4.3 DeviceAttribute *AttributeProxy::read_reply(long id, long timeout) . . . 204
6.6.4.4 long AttributeProxy::write_asynch(DeviceAttribute &argin) 205
6.6.4.5 void AttributeProxy::write_reply(long id) 205
6.6.4.6 void AttributeProxy::write_reply(long id, long timeout) 205
6.6.4.7 void AttributeProxy::read_asynch(CallBack &cb) 205
6.6.4.8 void AttributeProxy::write_asynch(DeviceAttribute &argin, CallBack &cb)205

6.6.5 Polling related methods . 205
6.6.5.1 bool AttributeProxy::is_polled() . 205
6.6.5.2 int AttributeProxy::get_poll_period() 206
6.6.5.3 void AttributeProxy::poll(int period) 206
6.6.5.4 void AttributeProxy::stop_poll() . 206

6.6.6 Event related methods . 206
6.6.6.1 int AttributeProxy::subscribe_event(EventType event, CallBack *cb, const vector<string> &filters)206
6.6.6.2 int AttributeProxy::subscribe_event(EventType event, CallBack *cb, const vector<string> &filters, bool stateless)206
6.6.6.3 int AttributeProxy::subscribe_event(EventType event, int event_queue_size, const vector<string> &filters, bool stateless)206
6.6.6.4 void AttributeProxy::unsubscribe_event(int event_id) 207
6.6.6.5 void AttributeProxy::get_events(int event_id, CallBack *cb) 207
6.6.6.6 void AttributeProxy::get_events(int event_id, EventDataList &event_list) 207
6.6.6.7 void AttributeProxy::get_events(int event_id, AttrConfEventDataList &event_list)207
6.6.6.8 int AttributeProxy::event_queue_size(int event_id) 207
6.6.6.9 TimeVal AttributeProxy::get_last_event_date(int event_id) 207
6.6.6.10 bool AttributeProxy::is_event_queue_empty(int event_id) 208

6.6.7 Property related methods . 208
6.6.7.1 void AttributeProxy::get_property (string&, DbData&) 208
6.6.7.2 void AttributeProxy::get_property (vector<string>&, DbData&) 208
6.6.7.3 void AttributeProxy::get_property(DbData&) 208
6.6.7.4 void AttributeProxy::put_property(DbData&) 208
6.6.7.5 void AttributeProxy::delete_property (string&, DbData&) 208
6.6.7.6 void AttributeProxy::delete_property (vector<string>&, DbData&) . . . 208
6.6.7.7 void AttributeProxy::delete_property(DbData&) 209

6.7 Tango::ApiUtil . 209
6.7.1 static ApiUtil *ApiUtil::instance() . 209
6.7.2 static void ApiUtil::cleanup() . 209
6.7.3 long ApiUtil::pending_asynch_call(asyn_req_type req) 209
6.7.4 void ApiUtil::get_asynch_replies() . 209
6.7.5 void ApiUtil::get_asynch_replies(long timeout) 209
6.7.6 void ApiUtil::set_asynch_cb_sub_model(cb_sub_model model) 210
6.7.7 cb_sub_model ApiUtil::get_asynch_cb_sub_model() 210
6.7.8 static int ApiUtil::get_env_var(const char *name,string &value); 210

6.8 Asynchronous callback related classes . 210
6.8.1 Tango::CallBack . 210

6.8.1.1 void CallBack::cmd_ended(CmdDoneEvent *event) 210
6.8.1.2 void CallBack::attr_read(AttrReadEvent *event) 210
6.8.1.3 void CallBack::attr_written(AttrWrittenEvent *event) 210
6.8.1.4 void CallBack::push_event(EventData *event) 210
6.8.1.5 void CallBack::push_event(AttrConfEventData *event) 211
6.8.1.6 void CallBack::push_event(DataReadyEventData *event) 211

CONTENTS 16

6.8.2 Tango::CmdDoneEvent . 211
6.8.3 Tango::AttrReadEvent . 211
6.8.4 Tango::AttrWrittenEvent . 211
6.8.5 Tango::EventData . 212
6.8.6 Tango::AttrConfEventData . 212
6.8.7 Tango::DataReadyEventData . 212

6.9 Tango::Group . 213
6.9.1 Constructor and Destructor . 213

6.9.1.1 Group::Group (const std::string& name) 213
6.9.1.2 Group::~Group () . 213

6.9.2 Group Management Related Methods . 213
6.9.2.1 void Group::add (Group* group, int timeout_ms = -1) 213
6.9.2.2 void Group::add (const std::string& pattern, int timeout_ms = -1) 213
6.9.2.3 void Group::add (const std::vector<std::string>& patterns, int timeout_ms = -1)213
6.9.2.4 void Group::remove (const std::string& pattern, bool fwd = true) 214
6.9.2.5 void Group::remove (const std::vector<std::string>& patterns, bool fwd = true)214
6.9.2.6 void Group::remove_all (void) . 214
6.9.2.7 bool Group::contains (const std::string& pattern, bool fwd = true) 215
6.9.2.8 DeviceProxy* Group::get_device (const std::string& device_name) . . . 215
6.9.2.9 DeviceProxy* Group::get_device (long idx) 215
6.9.2.10 DeviceProxy* Group::operator[] (long i) 216
6.9.2.11 Group* Group::get_group (const std::string& group_name) 216
6.9.2.12 long Group::get_size (bool fwd = true) 216
6.9.2.13 std::vector<std::string> Group::get_device_list (bool fwd = true) 216

6.9.3 "A la" DeviceProxy Methods . 217
6.9.3.1 bool Group::ping (bool fwd = true) . 217
6.9.3.2 void Group::set_timeout_millis(int timeout_ms) 217
6.9.3.3 GroupCmdReplyList Group::command_inout (const std::string& c, bool fwd = true)217
6.9.3.4 GroupCmdReplyList Group::command_inout (const std::string& c, const DeviceData& d, bool fwd = true)218
6.9.3.5 template<typename T> GroupCmdReplyList Group::command_inout (const std::string& c, const std::vector<T>& d, bool fwd = true)218
6.9.3.6 long Group::command_inout_asynch (const std::string& c, bool fgt = false, bool fwd = true, long rsv = -1) 218
6.9.3.7 long Group::command_inout_asynch (const std::string& c, const DeviceData& d, bool fgt = false, bool fwd = true, long rsv = -1)219
6.9.3.8 long Group::command_inout_asynch (const std::string& c, const std::vector<T>& d, fgt = false, bool fwd = true)219
6.9.3.9 GroupCmdReplyList Group::command_inout_reply (long req_id, long timeout_ms = 0)219
6.9.3.10 GroupAttrReplyList Group::read_attribute (const std::string& a, bool fwd = true)219
6.9.3.11 long Group::read_attribute_asynch (const std::string& a, bool fwd = true, long rsv = -1)220
6.9.3.12 GroupAttrReplyList Group::read_attribute_reply (long req_id, long timeout_ms = 0)220
6.9.3.13 GroupReplyList Group::write_attribute (const DeviceAttribute& d, bool fwd = true)220
6.9.3.14 GroupReplyList Group::write_attribute (const std::string& a, const std::vector<T>& d, bool fwd = true)220
6.9.3.15 long Group::write_attribute_asynch (const DeviceAttribute& d, bool fwd = true, long rsv = -1)221
6.9.3.16 long Group::write_attribute_asynch (const std::string& a, const std::vector<T>& d, bool fwd = true)221
6.9.3.17 GroupReplyList Group::write_attribute_reply (long req_id, long timeout_ms = 0)221
6.9.3.18 GroupAttrReplyList Group::read_attributes (const std::vector<std::string>& al, bool fwd = true)221
6.9.3.19 long Group::read_attributes_asynch (const std::vector<std::string>& al, bool fwd = true, long rsv = -1)222
6.9.3.20 GroupAttrReplyList Group::read_attributes_reply (long req_id, long timeout_ms = 0)222

6.10 Tango::Database . 222
6.10.1 Database::Database() . 222
6.10.2 string Database::get_info() . 222
6.10.3 void Database::add_device(DbDevInfo&) . 223
6.10.4 void Database::delete_device(string) . 223
6.10.5 DbDevImportInfo Database::import_device(string &) 223
6.10.6 void Database::export_device(DbDevExportInfo&) 224
6.10.7 void Database::unexport_device(string) . 224
6.10.8 void Database::add_server(string &, DbDevInfos&) 224

CONTENTS 17

6.10.9 void Database::delete_server(string &) . 224
6.10.10 void Database::export_server(DbDevExportInfos &) 225
6.10.11 void Database::unexport_server(string &) . 225
6.10.12 DbDatum Database::get_services(string &servicename,string &instname) 225
6.10.13 void Database::register_service(string &servicename,string &instname,string &devname)225
6.10.14 void Database::unregister_service(string &servicename,string &instname) 225
6.10.15 DbDatum Database::get_host_list() . 226
6.10.16 DbDatum Database::get_host_list(string &wildcard) 226
6.10.17 DbDatum Database::get_server_class_list(string &server) 226
6.10.18 DbDatum Database::get_server_name_list() . 226
6.10.19 DbDatum Database::get_instance_name_list(string &servername) 227
6.10.20 DbDatum Database::get_server_list() . 227
6.10.21 DbDatum Database::get_server_list(string &wildcard) 227
6.10.22 DbDatum Database::get_host_server_list(string &hostname) 227
6.10.23 DbServerInfo Database::get_server_info(string &server) 228
6.10.24 void Database::put_server_info(DbServerInfo &info) 228
6.10.25 void Database::delete_server_info(string &server) 228
6.10.26 DbDatum Database::get_device_name(string &, string &) 228
6.10.27 DbDatum Database::get_device_exported(string &) 229
6.10.28 DbDatum Database::get_device_domain(string &) 229
6.10.29 DbDatum Database::get_device_family(string &) 229
6.10.30 DbDatum Database::get_device_member(string &) 229
6.10.31 DbDatum Database::get_device_class_list(string &server) 229
6.10.32 string Database::get_class_for_device(string &devname) 230
6.10.33 DbDatum Database::get_class_inheritance_for_device(string &devname) 230
6.10.34 DbDatum Database::get_device_exported_for_class(string &classname) 230
6.10.35 DbDatum Database::get_object_list(string &wildcard) 230
6.10.36 DbDatum Database::get_object_property_list(string &objectname,string &wildcard) 231
6.10.37 void Database::get_property(string, DbData&) 231
6.10.38 void Database::put_property(string, DbData&) 231
6.10.39 void Database::delete_property(string, DbData&) 232
6.10.40 vector<DbHistory> Database::get_property_history(string &objname, string &propname)232
6.10.41 void Database::get_device_property(string, DbData&) 232
6.10.42 void Database::put_device_property(string, DbData&) 233
6.10.43 void Database::delete_device_property(string, DbData&) 233
6.10.44 vector<DbHistory> Database::get_device_property_history(string &devname, string &propname)233
6.10.45 void Database::get_device_attribute_property(string, DbData&) 234
6.10.46 void Database::put_device_attribute_property(string, DbData&) 234
6.10.47 void Database::delete_device_attribute_property(string, DbData&) 235
6.10.48 vector<DbHistory> Database::get_device_attribute_property_history(string &devname, string &attname, string &propname)235
6.10.49 DbDatum Database::get_class_list(string &wildcard) 236
6.10.50 DbDatum Database::get_class_property_list(string &classname) 236
6.10.51 void Database::get_class_property(string, DbData&) 236
6.10.52 void Database::put_class_property(string, DbData&) 237
6.10.53 void Database::delete_class_property(string, DbData&) 237
6.10.54 vector<DbHistory> Database::get_class_property_history(string &classname, string &propname)237
6.10.55 DbDatum Database::get_class_attribute_list(string &classname,string &wildcard) 237
6.10.56 void Database::get_class_attribute_property(string, DbData&) 238
6.10.57 void Database::put_class_attribute_property(string, DbData&) 238
6.10.58 void Database::delete_class_attribute_property(string, DbData&) 239
6.10.59 vector<DbHistory> Database::get_class_attribute_property_history(string &devname, string &attname, string &propname)239
6.10.60 void Database::get_alias(string dev_name, string &dev_alias) 239
6.10.61 void Database::get_device_alias(string dev_alias, string &dev_name) 240
6.10.62 void Database::get_attribute_alias(string attr_alias, string &attr_name) 240

CONTENTS 18

6.10.63 void Database::put_attribute_alias(string &att_name, string &alias_name) 240
6.10.64 void Database::delete_attribute_alias(string &alias_name) 240
6.10.65 DbDatum Database::get_device_alias_list(string &filter) 240
6.10.66 DbDatum Database::get_attribute_alias_list(string &filter) 240
6.10.67 void Database::put_device_alias(string &dev_name,string &alias_name) 241
6.10.68 void Database::delete_device_alias(string &alias_name) 241

6.11 Tango::DbDevice . 241
6.11.1 DbDevice::DbDevice(string &) . 241
6.11.2 DbDevice::DbDevice(string &, Database *) . 241
6.11.3 DbDevImportInfo DbDevice::import_device() 241
6.11.4 void DbDevice::export_device(DbDevExportInfo&) 241
6.11.5 void DbDevice::add_device(DbDevInfo&) . 241
6.11.6 void DbDevice::delete_device() . 241
6.11.7 void DbDevice::get_property(DbData&) . 241
6.11.8 void DbDevice::put_property(DbData&) . 242
6.11.9 void DbDevice::delete_property(DbData&) . 242
6.11.10 void DbDevice::get_attribute_property(DbData&) 242
6.11.11 void DbDevice::put_attribute_property(DbData&) 242
6.11.12 void DbDevice::delete_attribute_property(DbData&) 242

6.12 Tango::DbClass . 242
6.12.1 DbClass::DbClass(string) . 242
6.12.2 DbClass::DbClass(string, Database *) . 242
6.12.3 void DbClass::get_property(DbData&) . 242
6.12.4 void DbClass::put_property(DbData&) . 243
6.12.5 void DbClass::delete_property(DbData&) . 243
6.12.6 void DbClass::get_attribute_property(DbData&) 243
6.12.7 void DbClass::put_attribute_property(DbData&) 243
6.12.8 void DbClass::delete_attribute_property(DbData&) 243

6.13 Tango::DbServer . 243
6.13.1 DbServer::DbServer(string) . 243
6.13.2 DbServer::DbServer(string, Database *) . 243
6.13.3 void DbServer::add_server(DbDevInfos &) . 243
6.13.4 void DbServer::delete_server() . 243
6.13.5 void DbServer::export_server(DbDevExportInfos &) 244
6.13.6 void DbServer::unexport_server() . 244

6.14 Tango::DbDatum . 244
6.14.1 Operators . 244
6.14.2 bool DbDatum::is_empty() . 245
6.14.3 void DbDatum::exceptions(bitset<DbDatum::numFlags>) 246
6.14.4 bitset<DbDatum::numFlags> exceptions() . 246
6.14.5 void DbDatum::reset_exceptions(DbDatum::except_flags fl) 246
6.14.6 void DbDatum::set_exceptions(DbDatum::except_flags fl) 246

6.15 Tango::DbData . 246
6.16 Exception . 246

6.16.1 The ConnectionFailed exception . 247
6.16.2 The CommunicationFailed exception . 248
6.16.3 The WrongNameSyntax exception . 249
6.16.4 The NonDbDevice exception . 249
6.16.5 The WrongData exception . 249
6.16.6 The NonSupportedFeature exception . 250
6.16.7 The AsynCall exception . 250
6.16.8 The AsynReplyNotArrived exception . 250
6.16.9 The EventSystemFailed exception . 250
6.16.10 The NamedDevFailedList exception . 251

CONTENTS 19

6.16.10.1 long NamedDevFailedList::get_faulty_attr_nb() 251
6.16.10.2 vector<NamedDevFailed> NamedDevErrorList::err_list 251
6.16.10.3 string NamedDevFailed::name . 251
6.16.10.4 long NamedDevFailed::idx_in_call . 251
6.16.10.5 DevErrorList NamedDevFailed::err_stack 251

6.16.11 The DeviceUnlocked exception . 252
6.17 Reconnection and exception . 252

7 TangoATK Programmer’s Guide 253
7.1 Introduction . 253

7.1.1 Assumptions . 253
7.2 The key concepts of TangoATK . 253

7.2.1 Minimize development time . 254
7.2.2 Minimize bugs in applications . 254
7.2.3 Attributes and commands from different devices 254
7.2.4 Avoid code duplication . 254

7.3 The real getting started . 255
7.3.1 Single device applications . 255
7.3.2 Multi device applications . 259
7.3.3 More on displaying attributes . 260

7.3.3.1 Connecting an attribute to a viewer . 260
7.3.3.2 Synoptic viewer . 263

7.3.4 A short note on the relationship between models and viewers 267
7.3.4.1 Listeners . 267

7.4 The key objects of TangoATK . 268
7.4.1 The Refreshers . 268

7.4.1.1 What happens on a refresh . 269
7.4.2 The DeviceFactory . 269
7.4.3 The AttributeFactory and the CommandFactory 269
7.4.4 The AttributeList and the CommandList . 269
7.4.5 The Attributes . 269

7.4.5.1 The hierarchy . 270
7.4.6 The Commands . 270

7.4.6.1 Events and listeners . 271

8 Writing a TANGO device server 273
8.1 The device server framework . 273

8.1.1 Naming convention and programming language 273
8.1.2 The device pattern . 273

8.1.2.1 The DeviceImpl class . 275
8.1.2.1.1 Description . 275
8.1.2.1.2 Contents . 275

8.1.2.2 The DbDevice class . 276
8.1.2.3 The Command class . 276

8.1.2.3.1 Description of the inheritance model 276
8.1.2.3.2 Description of the template model 276
8.1.2.3.3 Contents . 277

8.1.2.4 The DeviceClass class . 277
8.1.2.4.1 Description . 277
8.1.2.4.2 Contents . 277

8.1.2.5 The DbClass class . 277
8.1.2.6 The MultiAttribute class . 278

8.1.2.6.1 Description . 278
8.1.2.6.2 Contents . 278

CONTENTS 20

8.1.2.7 The Attribute class . 278
8.1.2.7.1 Description . 278
8.1.2.7.2 Contents . 278

8.1.2.8 The WAttribute class . 278
8.1.2.8.1 Description . 278
8.1.2.8.2 Contents . 278

8.1.2.9 The Attr class . 279
8.1.2.10 The SpectrumAttr class . 279
8.1.2.11 The ImageAttr class . 279
8.1.2.12 The StepperMotor class . 279

8.1.2.12.1 Description . 279
8.1.2.12.2 Definition . 279

8.1.2.13 The StepperMotorClass class . 280
8.1.2.13.1 Description . 280
8.1.2.13.2 Definition . 280

8.1.2.14 The DevReadPosition class . 281
8.1.2.14.1 Description . 281
8.1.2.14.2 Definition . 281

8.1.2.15 The PositionAttr class . 281
8.1.2.15.1 Description . 281
8.1.2.15.2 Definition . 282

8.1.3 Startup of a device pattern . 282
8.1.4 Command execution sequence . 283
8.1.5 The automatically added commands . 284
8.1.6 Reading/Writing attributes . 284

8.1.6.1 Reading attributes . 284
8.1.6.2 Writing attributes . 285

8.1.7 The device server framework . 286
8.1.7.1 Vocabulary . 286
8.1.7.2 The DServer class . 286
8.1.7.3 The Tango::Util class . 287

8.1.7.3.1 Description . 287
8.1.7.3.2 Contents . 288

8.1.7.4 A complete device server . 288
8.1.7.5 Device server startup sequence . 288

8.2 Exchanging data between client and server . 289
8.2.1 Command / Attribute data types . 289

8.2.1.1 Using command data types with C++ 290
8.2.1.1.1 Basic types . 290
8.2.1.1.2 Strings . 291
8.2.1.1.3 Sequences . 291
8.2.1.1.4 Structures . 293
8.2.1.1.5 Enumeration . 293

8.2.1.2 Using command data types with Java 294
8.2.1.2.1 Basic types . 294
8.2.1.2.2 Sequences . 295
8.2.1.2.3 Structures . 295
8.2.1.2.4 Enumeration . 295

8.2.2 Passing data between client and server . 296
8.2.2.1 C++ mapping for IDL any type . 297

8.2.2.1.1 Inserting/Extracting TANGO basic types 297
8.2.2.1.2 Inserting/Extracting TANGO strings 297
8.2.2.1.3 Inserting/Extracting TANGO sequences 297
8.2.2.1.4 Inserting/Extracting TANGO structures 297

CONTENTS 21

8.2.2.1.5 Inserting/Extracting TANGO enumeration 297
8.2.2.2 The insert and extract methods of the Command class 298
8.2.2.3 Java mapping for IDL any type . 299

8.2.2.3.1 Inserting/Extracting TANGO basic types and strings 300
8.2.2.3.2 Inserting/Extracting TANGO sequences, structures or enumeration300

8.2.2.4 The insert and extract methods of the Command class for Java 301
8.2.3 C++ memory management . 301

8.2.3.1 For string . 302
8.2.3.2 For array/sequence . 302
8.2.3.3 For string array/sequence . 304
8.2.3.4 For Tango composed types . 305

8.2.4 Reporting errors . 305
8.2.4.1 Example of throwing exception using C++ 305
8.2.4.2 Example of throwing exception using Java 306

8.3 The Tango Logging Service . 307
8.3.1 Logging Targets . 307
8.3.2 Logging Levels . 307
8.3.3 Sending TANGO Logging Messages . 307

8.3.3.1 Logging macros in C++ . 307
8.3.3.2 C++ logging in the name of a device 308
8.3.3.3 Logging in Java . 309
8.3.3.4 Logging in the name of a device with Java 309

8.4 Writing a device server . 309
8.4.1 Understanding the device . 310
8.4.2 Defining device commands . 311

8.4.2.1 Standard commands . 312
8.4.3 Choosing device state . 312
8.4.4 Device server utilities to ease coding/debugging 312

8.4.4.1 The device server verbose option . 313
8.4.4.1.1 Choosing the output level using C++ 313
8.4.4.1.2 Choosing the output level using Java 313
8.4.4.1.3 Changing the output level at run time (Java specific) 313

8.4.4.2 Device server output redirection (Java specific) 313
8.4.4.3 Java usage example . 314
8.4.4.4 C++ utilities to ease device server coding 314

8.4.5 Avoiding name conflicts . 315
8.4.5.1 Using C++ . 315
8.4.5.2 Using Java . 315

8.4.6 The device server main function . 315
8.4.6.1 Using C++ . 315
8.4.6.2 Using Java . 316

8.4.7 The DServer::class_factory method (C++ specific) 318
8.4.8 Writing the StepperMotorClass class . 318

8.4.8.1 Using C++ . 318
8.4.8.1.1 The class definition file . 318
8.4.8.1.2 The singleton related methods 319
8.4.8.1.3 The command_factory method 320
8.4.8.1.4 The device_factory method 321
8.4.8.1.5 The attribute_factory method 322

8.4.8.2 Using Java . 322
8.4.8.2.1 The singleton related method 322
8.4.8.2.2 The command_factory method 324
8.4.8.2.3 The device_factory method 324
8.4.8.2.4 The attribute_factory method 325

CONTENTS 22

8.4.9 The DevReadPositionCmd class . 326
8.4.9.1 Using C++ . 326

8.4.9.1.1 The class definition file . 326
8.4.9.1.2 The class constructor . 327
8.4.9.1.3 The is_allowed method . 327
8.4.9.1.4 The execute method . 327

8.4.9.2 Using Java . 328
8.4.9.2.1 The class constructor . 328
8.4.9.2.2 The is_allowed method . 328
8.4.9.2.3 The execute method . 329

8.4.10 The PositionAttr class . 329
8.4.10.1 Using C++ . 329

8.4.10.1.1 The class definition file . 329
8.4.10.1.2 The class constructor . 330
8.4.10.1.3 The is_allowed method . 331
8.4.10.1.4 The read method . 331

8.4.11 The StepperMotor class . 331
8.4.11.1 Using C++ . 331

8.4.11.1.1 The class definition file . 331
8.4.11.1.2 The constructors . 333
8.4.11.1.3 The methods used for the DevReadDirection command 334
8.4.11.1.4 The methods used for the Position attribute 335
8.4.11.1.5 The methods used for the SetPosition attribute 336
8.4.11.1.6 Retrieving device properties 337
8.4.11.1.7 The remaining methods . 337

8.4.11.2 Using Java . 339
8.4.11.2.1 The constructor . 339
8.4.11.2.2 The methods used for the DevReadDirection command 340
8.4.11.2.3 The write attribute related method 341
8.4.11.2.4 The read attribute related methods 341
8.4.11.2.5 Retrieving device properties 342
8.4.11.2.6 The remaining methods . 343

8.5 Device server under Windows . 344
8.5.1 The Tango device server graphical interface . 344

8.5.1.1 The device server main window . 344
8.5.1.2 The console window . 346
8.5.1.3 The help window . 346

8.5.2 MFC device server . 347
8.5.2.1 The InitInstance method . 347
8.5.2.2 The ExitInstance method . 348
8.5.2.3 Example of how to build a Windows device server MFC based 349

8.5.3 Win32 application . 349
8.5.4 Device server as NT service . 351

8.5.4.1 The service class . 351
8.5.4.2 The main function . 352
8.5.4.3 Service options and messages . 353
8.5.4.4 Tango device server using MFC as Windows NT service 354

8.6 Compiling, linking and executing a TANGO device server process 354
8.6.1 Compiling and linking a C++ device server . 354

8.6.1.1 On UNIX like operating system . 354
8.6.1.1.1 Supported development tools 354
8.6.1.1.2 Compiling . 354
8.6.1.1.3 Linking . 355

8.6.1.2 On Windows using Developer Studio 356

CONTENTS 23

8.6.2 Running a C++ device server . 358
8.6.3 Compiling a Java device server . 358

8.6.3.1 Supported java release . 358
8.6.3.2 Setting the CLASSPATH . 358
8.6.3.3 Makefile . 358
8.6.3.4 Tango core software release number 359

8.6.4 Running a Java device server . 360
8.7 Advanced programming techniques . 360

8.7.1 Receiving signal (C++ specific) . 360
8.7.1.0.1 Using Linux . 360
8.7.1.0.2 Using Solaris . 361

8.7.1.1 Using signal . 361
8.7.1.2 Exiting a device server gracefully . 362

8.7.2 Inheriting . 362
8.7.2.1 Using C++ . 363

8.7.2.1.1 Writing the BClass . 363
8.7.2.1.2 Writing the B class . 363
8.7.2.1.3 Writing B class specific command 364
8.7.2.1.4 Redefining A class command 364

8.7.2.2 Using Java . 364
8.7.2.2.1 Writing the BClass . 364
8.7.2.2.2 Writing the B class . 365
8.7.2.2.3 Writing B class specific command 366
8.7.2.2.4 Redefining A class command 366

8.7.3 Using another device pattern implementation within the same server 366

9 Advanced features 368
9.1 Attribute alarms . 368

9.1.1 The level alarms . 368
9.1.2 The Read Different than Set (RDS) alarm . 369

9.2 Device polling . 369
9.2.1 Introduction . 369
9.2.2 Configuring the polling system . 369

9.2.2.1 Configuring what has to be polled and how 369
9.2.2.2 Configuring the polling threads pool 371

9.2.3 Reading data from the polling buffer . 372
9.2.4 Retrieving command/attribute result history . 373
9.2.5 Externally triggered polling (only for C++ device server) 373
9.2.6 Filling polling buffer (only for C++ device server) 373

9.3 Threading . 376
9.3.1 C++ device server process . 376

9.3.1.1 Serialization model within a device server 376
9.3.1.2 Attribute Serialization model . 378

9.3.2 C++ client process . 379
9.4 Generating events in a device server . 380
9.5 Memorized attribute . 381
9.6 Transfering images . 382
9.7 Device server with user defined event loop . 383
9.8 Device server using file as database . 384
9.9 Device server without database . 385

9.9.1 Example of device server started without database usage 385
9.9.1.1 Java device server without the database 386
9.9.1.2 Start a java device server without database 387

9.9.2 Connecting client to device within a device server started without database 387

CONTENTS 24

9.10 Multiple database servers within a Tango control system 387
9.11 The Tango controlled access system . 388

9.11.1 User rights definition . 388
9.11.2 Running a Tango control system with the controlled access 391

A Reference part 392
A.1 Device parameter . 392

A.1.1 The device black box . 392
A.1.2 The device description field . 392
A.1.3 The device state and status . 392
A.1.4 The device polling . 392
A.1.5 The device logging . 393

A.2 Device attribute . 394
A.2.1 Hard-coded device attribute parameters . 394

A.2.1.1 The Attribute data type . 395
A.2.1.2 The attribute data format . 395
A.2.1.3 The max_dim_x and max_dim_y parameters 395
A.2.1.4 The attribute read/write type . 396
A.2.1.5 The associated write attribute parameter 397
A.2.1.6 The attribute display level parameter 397

A.2.2 Modifiable attribute parameters . 397
A.2.2.1 General purpose parameters . 398

A.2.2.1.1 The format attribute parameter 398
A.2.2.1.2 The min_value and max_value parameters 399

A.2.2.2 The alarm related configuration parameters 399
A.2.2.2.1 The min_alarm and max_alarm parameters 399
A.2.2.2.2 The min_warning and max_warning parameters 399
A.2.2.2.3 The delta_t and delta_val parameters 399

A.2.2.3 The event related configuration parameters 399
A.2.2.3.1 The rel_change and abs_change parameters 400
A.2.2.3.2 The periodic period parameter 400
A.2.2.3.3 The archive_rel_change, archive_abs_change and archive_period parameters400

A.2.3 Setting modifiable attribute parameters . 400
A.3 Device class parameter . 401
A.4 The device black box . 401
A.5 Automatically added commands . 402

A.5.1 The State command . 402
A.5.2 The Status command . 402
A.5.3 The Init command . 402

A.6 DServer class device commands . 402
A.6.1 The State command . 403
A.6.2 The Status command . 404
A.6.3 The DevRestart command . 404
A.6.4 The RestartServer command . 404
A.6.5 The QueryClass command . 404
A.6.6 The QueryDevice command . 404
A.6.7 The Kill command . 404
A.6.8 The QueryWizardClassProperty command . 404
A.6.9 The QueryWizardDevProperty command . 404
A.6.10 The QuerySubDevice command . 405
A.6.11 The StartPolling command . 405
A.6.12 The StopPolling command . 405
A.6.13 The AddObjPolling command . 405
A.6.14 The RemObjPolling command . 405

CONTENTS 25

A.6.15 The UpdObjPollingPeriod command . 406
A.6.16 The PolledDevice command . 406
A.6.17 The DevPollStatus command . 406
A.6.18 The LockDevice command . 406
A.6.19 The UnLockDevice command . 407
A.6.20 The ReLockDevices command . 407
A.6.21 The DevLockStatus command . 407
A.6.22 The EventSubscriptionChange command (C++ server only) 407
A.6.23 The AddLoggingTarget command . 408
A.6.24 The RemoveLoggingTarget command . 408
A.6.25 The GetLoggingTarget command . 409
A.6.26 The GetLoggingLevel command . 409
A.6.27 The SetLoggingLevel command . 409
A.6.28 The StopLogging command . 409
A.6.29 The StartLogging command . 409

A.7 DServer class device properties . 409
A.8 Tango log consumer . 410

A.8.1 The available Log Consumer . 410
A.8.2 The Log Consumer interface . 410

A.9 Control system specific . 410
A.9.1 The device class documentation default value . 410
A.9.2 The services definition . 411

A.10 C++ specific . 411
A.10.1 The Tango master include file (tango.h) . 411
A.10.2 Tango specific types . 411

A.10.2.1 Template command model related type 412
A.10.3 Tango device state code . 413
A.10.4 Tango data type . 413
A.10.5 Tango command display level . 414

A.11 Java specific . 414
A.11.1 Packages . 414

A.12 Device server process option and environment variables 415
A.12.1 Classical device server . 415
A.12.2 Device server process as Windows service . 415
A.12.3 Environment variables . 415

A.12.3.1 TANGO_HOST . 416
A.12.3.2 Tango Logging Service (TANGO_LOG_PATH) 416
A.12.3.3 The database and controlled access server (MYSQL_USER and MYSQL_PASSWORD)416
A.12.3.4 The controlled access . 416

B The TANGO IDL file : Module Tango 417
B.1 Aliases . 417
B.2 Enums . 420
B.3 Structs . 422
B.4 Unions . 429
B.5 Exceptions . 430
B.6 Interface Tango::Device . 430

B.6.1 Attributes . 430
B.6.2 Operations . 431

B.7 Interface Tango::Device_2 . 433
B.7.1 Operations . 433

B.8 Interface Tango::Device_3 . 435
B.8.1 Operations . 435

B.9 Interface Tango::Device_4 . 437

CONTENTS 26

B.9.1 Operations . 437

C Tango object naming (device, attribute and property) 439
C.1 Device name . 439
C.2 Full object name . 439

C.2.1 Some examples . 440
C.2.1.1 Full device name examples . 440
C.2.1.2 Attribute name examples . 440
C.2.1.3 Attribute property name . 440
C.2.1.4 Device property name . 440
C.2.1.5 Class property name . 440

C.3 Device and attribute name alias . 440
C.4 Reserved words and characters, limitations . 441

D Starting a Tango control system 442
D.1 Without database . 442
D.2 With database . 442
D.3 With database and event . 442
D.4 With file used as database . 443
D.5 With file used as database and event . 443
D.6 With the controlled access . 444

E The notifd2db utility 445
E.1 The notifd2db utility usage . 445

F The property file syntax 446
F.1 Property file usage . 446
F.2 Property file syntax . 446

CONTENTS 27

Are you ready to dance the TANGO ?

Chapter 1

Introduction

1.1 Introduction to device server
Device servers were first developed at the European Synchrotron radiation Facility (ESRF) for controlling
the 6 Gev synchrotron radiation source. This document is a Programmer’s Manual on how to write TANGO
device servers. It will not go into the details of the ESRF, nor its Control System nor any of the specific
device servers in the Control System. The role of this document is to help programmers faced with the task
of writing TANGO device servers.

Device servers have been developed at the ESRF in order to solve the main task of Control Systems
viz provide read and write access to all devices in a distributed system. The problem of distributed device
access is only part of the problem however. The other part of the problem is providing a programming
framework for a large number of devices programmed by a large number of programmers each having
different levels of experience and style.

Device servers have been written at the ESRF for a large variety of different devices. Devices vary
from serial line devices to devices interfaced by field-bus to memory mapped VME cards or PC cards to
entire data acquisition systems. The definition of a device depends very much on the user’s requirements.
In the simple case a device server can be used to hide the serial line protocol required to communicate with
a device. For more complicated devices the device server can be used to hide the entire complexity of the
device timing, configuration and acquisition cycle behind a set of high level commands.

In this manual the process of how to write TANGO client (applications) and device servers will be
treated. The manual has been organized as follows :

• A getting started chapter.

• The TANGO device server model is treated in chapter 3

• Generalities on the Tango Application Programmer Interfaces are given in chapter 4

• The TANGO Java client Application Programmer Interface is described in chapter 5

• Chapter 6 describes the TANGO C++ client Application Programmer Interface

• Chapter 7 is an a programmer’s guide for the Tango Application ToolKit (TangoATK). This is a Java
toolkit to help Tango Java application developers.

• How to write a TANGO device server is explained in chapter 8

• Chapter 9 describes advanced Tango features

Throughout this manual examples of source code will be given in order to illustrate what is meant. Most
examples have been taken from the StepperMotor class - a simulation of a stepper motor which illustrates
how a typical device server for a stepper motor at the ESRF functions.

28

CHAPTER 1. INTRODUCTION 29

1.2 Device server history
The concept of using device servers to access devices was first proposed at the ESRF in 1989. It has been
successfully used as the heart of the ESRF Control System for the institute accelerator complex. This
Control System has been named TACO1. Then, it has been decided to also used TACO to control devices
in the beam-lines. Today, more than 30 instances of TACO are running at the ESRF. The main technologies
used within TACO are the leading technologies of the 80’s. The Sun Remote Procedure Call (RPC) is used
to communicate over the network between device server and applications, OS-9 is used on the front-end
computers, C is the reference language to write device servers and clients and the device server framework
follows the MIT Widget model. In 1999, a renewal of the control system was started. In June 2002, Soleil
and ESRF offically decide to collaborate to develop this renewal of the old TACO control system. Soleil
is a French synchrotron radiation facility currently under construction in the Paris suburbs. See [5] to get
all information about Soleil. In December 2003, Elettra joins the club. Elettra is an Italian synchrotron
radiation facility located in Trieste. See [20] to get all information about Elettra. Then, beginning of 2005,
ALBA also decided to join. ALBA is a Spanish synchrotron radiation facility located in Barcelona. See
[4] to get all information about ALBA. The new version of the Alba/Elettra/ESRF/Soleil control system is
named TANGO2 and is based on the 21 century technologies :

• CORBA3 to communicate between device server and clients

• C++ and Java as reference programming languages

• Linux, Solaris and Windows-NT as operating systems

• Modern object oriented design pattern

1TACO stands for Telescope and Accelerator Controlled with Objects
2TANGO stands for TAco Next Generation Object
3CORBA stands for Common Object Request Broker Architecture

Chapter 2

Getting Started

2.1 A Java TANGO client
The quickest way of getting started is by studying this example:

/**
* Example of a client using the TANGO Api

*/
import fr.esrf.Tango.*;
import fr.esrf.TangoDs.*;
import fr.esrf.TangoApi.*;

public class TestDevice
{
public static void main (String args[])
{

try
{

// Connect to the device.

DeviceProxy dev = new DeviceProxy("my/serial/device");

// Send a write command to the device

DeviceData argin = new DeviceData();
argin.insert("Hello World !");
dev.command_inout("DevWriteMessage", argin);

// Send a read command to the device

DeviceData argout = dev.command_inout("DevReadMessage");
String received = argout.extractString();
System.out.println(received);

// Read a device attribute (double data type)

DeviceAttribute da = dev.read_attribute("TheAttr");
System.out.println("\nRead " + da.extractDouble() + " on " + dev.getName());

30

CHAPTER 2. GETTING STARTED 31

}
catch (DevFailed e)
{

Except.print_exception(e);
}

}
}

Modify this example to fit your device server or client’s needs, compile it.
Do not forget when you start it to set the parameter TANGO_HOST with <host_name>:<port_number>
(i.e. java -DTANGO_HOST=tango:20000 TestDevice).
And forget about those painful early Tango days when you had to learn CORBA and manipulate Any’s.
Life is going to easy and fun from now on.

2.2 A C++ TANGO client
The quickest way of getting started is by studying this example :

/*
* example of a client using the TANGO C++ api.

*/
#include <tango.h>
using namespace Tango;
int main(unsigned int argc, char **argv)
{

try
{

//
// create a connection to a TANGO device
//

DeviceProxy *device = new DeviceProxy(“sys/database/2”);

//
// Ping the device
//

device->ping();

//
// Execute a command on the device and extract the reply as a string
//

string db_info;
DeviceData cmd_reply;
cmd_reply = device->command_inout(“DbInfo”);
cmd_reply >> db_info;
cout << “Command reply “ << db_info << endl;

//

CHAPTER 2. GETTING STARTED 32

// Read a device attribute (string data type)
//

string spr;
DeviceAttribute att_reply;
att_reply = device->read_attribute(“StoredProcedureRelease”);
att_reply >> spr;
cout << “Database device stored procedure release: “ << spr << endl;

}
catch (DevFailed &e)
{

Except::print_exception(e);
exit(-1);

}
}

Modify this example to fit your device server or client’s needs, compile it and link with the library -ltango.
Forget about those painful early TANGO days when you had to learn CORBA and manipulate Any’s. Life’s
going to easy and fun from now on !

2.3 A TANGO device server
The code given in this chapter as example has been generated using POGO. Pogo is a code generator for
Tango device server. See [15] for more information about POGO. The following examples briefly describe
how to write device class with commands which receives and return different kind of Tango data types
and also how to write device attributes The device class implements 5 commands and 3 attributes. The
commands are :

• The command DevSimple deals with simple Tango data type

• The command DevString deals with Tango strings

• DevArray receive and return an array of simple Tango data type

• DevStrArray which does not receive any data but which returns an array of strings

• DevStruct which also does not receive data but which returns one of the two Tango composed types
(DevVarDoubleStringArray)

For all these commands, the default behavior of the state machine (command always allowed) is acceptable.
The attributes are :

• A spectrum type attribute of the Tango string type called StrAttr

• A readable attribute of the Tango::DevLong type called LongRdAttr. This attribute is linked with
the following writable attribute

• A writable attribute also of the Tango::DevLong type called LongWrAttr.

2.3.1 The commands and attributes code in C++
For each command called DevXxxx, pogo generates in the device class a method named dev_xxx which
will be executed when the command is requested by a client. In this chapter, the name of the device class
is DocDs

CHAPTER 2. GETTING STARTED 33

2.3.1.1 The DevSimple command

This method receives a Tango::DevFloat type and also returns a data of the Tango::DevFloat type which is
simply the double of the input value. The code for the method executed by this command is the following:

1 Tango::DevFloat DocDs::dev_simple(Tango::DevFloat argin)
2 {
3 Tango::DevFloat argout ;
4 DEBUG_STREAM << "DocDs::dev_simple(): entering... !" << endl;
5
6 // Add your own code to control device here
7
8 argout = argin * 2;
9 return argout;
10 }

This method is fairly simple. The received data is passed to the method as its argument. It is
doubled at line 8 and the method simply returns the result.

2.3.1.2 The DevArray command

This method receives a data of the Tango::DevVarLongArray type and also returns a data of the Tango::DevVarLongArray
type. Each element of the array is doubled. The code for the method executed by the command is the fol-
lowing :

1 Tango::DevVarLongArray *DocDs::dev_array(const Tango::DevVarLongArray *argin)
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevVarLongArray *argout = new Tango::DevVarLongArray();
9
10 DEBUG_STREAM << "DocDs::dev_array(): entering... !" << endl;
11
12 // Add your own code to control device here
13
14 long argin_length = argin->length();
15 argout->length(argin_length);
16 for (int i = 0;i < argin_length;i++)
17 (*argout)[i] = (*argin)[i] * 2;
18
19 return argout;
20 }

CHAPTER 2. GETTING STARTED 34

The argout data array is created at line 8. Its length is set at line 15 from the input argument length.
The array is populated at line 16,17 and returned. This method allocates memory for the argout array. This
memory is freed by the Tango core classes after the data have been sent to the caller (no delete is needed).
It is also possible to return data from a statically allocated array without copying. Look at chapter 8.2 for
all the details.

2.3.1.3 The DevString command

This method receives a data of the Tango::DevString type and also returns a data of the Tango::DevString
type. The command simply displays the content of the input string and returns a hard-coded string. The
code for the method executed by the command is the following :

1 Tango::DevString DocDs::dev_string(Tango::DevString argin)
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevString argout;
9 DEBUG_STREAM << "DocDs::dev_string(): entering... !" << endl;
10
11 // Add your own code to control device here
12
13 cout << "the received string is " << argin << endl;
14
15 string str("Am I a good Tango dancer ?");
16 argout = new char[str.size() + 1];
17 strcpy(argout,str.c_str());
18
19 return argout;
20 }

The argout string is created at line 8. Internally, this method is using a standard C++ string. Memory
for the returned data is allocated at line 16 and is initialized at line 17. This method allocates memory for
the argout string. This memory is freed by the Tango core classes after the data have been sent to the caller
(no delete is needed). It is also possible to return data from a statically allocated string without copying.
Look at chapter 8.2 for all the details.

2.3.1.4 The DevStrArray command

This method does not receive input data but returns an array of strings (Tango::DevVarStringArray type).
The code for the method executed by this command is the following:

1 Tango::DevVarStringArray *DocDs::dev_str_array()
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,

CHAPTER 2. GETTING STARTED 35

5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevVarStringArray *argout = new Tango::DevVarStringArray();
9
10 DEBUG_STREAM << "DocDs::dev_str_array(): entering... !" << endl;
11
12 // Add your own code to control device here
13
14 argout->length(3);
15 (*argout)[0] = CORBA::string_dup("Rumba");
16 (*argout)[1] = CORBA::string_dup("Waltz");
17 string str("Jerck");
18 (*argout)[2] = CORBA::string_dup(str.c_str());
19 return argout;
20 }

The argout data array is created at line 8. Its length is set at line 14. The array is populated at line
15,16 and 18. The last array element is initialized from a standard C++ string created at line 17. Note the
usage of the string_dup function of the CORBA namespace. This is necessary for strings array due to the
CORBA memory allocation schema.

2.3.1.5 The DevStruct command

This method does not receive input data but returns a structure of the Tango::DevVarDoubleStringArray
type. This type is a composed type with an array of double and an array of strings. The code for the method
executed by this command is the following:

1 Tango::DevVarDoubleStringArray *DocDs::dev_struct()
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevVarDoubleStringArray *argout = new Tango::DevVarDoubleStringArray();
9
10 DEBUG_STREAM << "DocDs::dev_struct(): entering... !" << endl;
11
12 // Add your own code to control device here
13
14 argout->dvalue.length(3);
15 argout->dvalue[0] = 0.0;
16 argout->dvalue[1] = 11.11;
17 argout->dvalue[2] = 22.22;
18
19 argout->svalue.length(2);
20 argout->svalue[0] = CORBA::string_dup("Be Bop");
21 string str("Smurf");
22 argout->svalue[1] = CORBA::string_dup(str.c_str());
23

CHAPTER 2. GETTING STARTED 36

24 return argout;
25 }

The argout data structure is created at line 8. The length of the double array in the output structure is
set at line 14. The array is populated between lines 15 and 17. The length of the string array in the output
structure is set at line 19. This string array is populated between lines 20 an 22 from a hard-coded string
and from a standard C++ string. This method allocates memory for the argout data. This memory is freed
by the Tango core classes after the data have been sent to the caller (no delete is needed). Note the usage of
the string_dup function of the CORBA namespace. This is necessary for strings array due to the CORBA
memory allocation schema.

2.3.1.6 The three attributes

Some data have been added to the definition of the device class in order to store attributes value. These
data are (part of the class definition) :

1
2
3 protected :
4 // Add your own data members here
5 //---
6 Tango::DevString attr_str_array[5];
7 Tango::DevLong attr_rd;
8 Tango::DevLong attr_wr;

One data has been created for each attribute. As the StrAttr attribute is of type spectrum with a maxi-
mum X dimension of 5, an array of length 5 has been reserved.

Several methods are necessary to implement these attributes. One method to read the hardware which
is common to all "readable" attributes plus one "read" method for each readable attribute and one "write"
method for each writable attribute. The code for these methods is the following :

1 void DocDs::read_attr_hardware(vector<long> &attr_list)
2 {
3 DEBUG_STREAM << "DocDs::read_attr_hardware() entering... "<< endl;
4 // Add your own code here
5
6 string att_name;
7 for (long i = 0;i < attr_list.size();i++)
8 {
9 att_name = dev_attr->get_attr_by_ind(attr_list[i]).get_name();
10
11 if (att_name == "LongRdAttr")
12 {
13 attr_rd = 5;
14 }
15 }
16 }
17

CHAPTER 2. GETTING STARTED 37

18 void DocDs::read_LongRdAttr(Tango::Attribute &attr)
19 {
20 DEBUG_STREAM << "DocDs::read_LongRdAttr() entering... "<< endl;
21
22 attr.set_value(&attr_rd);
23 }
24
25 void DocDs::read_LongWrAttr(Tango::Attribute &attr)
26 {
27 DEBUG_STREAM << "DocDs::read_LongWrAttr() entering... "<< endl;
28
29 attr.set_value(&attr_wr);
30 }
31
32 void DocDs::write_LongWrAttr(Tango::WAttribute &attr)
33 {
34 DEBUG_STREAM << "DocDs::write_LongWrAttr() entering... "<< endl;
35
36 attr.get_write_value(attr_wr);
37 DEBUG_STREAM << "Value to be written = " << attr_wr << endl;
38 }
39
40 void DocDs::read_StrAttr(Tango::Attribute &attr)
41 {
42 DEBUG_STREAM << "DocDs::read_StrAttr() entering... "<< endl;
43
44 attr_str_array[0] = CORBA::string_dup("Rock");
45 attr_str_array[1] = CORBA::string_dup("Samba");
46
47 attr_set_value(attr_str_array, 2);
48 }

The read_attr_hardware() method is executed once when a client execute the read_attributes CORBA
request whatever the number of attribute to be read is. The rule of this method is to read the hardware and to
store the read values somewhere in the device object. In our example, only the LongRdAttr attribute internal
value is set by this method at line 13. The method read_LongRdAttr() is executed by the read_attributes
CORBA call when the LongRdAttr attribute is read but after the read_attr_hardware() method has been
executed. Its rule is to set the attribute value in the TANGO core classes object representing the attribute.
This is done at line 22. The method read_LongWrAttr() will be executed when the LongWrAttr attribute
is read (after the read_attr_hardware() method). The attribute value is set at line 29. In the same manner,
the method called read_StrAttr() will be executed when the attribute StrAttr is read. Its value is initialized
in this method at line 44 and 45 with the string_dup CORBA function. The write_LongWrAttr() method is
executed when the LongWrAttr attribute value is set by a client. The new attribute value coming from the
client is stored in the object data at line 36.

Pogo also generates a file called "DocDsStateMachine.cpp" (for a Tango device server class called
DocDs). This file is used to store methods coding the device state machine. By default a allways allowed
state machine is provided. For more information about coding the state machine, refer to the chapter
"Writing a device server".

2.3.2 The commands and attributes code in java
For each command called DevXxxx, pogo generates in the device class a method named dev_xxx which
will be executed when the command is requested by a client. In this chapter, the name of the device class

CHAPTER 2. GETTING STARTED 38

is DocDs

2.3.2.1 The DevSimple command

This method receives a Tango DevFloat type and also returns a data of the Tango DevFloat type which is
simply the double of the input value. Using java, the Tango::DevFloat type is mapped to classical java float
type. The code for the method executed by this command is the following:

1 public float dev_simple(float argin) throws DevFailed
2 {
3 float argout = (float)0;
4
5 Util.out2.println("Entering dev_simple()");
6
7 // ---Add your Own code to control device here ---
8
9 argout = argin * 2;
10 return argout;
11 }

This method is fairly simple. The received data is passed to the method as its argument. It is
doubled at line 9 and the method simply returns the result.

2.3.2.2 The DevArray command

This method receives a data of the Tango::DevVarLongArray type and also returns a data of the Tango::DevVarLongArray
type. Each element of the array is doubled. Using java, the Tango DevVarLongArray type is mapped to an
array of java long. The code for the method executed by the command is the following :

1 public int[] dev_array(int[] argin) throws DevFailed
2 {
3 int[] argout = new int[argin.length];
4
5 Util.out2.println("Entering dev_array()");
6
7 // ---Add your Own code to control device here ---
8
9 for (int i = 0;i < argin.length;i++)
10 argout[i] = argin[i] * 2;
11 return argout;
12 }

The argout data array is created at line 3. The array is populated at line 9,10 and returned.

CHAPTER 2. GETTING STARTED 39

2.3.2.3 The DevString command

This method receives a data of the Tango DevString type and also returns a data of the Tango DevString
type. The command simply displays the content of the input string and returns a hard-coded string. Us-
ing java, the Tango DevString type simply maps to java String.The code for the method executed by the
command is the following :

1 public String dev_string(String argin) throws DevFailed
2 {
3 Util.out2.println("Entering dev_string()");
4
5 // ---Add your Own code to control device here ---
6
7 System.out.println("the received string is "+argin);
8
9 String argout = new String("Am I a good Tango dancer ?");
10 return argout;
11 }

The argout string is created at line 9.

2.3.2.4 The DevStrArray command

This method does not receive input data but returns an array of strings (Tango DevVarStringArray type).
Using java, the Tango DevVarStringArray type maps to an array of java String. The code for the method
executed by this command is the following:

1 public String[] dev_str_array() throws DevFailed
2 {
3
4 Util.out2.println("Entering dev_str_array()");
5
6 // ---Add your Own code to control device here ---
7
8 String[] argout = new String[3];
9 argout[0] = new String("Rumba");
10 argout[1] = new String("Waltz");
11 argout[2] = new String("Jerck");
12 return argout;
13 }

The argout data array is created at line 8. The array is populated at line 9,10 and 11.

2.3.2.5 The DevStruct command

This method does not receive input data but returns a structure of the Tango DevVarDoubleStringArray
type. This type is a composed type with an array of double and an array of strings. This is mapped to a
specific java class called DevVarDoubleStringArray. The code for the method executed by this command
is the following:

CHAPTER 2. GETTING STARTED 40

1 public DevVarDoubleStringArray dev_struct() throws DevFailed
2 {
3 DevVarDoubleStringArray argout = new DevVarDoubleStringArray();
4
5 Util.out2.println("Entering dev_struct()");
6
7 // ---Add your Own code to control device here ---
8
9 argout.dvalue = new double[3];
10 argout.dvalue[0] = 0.0;
11 argout.dvalue[1] = 11.11;
12 argout.dvalue[2] = 22.22;
13
14 argout.svalue = new String[2];
15 argout.svalue[0] = new String("Be Bop");
16 argout.svalue[1] = new String("Smurf");
17
18 return argout;
19 }

The argout data structure is created at line 3. The double array in the output structure is created at line
9. The array is populated between lines 10 and 12. The string array in the output structure is created at line
14. This string array is populated between lines 15 and 16 from hard-coded strings.

2.3.2.6 The three attributes

Some data have been added to the definition of the device class in order to store attributes value. These
data are (part of the class definition) :

1 protected String[] attr_str_array = new String[5];
2 protected int attr_rd;
3 protected int attr_wr;

One data has been created for each attribute. As the StrAttr attribute is of type spectrum with a maxi-
mum X dimension of 5, an array of length 5 has been reserved.

Unfortunately, Java Tango device server are not at the same level of development than C++ device
servers. This is why they are not written exactly the same way than C++ device servers. Three methods are
necessary to implement these attributes. The code for these methods is the following :

1 public void write_attr_hardware(Vector attr_list)
2 {
3 Util.out2.println("In write_attr_hardware for "+attr_list.size()+" attribute(s)");
4
5 for (int i=0 ; i<attr_list.size() ; i++)

CHAPTER 2. GETTING STARTED 41

6 {
7 int ind = ((Integer)(attr_list.elementAt(i))).intValue();
8 WAttribute att = dev_attr.get_w_attr_by_ind(ind);
9 String attr_name = att.get_name();
10
11 // Switch on attribute name
12 //---------------------------------
13 if (attr_name.equals("LongWrAttr") == true)
14 {
15 // Add your own code here
16 attr_wr = att.get_lg_write_value();
17 System.out.println("Value to be written = "+attr_wr);
18 }
19 }
20 }
21
22
23 public void read_attr_hardware(Vector attr_list)
24 {
25 Util.out2.println("In read_attr_hardware for "+attr_list.size()+" attribute(s)");
26
27 // Add you own code here
28 //---------------------------------
29
30 for (int i=0; i<attr_list.size() ; i++)
31 {
32 int ind = ((Integer)(attr_list.elementAt(i))).intValue();
33 Attribute att = dev_attr.get_attr_by_ind(ind);
34 String attr_name = attr_list.elementAt(i);
35
36 if (attr_name.equals("LongRdAttr") == true)
37 {
38 attr_rd = 5;
39 }
40 else if (attr_name.equals("StrAttr") == true)
41 {
42 attr_str_array[0] = new String("Rock");
43 attr_str_array[1] = new String("Samba");
44 }
45 }
46 }
47
48
49 public void read_attr(Attribute attr) throws DevFailed
50 {
51 String attr_name = attr.get_name();
52 Util.out2.println("In read_attr for attribute "+attr_name);
53
54 // Switch on attribute name
55 //---------------------------------
56 if (attr_name.equals("LongWrAttr") == true)
57 {
58 // Add your own code here
59 attr.set_value(attr_wr);

CHAPTER 2. GETTING STARTED 42

60 }
61 if (attr_name.equals("LongRdAttr") == true)
62 {
63 // Add your own code here
64 attr.set_value(attr_rd);
65 }
66 if (attr_name.equals("StrAttr") == true)
67 {
68 // Add your own code here
69 attr.set_value(attr_str_array);
70 }
71 }

The write_attr_hardware() method is executed when an attribute value is set by a client. In our example
only one attribute is writable (the LongWrAttr attribute). The new attribute value coming from the client
is stored in the object data at line 16. The read_attr_hardware() method is executed once when a client
execute the read_attributes CORBA request. The rule of this method is to read the hardware and to store
the read values somewhere in the device object. In our example, the LongRdAttr attribute internal value
is set by this method at line 38 at the StrAttr attribute internal value is set at lines 42 and 43. The method
read_attr() is executed for each attribute to be read by the read_attributes CORBA call. Its rule is to set the
attribute value in the TANGO core classes object representing the attribute. This is done at line 64 for the
LongRdAttr attribute, at line 59 for the LongWrAttr attribute and at line 69 for the StrAttr attribute

CHAPTER 2. GETTING STARTED 43

Chapter 3

The TANGO device server model

This chapter will present the TANGO device server object model hereafter referred as TDSOM. First, it
will introduce CORBA. Then, it will describe each of the basic features of the TDSOM and their function.
The TDSOM can be divided into the following basic elements - the device, the server, the database and
the application programmers interface. This chapter will treat each of the above elements separately.

3.1 Introduction to CORBA
CORBA is a definition of how to write object request brokers (ORB). The definition is managed by the
Object Management Group (OMG [1]). Various commercial and non-commercial implementations exist
for CORBA for all the mainstream operating systems. CORBA uses a programming language independent
definition language (called IDL) to defined network object interfaces. Language mappings are defined
from IDL to the main programming languages e.g. C++, Java, C, COBOL, Smalltalk and ADA. Within
an interface, CORBA defines two kinds of actions available to the outside world. These actions are called
attributes and operations.

Operations are all the actions offered by an interface. For instance, within an interface for a Thermostat
class, operations could be the action to read the temperature or to set the nominal temperature. An attribute
defines a pair of operations a client can call to send or receive a value. For instance, the position of a motor
can be defined as an attribute because it is a data that you only set or get. A read only attribute defines a
single operation the client can call to receives a value. In case of error, an operation is able to throw an
exception to the client, attributes cannot raises exception except system exception (du to network fault for
instance).

Intuitively, IDL interface correspond to C++ classes and IDL operations correspond to C++ member
functions and attributes as a way to read/write public member variable. Nevertheless, IDL defines only the
interface to an object and say nothing about the object implementation. IDL is only a descriptive language.
Once the interface is fully described in the IDL language, a compiler (from IDL to C++, from IDL to
Java...) generates code to implement this interface. Obviously, you still have to write how operations are
implemented.

The act of invoking an operation on an interface causes the ORB to send a message to the correspond-
ing object implementation. If the target object is in another address space, the ORB run time sends a
remote procedure call to the implementation. If the target object is in the same address space as the caller,
the invocation is accomplished as an ordinary function call to avoid the overhead of using a networking
protocol.

For an excellent reference on CORBA with C++ refer to [2]. The complete TANGO IDL file can be
found in the TANGO web page[3] or at the end of this document in the appendix 2 chapter.

44

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 45

3.2 The model
The basic idea of the TDSOM is to treat each device as an object. Each device is a separate entity which
has its own data and behavior. Each device has a unique name which identifies it in network name space.
Devices are organized according to classes, each device belonging to a class. All classes are derived from
one root class thus allowing some common behavior for all devices. Four kind of requests can be sent to a
device (locally i.e. in the same process, or remotely i.e. across the network) :

• Execute actions via commands

• Read/Set data specific to each device belonging to a class via TANGO attributes

• Read some basic device data available for all devices via CORBA attributes.

• Execute a predefined set of actions available for every devices via CORBA operations

Each device is stored in a process called a device server. Devices are configured at runtime via properties
which are stored in a database.

3.3 The device
The device is the heart of the TDSOM. A device is an abstract concept defined by the TDSOM. In reality, it
can be a piece of hardware (an interlock bit) a collection of hardware (a screen attached to a stepper motor)
a logical device (a taper) or a combination of all these (an accelerator). Each device has a unique name
in the control system and eventually one alias. Within Tango, a four field name space has been adopted
consisting of

[//FACILITY/]DOMAIN/CLASS/MEMBER

Facility refers to the control system instance, domain refers to the sub-system, class the class and member
the instance of the device. Device name alias(es) must also be unique within a control system. There is no
predefined syntax for device name alias.

Each device belongs to a class. The device class contains a complete description and implementation
of the behavior of all members of that class. New device classes can be constructed out of existing device
classes. This way a new hierarchy of classes can be built up in a short time. Device classes can use existing
devices as sub-classes or as sub-objects. The practice of reusing existing classes is classical for Object
Oriented Programming and is one of its main advantages.

All device classes are derived from the same class (the device root class) and implement the same
CORBA interface. All devices implementing the same CORBA interface ensures all control object support
the same set of CORBA operations and attributes. The device root class contains part of the common device
code. By inheriting from this class, all devices shared a common behavior. This also makes maintenance
and improvements to the TDSOM easy to carry out.

All devices also support a black box where client requests for attributes or operations are recorded.
This feature allows easier debugging session for device already installed in a running control system.

3.3.1 The commands
Each device class implements a list of commands. Commands are very important because they are the
client’s major dials and knobs for controlling a device. Commands have a fixed calling syntax - consisting
of one input argument and one output argument. Arguments type must be chosen in a fixed set of data types:
All simple types (boolean, short, long (32 bits), long (64 bits), float, double, unsigned short, unsigned long
(32 bits), unsigned long (64 bits) and string) and arrays of simple types plus array of strings and longs and
array of strings and doubles). Commands can execute any sequence of actions. Commands can be executed
synchronously (the requester is blocked until the command ended) or asynchronously (the requester send
the request and is called back when the command ended).

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 46

Commands are executed using two CORBA operations named command_inout for synchronous com-
mands and command_inout_async for asynchronous commands. These two operations called a special
method implemented in the device root class - the command_handler method. The command_handler calls
an is_allowed method implemented in the device class before calling the command itself. The is_allowed
method is specific to each command1. It checks to see whether the command to be executed is compatible
with the present device state. The command function is executed only if the is_allowed method allows it.
Otherwise, an exception is sent to the client.

3.3.2 The TANGO attributes
In addition to commands, TANGO devices also support normalized data types called attributes2. Com-
mands are device specific and the data they transport are not normalized i.e. they can be any one of the
TANGO data types with no restriction on what each byte means. This means that it is difficult to interpret
the output of a command in terms of what kind of value(s) it represents. Generic display programs need
to know what the data returned represents, in what units it is, plus additional information like minimum,
maximum, quality etc. Tango attributes solve this problem.

TANGO attributes are zero, one or two dimensional data which have a fix set of properties e.g. quality,
minimum and maximum, alarm low and high. They are transferred in a specialized TANGO type and can
be read, write or read-write. A device can support a list of attributes. Clients can read one or more attributes
from one or more devices. To read TANGO attributes, the client uses the read_attributes operation. To
write TANGO attributes, a client uses the write_attributes operation. To write then read TANGO attributes
within the same network request, the client uses the write_read_attributes operation. To query a device
for all the attributes it supports, a client uses the get_attribute_config operation. A client is also able
to modify some of parameters defining an attribute with the set_attribute_config operation. These four
operations are defined in the device CORBA interface.

TANGO support thirteen data types for attributes (and arrays of for one or two dimensional data) which
are: boolean, short, long (32 bits), long (64 bits), float, double, unsigned char, unsigned short, unsigned
long (32 bits), unsigned long (64 bits), string, a specific data type for Tango device state and finally another
specific data type to transfer data as an array of unsigned char with a string describing the coding of these
data.

3.3.3 Command or attributes ?
There are no strict rules concerning what should be returned as command result and what should be im-
plemented as an attribute. Nevertheless, attributes are more adapted to return physical value which have
a kind of time consistency. Attribute also have more properties which help the client to precisely know
what it represents. For instance, the state and the status of a power supply are not physical values and are
returned as command result. The current generated by the power supply is a physical value and is imple-
mented as an attribute. The attribute properties allow a client to know its unit, its label and some other
informations which are related to a physical value. Command are well adapted to send order to a device
like switching from one mode of operation to another mode of operation. For a power supply, the switch
from a STANDBY mode to a ON mode is typically done via a command.

3.3.4 The CORBA attributes
Some key data implemented for each device can be read without the need to call a command or read an
attribute. These data are :

• The device statentranet.esrf.fr/

• The device status

• The device name
1In contrary to the state_handler method of the TACO device server model which is not specific to each command.
2TANGO attributes were known as signals in the TACO device server model

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 47

• The administration device name called adm_name

• The device description

The device state is a number representing its state. A set of predefined states are defined in the TDSOM.
The device status is a string describing in plain text the device state and any additional useful information
of the device as a formatted ascii string. The device name is its name as defined in 3.3. For each set of
devices grouped within the same server, an administration device is automatically added. This adm_name
is the name of the administration device. The device description is also an ascii string describing the device
rule.

These five CORBA attributes are implemented in the device root class and therefore do not need any
coding from the device class programmer. As explained in 3.1, the CORBA attributes are not allowed to
raise exceptions whereas command (which are implemented using CORBA operations) can.

3.3.5 The remaining CORBA operations
The TDSOM also supports a list of actions defined as CORBA operations in the device interface and
implemented in the device root class. Therefore, these actions are implemented automatically for every
TANGO device. These operations are :

ping to ping a device to check if the device is alive. Obviously, it checks only the
connection from a client to the device and not all the device functionalities

command_list_query request a list of all the commands supported by a device with their input and
output types and description

command_query request information about a specific command which are its input and output type
and description

info request general information on the device like its name, the host where the device
server hosting the device is running...

black_box read the device black-box as an array of strings

3.3.6 The special case of the device state and status
Device state and status are the most important key device informations. Nearly all client software dealing
with Tango device needs device(s) state and/or status. In order to simplify client software developper work,
it is possible to get these two piece of information in three different manners :

1. Using the appropriate CORBA attribute (state or status)

2. Using command on the device. The command are called State or Status

3. Using attribute. Even if the state and status are not real attribute, it is possible to get their value using
the read_attributes operation. Nevertheless, it is not possible to set the attribute configuration for
state and status. An error is reported by the server if a client try to do so.

3.3.7 The device polling
Within the Tango framework, it is also possible to force executing command(s) or reading attribute(s) at a
fixed frequency. It is called device polling. This is automatically handled by Tango core software with a
polling threads pool. The command result or attribute value are stored in circular buffers. When a client
want to read attribute value (or command result) for a polled attribute (or a polled command), he has the
choice to get the attribute value (or command result) with a real access to the device of from the last value
stored in the device ring buffer. This is a great advantage for “slow” devices. Getting data from the buffer
is much faster than accessing the device itself. The technical disadvantage is the time shift between the

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 48

data returned from the polling buffer and the time of the request. Polling a command is only possible for
command without input arguments.

Two other CORBA operations called command_inout_history_X and read_attribute _history_X allow
a client to retrieve the history of polled command or attribute stored in the polling buffers. Obviously, this
history is limited to the depth of the polling buffer.

The whole polling system is available only since Tango release 2.x and above in CPP and since Tan-
gORB release 3.7.x and above in Java.

3.4 The server
Another integral part of the TDSOM is the server concept. The server (also referred as device server) is a
process whose main task is to offer one or more services to one or more clients. To do this, the server has
to spend most of its time in a wait loop waiting for clients to connect to it. The devices are hosted in the
server process. A server is able to host several classes of devices. In the TDSOM, a device of the DServer
class is automatically hosted by each device server. This class of device supports commands which enable
remote device server process administration.

TANGO supports device server process on three operating system : Linux, Solaris and Windows NT.

3.5 The Tango Logging Service
During software life, it is always convenient to print miscellaneous informations which help to:

• Debug the software

• Report on error

• Give regular information to user

This is classically done using cout (or C printf) in C++ or println method in Java language. In a highly
distributed control system, it is difficult to get all these informations coming from a high number of different
processes running on a large number of computers. Since its release 3, Tango has incorporated a Logging
Service called the Tango Logging Service (TLS) which allows print messages to be:

• Displayed on a console (the classical way)

• Sent to a file

• Sent to specific Tango device called log consumer. Tango package has an implementation of log con-
sumer where every consumer device is associated to a graphical interface. This graphical interface
display messages but could also be used to sort messages, to filter messages... Using this feature, it
is possible to centralise display of these messages coming from different devices embedded within
different processes. These log consumers can be:

– Statically configured meaning that it memorizes the list of Tango devices for which it will get
and display messages.

– Dynamically configured. The user, with the help of the graphical interface, chooses devices
from which he want to see messages.

3.6 The database
To achieve complete device independence, it is necessary however to supplement device classes with a
possibility for configuring device dependencies at runtime. The utility which does this in the TDSOM is
the property database. Properties3 are identified by an ascii string and the device name. TANGO attributes

3Properties were known as resources in the TACO device server model

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 49

are also configured using properties. This database is also used to store device network addresses (CORBA
IOR’s), list of classes hosted by a device server process and list of devices for each class in a device server
process. The database ensure the uniqueness of device name and of alias. It also links device name and it
list of aliases.

TANGO uses MySQL[6] as its database. MySQL is a relational database which implements the SQL
language. However, this is largely enough to implement all the functionalities needed by the TDSOM. The
database is accessed via a classical TANGO device hosted in a device server. Therefore, client access the
database via TANGO commands requested on the database device. For a good reference on MySQL refer
to [7]

3.7 The controlled access
Tango also provides a controlled access system. It’s a simple controlled access system. It does not provide
encrypted communication or sophisticated authentification. It simply defines which user (based on com-
puter loggin authentification) is allowed to do which command (or write attribute) on which device and
from which host. The information used to configure this controlled access feature are stored in the Tango
database and accessed by a specific Tango device server which is not the classsical Tango database device
server described in the previous section. Two access levels are defined:

• Everything is allowed for this user from this host

• The write-like calls on the device are forbidden and according to configuration, a command subset is
also forbidden for this user from this host

This feature is precisely described in the chapter "Advanced features"

3.8 The Application Programmers Interfaces

3.8.1 Rules of the API
While it is true TANGO clients can be programmed using only the CORBA API, CORBA knows nothing
about TANGO. This means client have to know all the details of retrieving IORs from the TANGO database,
additional information to send on the wire, TANGO version control etc. These details can and should be
wrapped in TANGO Application Programmer Interface (API). The API is implemented as a library in C++
and as a package in Java. The API is what makes TANGO clients easy to write. The API’s consists the
following basic classes :

• DeviceProxy which is a proxy to the real device

• DeviceData to encapsulate data send/receive from/to device via commands

• DeviceAttribute to encapsulate data send/receive from/to device via attributes

• Group which is a proxy to a group of devices

In addition to these main classes, many other classes allows a full interface to TANGO features. The
following figure is a drawing of a typical client/server application using TANGO.

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 50

Client

Database
TANGO

TANGO

ServerTANGO

Cmd Attrib

CORBA
attrib

CORBA
opera

API

API

Devices

CORBA

CORBACORBA

The database is used during server and client startup phase to establish connection between client and
server.

3.8.2 Communication between client and server using the API
With the API, it is possible to request command to be executed on a device or to read/write device at-
tribute(s) using one of the two communication models implemented. These two models are:

1. The synchronous model where client waits (and is blocked) for the server to send the answer or until
the timeout is reached

2. The asynchronous model. In this model, the clients send the request and immediately returns. It is
not blocked. It is free to do whatever it has to do like updating a graphical user interface. The client
has the choice to retrieve the server answer by checking if the reply is arrived by calling an API
specific call or by requesting that a call-back method is executed when the client receives the server
answer.

The asynchronous model is available with Tango release 3 and above.

3.8.3 Tango events
On top of the two communication model previously described, TANGO offers an "event system". The
standard TANGO communication paradigm is a synchronou/asynchronous two-way call. In this paradigm
the call is initiated by the client who contacts the server. The server handles the client’s request and sends
the answer to the client or throws an exception which the client catches. This paradigm involves two calls
to receive a single answer and requires the client to be active in initiating the request. If the client has a
permanent interest in a value he is obliged to poll the server for an update in a value every time. This is not
efficient in terms of network bandwidth nor in terms of client programming.

For clients who are permanently interested in values the event-driven communication paradigm is a
more efficient and natural way of programming. In this paradigm the client registers her interest once in
an event (value). After that the server informs the client every time the event has occurred. This paradigm
avoids the client polling, frees it for doing other things, is fast and makes efficient use of the network.

TANGO uses the CORBA OMG COS Notification Service to generates events. TANGO uses the
omniNotify implementation of the Notification service. omniNotify was developed in conjunction with
the omniORB CORBA implementation also used by TANGO. The heart of the Notification Service is the
notification daemon. The omniNotify daemons are the processes which receive events from device servers
and distribute them to all clients which are subscribed. In order to distribute the load of the events there is

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 51

one notification daemon per host. Servers send their events to the daemon on the local host. Clients and
servers get the IOR for the host from the TANGO database.

The following figure is a schematic of the Tango event system.

notify daemon

device server #2

client #1

client #2

client #3

database server events table:

notifd/host: IOR
server/name: IOR

event subscription

event filter

event(s)

event(s)

event(s)

IOR
IOR

IOR

event channel

event channel

Schematic of TANGO Events system

device server #1

The event system is available with Tango release 4 and above

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 52

Chapter 4

Writing a TANGO client using TANGO
APIs

4.1 Introduction
TANGO devices and database are implemented using the TANGO device server model. To access them the
user has the CORBA interface e.g. command_inout(), write_attributes() etc. defined by the idl file. These
methods are very low-level and assume a good working knowledge of CORBA. In order to simplify this
access, high-level api in C++ and Java have been implemented which hides all CORBA aspects of TANGO.
In addition the api hides details like how to connect to a device via the database, how to reconnect after a
device has been restarted, how to correctly pack and unpack attributes and so on by implementing these in
a manner transparent to the user. The api provides a unified error handling for all TANGO and CORBA
errors. Unlike the CORBA C++ bindings the TANGO api supports native C++ data types e.g. strings and
vectors.

This chapter describes how to use these API’s. It is not a reference guide. See chapter 6 for the C++
API details or chapter 5 for a Java API reference guide.

4.2 Getting Started
Refer to the chapter "Getting Started" for an example on getting start with the C++ or Java api.

4.3 Basic Philosophy
The basic philosophy is to have high level classes to deal with Tango devices. To communicate with Tango
device, uses the DeviceProxy class. To send/receive data to/from Tango device, uses the DeviceData
or DeviceAttribute classes. To communicate with a group of devices, use the Group class. If you are
interested only in some attributes provided by a Tango device, uses the AttributeProxy class. Even if
the Tango database is implemented as any other devices (and therefore accessible with one instance of
a DeviceProxy class), specific high level classes have been developped to query it. Uses the Database,
DbDevice, DbClass, DbServer or DbData classes when interfacing the Tango database. Callback for
asynchronous requests or events are implemented via a CallBack class. An utility class called ApiUtil is
also available.

4.4 Data types
The definition of the basic data type you can transfert using Tango is:

53

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 54

Tango type name C++ equivalent type
DevBoolean boolean

DevShort short
DevLong int (always 32 bits data)

DevLong64 long long on 32 bits chip or long on 64 bits chip
always 64 bits data

DevFloat float
DevDouble double
DevString char *

DevEncoded structure with 2 fields: a string and an array of unsigned char
Only for attribute

DevUChar unsigned char
DevUShort unsigned short
DevULong unsigned int (always 32 bits data)

DevULong64 unsigned long long on 32 bits chip or unsigned long on 64 bits chip
always 64 bits data

DevState Tango specific data type

Using commands, you are able to transfert all these data types (excepted the DevEncoded data type),
array of these basic types and two other Tango specific data types called DevVarLongStringArray and
DevVarDoubleStringArray. Attribute also supports the DevEncoded data type. See chapter 8.2 to get
details about them. You are also able to create attributes using any of these basic data types to transfer data
between clients and servers.

4.5 Request model
For the most important API remote calls (command_inout, read_attribute(s) and write_attribute(s)), Tango
supports two kind of requests which are the synchronous model and the asynchronous model. Synchronous
model means that the client wait (and is blocked) for the server to send an answer. Asynchronous model
means that the client does not wait for the server to send an answer. The client sends the request and
immediately returns allowing the CPU to do anything else (like updating a graphical user interface). Within
Tango, there are two ways to retrieve the server answer when using asynchronous model. They are:

1. The polling mode

2. The callback mode

In polling mode, the client executes a specific call to check if the answer is arrived. If this is not the case,
an exception is thrown. If the reply is there, it is returned to the caller and if the reply was an exception, it
is re-thrown. There are two calls to check if the reply is arrived:

• Call which does not wait before the server answer is returned to the caller.

• Call which wait with timeout before returning the server answer to the caller (or throw the exception)
if the answer is not arrived.

In callback model, the caller must supply a callback method which will be executed when the command
returns. They are two sub-modes:

1. The pull callback mode

2. The push callback mode

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 55

In the pull callback mode, the callback is triggered if the server answer is arrived when the client decide
it by calling a synchronization method (The client pull-out the answer). In push mode, the callback is
executed as soon as the reply arrives in a separate thread (The server pushes the answer to the client).

Note: The C++ DeviceProxy class is not thread safe. The user must take care if some action using
DeviceProxy instances are programmed within the call-back methods in case of multi-threaded application.

4.5.1 Synchronous model
Synchronous access to Tango device are provided using the DeviceProxy or AttributeProxy class. For the
DeviceProxy class, the main synchronous call methods are :

• command_inout() to execute a Tango device command

• read_attribute() or read_attributes() to read a Tango device attribute(s)

• write_attribute() or write_attributes() to write a Tango device attribute

• write_read_attribute() to write then read a Tango device attribute

For commands, data are send/received to/from device using the DeviceData class. For attributes, data are
send/received to/from device attribute using the DeviceAttribute class.

In some cases, only attributes provided by a Tango device are interesting for the application. You can
use the AttributeProxy class. Its main synchronous methods are :

• read() to read the attribute value

• write() to write the attribute value

• write_read() to write then read the attribute value

Data are transmitted using the DeviceAttribute class.

4.5.2 Asynchronous model
Asynchronous access to Tango device are provided using DeviceProxy or AttributeProxy, CallBack and
ApiUtil classes methods. The main asynchronous call methods and used classes are :

• To execute a command on a device

– DeviceProxy::command_inout_asynch() and DeviceProxy::command_inout_reply() in polling
model.

– DeviceProxy::command_inout_asynch(), DeviceProxy::get_asynch_replies() and CallBack class
in callback pull model

– DeviceProxy::command_inout_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack
class in callback push model

• To read a device attribute

– DeviceProxy::read_attribute_asynch() and DeviceProxy::read_attribute_reply() in polling model

– DeviceProxy::read_attribute_asynch(), DeviceProxy::get_asynch_replies() and CallBack class
in callback pull model.

– DeviceProxy::read_attribute_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack class
in callback push model

• To write a device attribute

– DeviceProxy::write_attribute_asynch() in polling model

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 56

– DeviceProxy::write_attribute_asynch() and CallBack class in callback pull model

– DeviceProxy::write_attribute_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack class
in callback push model

For commands, data are send/received to/from device using the DeviceData class. For attributes, data
are send/received to/from device attribute using the DeviceAttribute class. It is also possible to generate
asynchronous request(s) using the AttributeProxy class following the same schema than above. Methods to
use are :

• read_asynch() and read_reply() to asynchronously read the attribute value

• write_asynch() and write_reply() to asynchronously write the attribute value

4.6 Events

4.6.1 Introduction
Events are a critical part of any distributed control system. Their aim is to provide a communication
mechanism which is fast and efficient.

The standard CORBA communication paradigm is a synchronous or asynchronous two-way call. In
this paradigm the call is initiated by the client who contacts the server. The server handles the client’s
request and sends the answer to the client or throws an exception which the client catches. This paradigm
involves two calls to receive a single answer and requires the client to be active in initiating the request. If
the client has a permanent interest in a value he is obliged to poll the server for an update in a value every
time. This is not efficient in terms of network bandwidth nor in terms of client programming.

For clients who are permanently interested in values the event-driven communication paradigm is a
more efficient and natural way of programming. In this paradigm the client registers her interest once in
an event (value). After that the server informs the client every time the event has occurred. This paradigm
avoids the client polling, frees it for doing other things, is fast and makes efficient use of the network.

The rest of this chapter explains how the TANGO events are implemented and the application program-
mer’s interface.

4.6.2 Event definition
TANGO events represent an alternative channel for reading TANGO device attributes. Device attributes
values are sent to all subscribed clients when an event occurs. Events can be an attribute value change, a
change in the data quality or a periodically send event. The clients continue receiving events as long as
they stay subscribed. Most of the time, the device server polling thread detects the event and then pushes
the device attribute value to all clients. Nevertheless, in some cases, the delay introduced by the polling
thread in the event propagation is detrimental. For such cases, some API calls directly push the event. The
omniNotify implementation of the CORBA Notification service is used to dispatch events.

4.6.3 Event types
The following five event types have been implemented in TANGO :

1. change - an event is triggered and the attribute value is sent when the attribute value changes signif-
icantly. The exact meaning of significant is device attribute dependent. For analog and digital values
this is a delta fixed per attribute, for string values this is any non-zero change i.e. if the new attribute
value is not equal to the previous attribute value. The delta can either be specified as a relative or
absolute change. The delta is the same for all clients unless a filter is specified (see below). To easily
write applications using the change event, it is also triggered in the following case :

(a) When a spectrum or image attribute size changes.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 57

(b) At event subscription time

(c) When the polling thread receives an exception during attribute reading

(d) When the polling thread detect that the attribute quality factor has changed.

(e) The first good reading of the attribute after the polling thread has received exception when
trying to read the attribute

(f) The first time the polling thread detect that the attribute quality factor has changed from IN-
VALID to something else

(g) When a change event is pushed manually from the device server code. (DeviceImpl::push_change_event()).

(h) By the methods Attribute::set_quality() and Attribute::set_value_date_quality() if a client has
subscribed to the change event on the attribute. This has been implemented for cases where the
delay introduced by the polling thread in the event propagation is not authorized.

2. periodic - an event is sent at a fixed periodic interval. The frequency of this event is determined by
the event_period property of the attribute and the polling frequency. The polling frequency deter-
mines the highest frequency at which the attribute is read. The event_period determines the highest
frequency at which the periodic event is sent. Note if the event_period is not an integral number of
the polling period there will be a beating of the two frequencies1. Clients can reduce the frequency
at which they receive periodic events by specifying a filter on the periodic event counter.

3. archive - an event is sent if one of the archiving conditions is satisfied. Archiving conditions are
defined via properties in the database. These can be a mixture of delta_change and periodic. Archive
events can be send from the polling thread or can be manually pushed from the device server code
(DeviceImpl::push_archive_event()).

4. attribute configuration - an event is sent if the attribute configuration is changed.

5. data ready - This event is sent when coded by the device server programmer who uses a specific
method of one of the Tango device server class to fire the event (DeviceImpl::push_data_ready_event()).
The rule of this event is to inform a client that it is now possible to read an attribute. This could be
useful in case of attribute with many data.

6. user - The criteria and configuration of these user events are managed by the device server pro-
grammer who uses a specific method of one of the Tango device server class to fire the event (Devi-
ceImpl::push_event()).

The first three above events are automatically generated by the TANGO library or fired by the user code.
Even number 4 is only automatically sent by the library and the last two are fired only by the user code.

4.6.4 Event filtering
The CORBA Notification Service allows event filtering. This means that a client can ask the Notification
Service to send the event only if some filter is evaluated to true. Within the Tango control system, some
pre-defined fields can be used as filter. These fields depend on the event type.

Event type Filterable field name Filterable field value type
delta_change_rel Relative change (in %) since last event double
delta_change_abs Absolute change since last event double

change quality Is set to 1 when the attribute quality factor has double
changed, otherwise it is 0

forced_event Is set to 1 when the event was fired on exception double
or a quality factor set to invalid

1note: the polling is not synchronized is currently not synchronized on the hour

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 58

periodic counter Incremented each time the event is sent long
delta_change_rel Relative change (in %) since last event double
delta_change_abs Absolute change since last event double

quality Is set to 1 when the attribute quality factor has double
changed, otherwise it is 0

archive Incremented each time the event is sent
counter for periodic reason. Set to -1 if event long

sent for change reason
forced_event Is set to 1 when the event was fired on exception double

or a quality factor set to invalid
delta_event Number of milli-seconds since previous event double

Filter are defined as a string following a grammar defined by CORBA. It is defined in [18]. The
following example shows you the most common use of these filters in the Tango world :

• To receive periodic event one out of every three, the filter must be

"$counter % 3 == 0"

• To receive change event only if the relative change is greater than 20 % (positive and negative), the
filter must be

"$delta_change_rel >= 20 or $delta_change_rel <= -20"

• To receive a change event only on quality change, the filter must be

"$quality == 1"

For user events, the filter field name(s) and their value are defined by the device server programmer.

4.6.5 Application Programmer’s Interface
How to setup and use the TANGO events ? The interfaces described here are intended as user friendly inter-
faces to the underlying CORBA calls. The interface is modeled after the asynchronous command_inout()
interface so as to maintain coherency. The event system supports push callback model as well as the pull
callback model.

The two event reception modes are:

• Push callback model : On event reception a callbacks method gets immediately executed.

• Pull callback model : The event will be buffered the client until the client is ready to receive the
event data. The client triggers the execution of the callback method.

The event reception buffer in the pull callback model, is implemented as a round robin buffer. The client
can choose the size when subscribing for the event. This way the client can set-up different ways to receive
events.

• Event reception buffer size = 1 : The client is interested only in the value of the last event received.
All other events that have been received since the last reading are discarded.

• Event reception buffer size > 1 : The client has chosen to keep an event history of a given size. When
more events arrive since the last reading, older events will be discarded.

• Event reception buffer size = ALL_EVENTS : The client buffers all received events. The buffer size
is unlimited and only restricted by the available memory for the client.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 59

4.6.5.1 Configuring events

The attribute configuration set is used to configure under what conditions events are generated. A set of
standard attribute properties (part of the standard attribute configuration) are read from the database at
device startup time and used to configure the event engine. If there are no properties defined then default
values specified in the code are used.

4.6.5.1.1 change The attribute properties and their default values for the "change" event are :

1. rel_change - a property of maximum 2 values. It specifies the positive and negative relative change
of the attribute value w.r.t. the value of the previous change event which will trigger the event. If
the attribute is a spectrum or an image then a change event is generated if any one of the attribute
value’s satisfies the above criterium. If only one property is specified then it is used for the positive
and negative change. If no property is specified, no events are generated.

2. abs_change - a property of maximum 2 values.It specifies the positive and negative absolute change
of the attribute value w.r.t the value of the previous change event which will trigger the event. If
the attribute is a spectrum or an image then a change event is generated if any one of the attribute
value’s satisfies the above criterium. If only one property is specified then it is used for the positive
and negative change. If no properties are specified then the relative change is used.

4.6.5.1.2 periodic The attribute properties and their default values for the "periodic" event are :

1. event_period - the minimum time between events (in milliseconds). If no property is specified then
a default value of 1 second is used.

4.6.5.1.3 archive The attribute properties and their default values for the "archive" event are :

1. archive_rel_change - a property of maximum 2 values which specifies the positive and negative
relative change w.r.t. the previous attribute value which will trigger the event. If the attribute is a
spectrum or an image then an archive event is generated if any one of the attribute value’s satisfies
the above criterium. If only one property is specified then it is used for the positive and negative
change. If no properties are specified then no events are generate.

2. archive_abs_change - a property of maximum 2 values which specifies the positive and negative
absolute change w.r.t the previous attribute value which will trigger the event. If the attribute is a
spectrum or an image then an archive event is generated if any one of the attribute value’s satisfies
the above criterium. If only one property is specified then it is used for the positive and negative
change. If no properties are specified then the relative change is used.

3. archive_period - the minimum time between archive events (in milliseconds). If no property is
specified, no periodic archiving events are send.

4.6.5.2 C++ Clients

This is the interface for clients who want to receive events. The main action of the client is to subscribe
and unsubscribe to events. Once the client has subscribed to one or more events the events are received in
a separate thread by the client.

Two reception modes are possible:

• On event reception a callbacks method gets immediately executed.

• The event will be buffered until the client until the client is ready to receive the event data.

The mode to be used has to be chosen when subscribing for the event.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 60

4.6.5.2.1 Subscribing to events The client call to subscribe to an event is named DeviceProxy::subscribe_event()
. During the event subscription the client has to choose the event reception mode to use.

Push model:

int DeviceProxy::subscribe_event(
const string &attribute,
Tango::EventType event,
Tango::CallBack *callback,
const vector<string> &filters,
bool stateless = false);

The client implements a callback method which is triggered when the event is received. Note that this call-
back method will be executed by a thread started by the underlying ORB. This thread is not the application
main thread.

Pull model:

int DeviceProxy::subscribe_event(
const string &attribute,
Tango::EventType event,
int event_queue_size,
const vector<string> &filters,
bools stateless = false);

The client chooses the size of the round robin event reception buffer. Arriving events will be buffered until
the client uses DeviceProxy::get_events() to extract the event data.

On top of the user filter defined by the filters parameter, basic filtering is done based on the reason
specified and the event type. For example when reading the state and the reason specified is "change"
the event will be fired only when the state changes. Events consist of an attribute name and the event
reason. A standard set of reasons are implemented by the system, additional device specific reasons can be
implemented by device servers programmers.

The stateless flag = false indicates that the event subscription will only succeed when the given attribute
is known and available in the Tango system. Setting stateless = true will make the subscription succeed,
even if an attribute of this name was never known. The real event subscription will happen when the given
attribute will be available in the Tango system.

4.6.5.2.2 The CallBack class In C++, the client has to implement a class inheriting from the Tango
CallBack class and pass this to the DeviceProxy::subscribe_event() method. The CallBack class is the
same class as the one proposed for the TANGO asynchronous call. This is as follows for events :

class MyCallback : public Tango::CallBack
{

.

.

.
virtual push_event(Tango::EventData *);
virtual push_event(Tango::AttrConfEventData *);
virtual push_event(Tango::DataReadyEventData *);

}

where EventData is defined as follows :

class EventData
{

DeviceProxy *device;
string &attr_name;

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 61

string &event;
DeviceAttribute *attr_value;
bool err;
DevErrorList &errors;

}

AttrConfEventData is defined as follows :

class AttrConfEventData
{

DeviceProxy *device;
string &attr_name;
string &event;
AttributeInfoEx*attr_conf;
bool err;
DevErrorList &errors;

}

and DataReadyEventData is defined as follows :

class DataReadyEventData
{

DeviceProxy *device;
string &attr_name;
string &event;
int attr_data_type;
int ctr;
bool err;
DevErrorList &errors;

}

4.6.5.2.3 Unsubscribing from an event Unsubscribe a client from receiving the event specified by
event_id is done by calling the DeviceProxy::unsubscribe_event() method :

void DeviceProxy::unsubscribe_event(int event_id);

4.6.5.2.4 Extract buffered event data When the pull model was chosen during the event subscription,
the received event data can be extracted with DeviceProxy::get_events(). Two possibilities are available for
data extraction. Either a callback method can be executed for every event in the buffer when using

int DeviceProxy::get_events(
int event_id,
CallBack *cb);

Or all the event data can be directly extracted as EventDataList, AttrConfEventDataList or DataReadyEvent-
DataList when using

int DeviceProxy::get_events(
int event_id,
EventDataList &event_list);

int DeviceProxy::get_events(
int event_id,
AttrConfEventDataList &event_list);

int DeviceProxy::get_events(
int event_id,
DataReadyEventDataList &event_list);

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 62

The event data lists are vectors of EventData, AttrConfEventData or DataReadyEventData pointers with
special destructor and clean-up methods to ease the memory handling.

class EventDataList:public vector<EventData *>
class AttrConfEventDataList:public vector<AttrConfEventData *>
class DataReadyEventDataList:public vector<DataReadyEventDataList *>

4.6.5.2.5 Example Here is a typical code example of a client to register and receive events without
specifying additional filters. First, you have to define a callback method as follows:

class DoubleEventCallBack : public Tango::CallBack
{

void push_event(Tango::EventData*);
};

void DoubleEventCallBack::push_event(Tango::EventData *myevent)
{

Tango::DevVarDoubleArray *double_value;
try
{

cout << "DoubleEventCallBack::push_event(): called attribute "
<< myevent->attr_name
<< " event "
<< myevent->event
<< " (err="
<< myevent->err
<< ")" << endl;

if (!myevent->err)
{

myevent->attr_value >> double_value;
cout << "double value "

<< (*double_value)[0]
<< endl;

delete double_value;
}

}
catch (...)
{

cout << "DoubleEventCallBack::push_event(): could not extract data !\n";
}

}

Then the main code must subscribe to the event and choose the push or the pull model for event recep-
tion.

Push model:

DoubleEventCallBack *double_callback = new DoubleEventCallBack;

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 63

vector<string> my_filters;

Tango::DeviceProxy *mydevice = new Tango::DeviceProxy("my/device/1");

int event_id;
const string attr_name("current");
event_id = mydevice->subscribe_event(attr_name,

Tango::CHANGE_EVENT,
double_callback,
my_filters);

cout << "event_client() id = " << event_id << endl;
// The callback methods are executed by the Tango event reception thread.
// The main thread is not concerned of event reception.
// Whatch out with synchronisation and data access in a multi threaded environment!
sleep(1000); // wait for events

event_test->unsubscribe_event(event_id);

Pull model:

DoubleEventCallBack *double_callback = new DoubleEventCallBack;
vector<string> my_filters;
int event_queue_size = 100; // keep the last 100 events

Tango::DeviceProxy *mydevice = new Tango::DeviceProxy("my/device/1");

int event_id;
const string attr_name("current");
event_id = mydevice->subscribe_event(attr_name,

Tango::CHANGE_EVENT,
event_queue_size,
my_filters);

cout << "event_client() id = " << event_id << endl;
// Check every 3 seconds whether new events have arrived and trigger the callback method
// for the new events.
for (int i=0; i < 100; i++)
{

sleep (3);

// Read the stored event data from the queue and call the callback method for every event.
mydevice->get_events(event_id, double_callback);

}

event_test->unsubscribe_event(event_id);

4.6.5.3 Java Clients

This is the interface for java clients who want to receive events. There are two ways to receive events using
the TANGO java API :

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 64

1. Using Callback.

2. Using Java listener

Using callback, is very similar to a C++ clients. Using listener is more in the Java philosophy.

4.6.5.3.1 Using CallBack In Java when using callback, the client has to implement a class inheriting
from the Tango CallBack class and pass this to the DeviceProxy.subscribe_event() method. The CallBack
class is the same class as the one proposed for the TANGO asynchronous call. This is as follows for events
:

class MyCallback extends CallBack
{

.

.

.
public void push_event(EventData evt)
{

}
}

where EventData is similar to the C++ EventData class. To subscribe to an event, use the DeviceProxy.subscribe_event()
method. To unsubscribe from an event, use the DeviceProxy.unsubscribe_event() method.

4.6.5.3.2 Using listeners The Tango API defined four Java interfaces called

• ITangoChangeListener for the change event

• ITangoPeriodicListener for the periodic event

• ITangoQualityChangeListener for the quality change event

• ITangoArchiveListener for the archive event

All these interfaces defined one method respectively called change(), periodic(), qualityChange() and
archive() which will be called when the event is received. The user must write a class implementing
the interface for which he (she) want to receive event.

To install or remove a listener, use the TangoEventsAdapter class which has methods to install/remove
listeners for the four different types of listener. This TangoEventAdapter class is created from the Tango
device name.

4.6.5.3.2.1 Example Here is a typical example of what a client will need to do to register for and
receive events. First, you have to define a class implementing an interface as follows:

class DoubleEventListener implements ITangoPeriodicListener
{

public void periodic(TangoPeriodicEvent event)
{

DeviceAttribute attr = event.getValue();
double[] double_value;

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 65

try
{

double_value = attr.extractDoubleArray();
System.out.println(" double value " + double_value[0]);

}
catch (Exception e)
{

System.out.println(
"DoubleEventListener.periodic() : could not extract data!");

}
}

}

The main code looks like (suppose the device generating event is called my/event/tester and the attribute
name is double_event) :

DoubleEventListener listener = new DoubleEventListener();

TangoEventsAdapter adapter = new TangoEventsAdapter("my/event/tester") ;

String[] filters = new String[0];
adapter.addTangoPeriodicListener(listener,"double_event",filters);

4.7 Group
A Tango Group provides the user with a single point of control for a collection of devices. By analogy,
one could see a Tango Group as a proxy for a collection of devices. For instance, the Tango Group API
supplies a command_inout() method to execute the same command on all the elements of a group.

A Tango Group is also a hierarchical object. In other words, it is possible to build a group of both
groups and individual devices. This feature allows creating logical views of the control system - each view
representing a hierarchical family of devices or a sub-system.

In this chapter, we will use the term hierarchy to refer to a group and its sub-groups. The term Group
designates to the local set of devices attached to a specific Group.

4.7.1 Getting started with Tango group
The quickest way of getting started is to study an example. . .

Imagine we are vacuum engineers who need to monitor and control hundreds of gauges distributed
over the 16 cells of a large-scale instrument. Each cell contains several penning and pirani gauges. It also
contains one "strange" gauge. Our main requirement is to be able to control the whole set of gauges, a
family of gauges located into a particular cell (e.g. all the penning gauges of the 6th cell) or a single gauge
(e.g. the strange gauge of the 7th cell). Using a Tango Group, such features are quite straightforward to
obtain.

Reading the description of the problem, the device hierarchy becomes obvious. Our "gauges" group
will have the following structure:

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 66

-> gauges
| -> cell-01
| |-> inst-c01/vac-gauge/strange
| |-> penning
| | |-> inst-c01/vac-gauge/penning-01
| | |-> inst-c01/vac-gauge/penning-02
| | |- ...
| | |-> inst-c01/vac-gauge/penning-xx
| |-> pirani
| |-> inst-c01/vac-gauge/pirani-01
| |-> ...
| |-> inst-c01/vac-gauge/pirani-xx
| -> cell-02
| |-> inst-c02/vac-gauge/strange
| |-> penning
| | |-> inst-c02/vac-gauge/penning-01
| | |-> ...
| |
| |-> pirani
| | |-> ...
| -> cell-03
| |-> ...
| | -> ...

In the C++, such a hierarchy can be build as follows (basic version):

//- step0: create the root group
Tango::Group *gauges = new Tango::Group("gauges");

//- step1: create a group for the n-th cell
Tango::Group *cell = new Tango::Group("cell-01");

//- step2: make the cell a sub-group of the root group
gauges->add(cell);

//- step3: create a "penning" group
Tango::Group *gauge_family = new Tango::Group("penning");

//- step4: add all penning gauges located into the cell (note the wildcard)
gauge_family->add("inst-c01/vac-gauge/penning*");

//- step5: add the penning gauges to the cell
cell->add(gauge_family);

//- step6: create a "pirani" group
gauge_family = new Tango::Group("pirani");

//- step7: add all pirani gauges located into the cell (note the wildcard)
gauge_family->add("inst-c01/vac-gauge/pirani*");

//- step8: add the pirani gauges to the cell
cell->add(gauge_family);

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 67

//- step9: add the "strange" gauge to the cell
cell->add("inst-c01/vac-gauge/strange");

//- repeat step 1 to 9 for the remaining cells
cell = new Tango::Group("cell-02");
...

Here is the Java version:

import fr.esrf.TangoApi.Group;

//- step0: create the root group Group
gauges = new Group("gauges");

//- step1: create a group for the n-th cell
Group cell = new Group("cell-01");

//- step2: make the cell a sub-group of the root group
gauges.add(cell);

//- step3: create a "penning" group
Group gauge_family = new Group("penning");

//- step4: add all penning gauges located into the cell (note the wildcard)
gauge_family.add("inst-c01/vac-gauge/penning*");

//- step5: add the penning gauges to the cell
cell.add(gauge_family);

//- step6: create a "pirani" group
gauge_family = new Group("pirani");

//- step7: add all pirani gauges located into the cell (note the wildcard)
gauge_family.add("inst-c01/vac-gauge/pirani*");

//- step8: add the pirani gauges to the cell cell.add(gauge_family);

//- step9: add the "strange" gauge to the cell
cell.add("inst-c01/vac-gauge/strange");

//- repeat step 1 to 9 for the remaining cells
cell = new Group("cell-02");

Important note: There is no particular order to create the hierarchy. However, the insertion order of
the devices is conserved throughout the lifecycle of the Group and cannot be changed. That way, the Group
implementation can guarantee the order in which results are returned (see below).

Keeping a reference to the root group is enough to manage the whole hierarchy (i.e. there no need to
keep trace of the sub-groups or individual devices). The Group interface provides methods to retrieve a
sub-group or an individual device.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 68

Be aware that a C++ group allways gets the ownership of its children and deletes them when it is
itself deleted. Therefore, never try to delete a Group (respectively a DeviceProxy) returned by a call to
Tango::Group::get_group() (respectively to Tango::Group::get_device()). Use the Tango::Group::remove()
method instead (see the Tango Group class API documentation for details).

We can now perform any action on any element of our "gauges" group. For instance, let’s ping the
whole hierarchy to be sure that all devices are alive.

//- ping the whole hierarchy
if (gauges->ping() == true)
{

std::cout << "all devices alive" << std::endl;
}
else
{

std::cout << "at least one dead/busy/locked/... device" << std::endl;
}

4.7.2 Forward or not forward?
Since a Tango Group is a hierarchical object, any action performed on a group can be forwarded to its
sub-groups. Most of the methods in the Group interface have a so-called forward option controlling this
propagation. When set to false, the action is only performed on the local set of devices. Otherwise, the
action is also forwarded to the sub-groups, in other words, propagated along the hierarchy. In C++ , the
forward option defaults to true (thanks to the C++ default argument value). There is no such mechanism in
Java and the forward option must be systematically specified.

4.7.3 Executing a command
As a proxy for a collection of devices, the Tango Group provides an interface similar to the Device-
Proxy’s. For the execution of a command, the Group interface contains several implementations of the
command_inout method. Both synchronous and asynchronous forms are supported.

4.7.3.1 Obtaining command results

Command results are returned using a Tango::GroupCmdReplyList. This is nothing but a vector containing
a Tango::GroupCmdReply for each device in the group. The Tango::GroupCmdReply contains the actual
data (i.e. the Tango::DeviceData). By inheritance, it may also contain any error occurred during the
execution of the command (in which case the data is invalid).

We previously indicated that the Tango Group implementation guarantees that the command results
are returned in the order in which its elements were attached to the group. For instance, if g1 is a group
containing three devices attached in the following order:

g1->add("my/device/01");
g1->add("my/device/03");
g1->add("my/device/02");

the results of

Tango::GroupCmdReplyList crl = g1->command_inout("Status");

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 69

will be organized as follows:
crl[0] contains the status of my/device/01

crl[1] contains the status of my/device/03
crl[2] contains the status of my/device/02

Things get more complicated if sub-groups are added "between" devices.

g2->add("my/device/04");
g2->add("my/device/05");

g4->add("my/device/08");
g4->add("my/device/09");

g3->add("my/device/06");
g3->add(g4);
g3->add("my/device/07");

g1->add("my/device/01");
g1->add(g2);
g1->add("my/device/03");
g1->add(g3);
g1->add("my/device/02");

The result order in the Tango::GroupCmdReplyList depends on the value of the forward option. If set to
true, the results will be organized as follows:

Tango::GroupCmdReplyList crl = g1->command_inout("Status", true);

crl[0] contains the status of my/device/01 which belongs to g1
crl[1] contains the status of my/device/04 which belongs to g1.g2
crl[2] contains the status of my/device/05 which belongs to g1.g2
crl[3] contains the status of my/device/03 which belongs to g1
crl[4] contains the status of my/device/06 which belongs to g1.g3
crl[5] contains the status of my/device/08 which belongs to g1.g3.g4
crl[6] contains the status of my/device/09 which belongs to g1.g3.g
crl[7] contains the status of my/device/07 which belongs to g1.g3
crl[8] contains the status of my/device/02 which belongs to g1

If the forward option is set to false, the results are:

Tango::GroupCmdReplyList crl = g1->command_inout("Status", false);

crl[0] contains the status of my/device/01 which belongs to g
crl[1] contains the status of my/device/03 which belongs to g1
crl[2] contains the status of my/device/02 which belongs to g1

The Tango::GroupCmdReply contains some public members allowing the identification of both the
device (Tango::GroupCmdReply::dev_name) and the command (Tango::GroupCmdReply::obj_name). It
means that, depending of your application, you can associate a response with its source using its position
in the response list or using the Tango::GroupCmdReply::dev_name member.

4.7.3.2 Case 1: a command, no argument

As an example, we execute the Status command on the whole hierarchy synchronously.

Tango::GroupCmdReplyList crl = gauges->command_inout("Status");

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 70

As a first step in the results processing, it could be interesting to check value returned by the has_failed()
method of the GroupCmdReplyList. If it is set to true, it means that at least one error occurred during the
execution of the command (i.e. at least one device gave error).

if (crl.has_failed())
{

cout << "at least one error occurred" << endl;
}
else
{

cout << "no error " << endl;
}

In Java, we should write:

import fr.esrf.TangoApi.Group;
GroupCmdReplyList crl = gauges.command_inout("Status",true);
if (crl.has_failed())
{

System.out.println("at least one error occurred");
}
else
{

System.out.println("no error");
}

Now, we have to process each "individual response" in the list.

4.7.3.3 A few words on error handling and data extraction

Depending of the application and/or the developer’s programming habits, each individual error can be han-
dle by the C++ (or Java) exception mechanism or using the dedicated has_failed() method. The GroupRe-
ply class - which is the mother class of both GroupCmdReply and GroupAttrReply - contains a static
method to enable (or disable) exceptions called enable_exception(). By default, exceptions are disabled (in
both Java and C++). The following example is proposed with both exceptions enable and disable.

In C++, data can be extracted directly from an individual reply. The GroupCmdReply interface con-
tains a template operator >> allowing the extraction of any supported Tango type (in fact the actual data
extraction is delegated to DeviceData::operator >>). One dedicated extract method is also provided in order
to extract DevVarLongStringArray and DevVarDoubleStringArray types to std::vectors.

Error and data handling C++ example:

//---
//- synch. group command example with exception enabled
//---
//- enable exceptions and save current mode
bool last_mode = GroupReply::enable_exception(true);

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 71

//- process each response in the list ...
for (int r = 0; r < crl.size(); r++)
{
//- enter a try/catch block

try
{

//- try to extract the data from the r-th reply
//- suppose data contains a double

double ans;
crl[r] >> ans;
cout << crl[r].dev_name()

<< "::"
<< crl[r].obj_name()
<< " returned "
<< ans
<< endl;

}
catch (const DevFailed& df)
{

//- DevFailed caught while trying to extract the data from reply
for (int err = 0; err < df.errors.length(); err++)
{

cout << "error: " << df.errors[err].desc.in() << endl;
}

//- alternatively, one can use crl[r].get_err_stack() see below
}
catch (...)
{

cout << "unknown exception caught";
}

}
//- restore last exception mode (if needed)
GroupReply::enable_exception(last_mode);
//- Clear the response list (if reused later in the code)
crl.reset();

//---
//- synch. group command example with exception disabled
//---
//- disable exceptions and save current mode bool
last_mode = GroupReply::enable_exception(false);
//- process each response in the list ...
for (int r = 0; r < crl.size(); r++)
{
//- did the r-th device give error?

if (crl[r].has_failed() == true)
{

//- printout error description
cout << "an error occurred while executing "

<< crl[r].obj_name()
<< " on "
<< crl[r].dev_name() << endl;

//- dump error stack
const DevErrorList& el = crl[r].get_err_stack();

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 72

for (int err = 0; err < el.size(); err++)
{

cout << el[err].desc.in();
}

}
else
{

//- no error (suppose data contains a double)
double ans;
bool result = crl[r] >> ans;
if (result == false)
{

cout << "could not extract double from "
<< crl[r].dev_name()
<< " reply"
<< endl;

}
else
{

cout << crl[r].dev_name()
<< "::"
<< crl[r].obj_name()
<< " returned "
<< ans
<< endl;

}
}

}
//- restore last exception mode (if needed)
GroupReply::enable_exception(last_mode);
//- Clear the response list (if reused later in the code)
crl.reset();

Error and data handling Java example:

//---
//- synch. group command example with exception enabled
//---
//- enable exceptions and save current mode
boolean last_mode = GroupReply.enable_exception(true);
//- process each response in the list ...
Iterator it = crl.iterator();
//- try to extract the data from the each reply
//- suppose data contains a double
double ans;
while (it.hasNext())
{
//- cast from Object to GroupCmdreply
GroupCmdreply cr = (GroupCmdreply)it.next();
//- enter a try/catch block

try

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 73

{
//- extract value from data (may throw DevFailed)

ans = get_data().extractDouble();
//- verbose

System.out.println(cr.dev_name()
+ "::"
+ cr.obj_name()
+ " returned "
+ ans);

}
catch (DevFailed d)
{

//- DevFailed caught while trying to extract the data from reply
for (int err = 0; err < d.errors.length; err++)
{

System.out.println("error: " + d.errors[err].desc);
}

//- alternatively, one can use cr.get_err_stack() see below
}
catch (Exception e)
{

System.out.println("unknown exception caught");
}

}
//- restore last exception mode (if needed)
GroupReply.enable_exception(last_mode);

//---
//- synch. group command example with exception disabled
//---
//- disable exceptions and save current mode
boolean last_mode = GroupReply.enable_exception(false);
//- process each response in the list ...
Iterator it = crl.iterator();
//- try to extract the data from the each reply
while (it.hasNext())
{
//- cast from Object to GroupCmdreply

GroupCmdreply cr = (GroupCmdreply)it.next();
//- did the device give error?

if (cr.has_failed() == true)
{

//- printout error description
System.out.println("an error occurred while executing "

+ cr.obj_name()
+ " on "
+ cr.dev_name());

//- dump error stack
DevError[] de = cr.get_err_stack();
for (int err = 0; err < de.length; err++)
{

System.out.println("error: " + de[err].desc);
}

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 74

}
else
{

//- no error (suppose data contains a double)
double ans = cr.get_data().extractDouble();

//- verbose
System.out.println(cr.dev_name()

+ "::"
+ cr.obj_name()
+ " returned "
+ ans);

}
}
//- restore last exception mode (if needed)
GroupReply.enable_exception(last_mode);

Now execute the same command asynchronously. C++ example:

//---
//- asynch. group command example (C++ example)
//---
long request_id = gauges->command_inout_asynch("Status");
//- do some work
do_some_work();

//- get results
crl = gauges->command_inout_reply(request_id);
//- process responses as previously describe in the synch. implementation
for (int r = 0; r < crl.size(); r++)
{
//- data processing and error handling goes here
//- copy/paste code from previous example
. . .
}
//- clear the response list (if reused later in the code)
crl.reset();

The same asynchronous example in Java:

//---
//- asynch. group command example (Java example)
//---
int request_id = gauges.command_inout_asynch("Status",false,true);
//- do some work
do_some_work();

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 75

//- get results
crl = gauges.command_inout_reply(request_id);
//- process responses as previously describe in the synch. implementation
Iterator it = crl.iterator();
//- try to extract the data from the each reply
while (it.hasNext())
{
//- data processing and error handling goes here
//- copy/paste code from previous example
. . .
}

4.7.3.4 Case 2: a command, one argument

Here, we give an example in which the same input argument is applied to all devices in the group (or its
sub-groups).

In C++:

//- the argument value
double d = 0.1;
//- insert it into the TANGO generic container for command: DeviceData
Tango::DeviceData dd;
dd << d;
//- execute the command: Dev_Void SetDummyFactor (Dev_Double)
Tango::GroupCmdReplyList crl = gauges->command_inout("SetDummyFactor", dd);

In Java:

//- the argument value
double d = 0.1;
//- insert it into the TANGO generic container for command: DeviceData
DeviceData dd = new DeviceData();
dd.insert(d);
//- execute the command: Dev_Void SetDummyFactor (Dev_Double)
GroupCmdReplyList crl = gauges.command_inout("SetDummyFactor", dd, false, true);

Since the SetDummyFactor command does not return any value, the individual replies (i.e. the GroupCm-
dReply) do not contain any data. However, we have to check their has_failed() method returned value to
be sure that the command completed successfully on each device (acknowledgement). Note that in such a
case, exceptions are useless since we never try to extract data from the replies.

In C++ we should have something like:

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 76

//- no need to process the results if no error occurred (Dev_Void command)
if (crl.has_failed())
{
//- at least one error occurred

for (int r = 0; r < crl.size(); r++)
{

//- handle errors here (see previous C++ examples)
}

}
//- clear the response list (if reused later in the code)
crl.reset();

While in Java

//- no need to process the results if no error occurred (Dev_Void command)
if (crl.has_failed())
{
//- at least one error occurred

for (int r = 0; r < crl.length; r++)
{

//- handle errors here (see previous Java examples)
}

}

See case 1 for an example of asynchronous command.

4.7.3.5 Case 3: a command, several arguments

Here, we give an example in which a specific input argument is applied to each device in the hierarchy. In
order to use this form of command_inout, the user must have an "a priori" and "perfect" knowledge of the
devices order in the hierarchy. In such a case, command arguments are passed in an "array" (with one entry
for each device in the hierarchy).

The C++ implementation provides a template method which accepts a std::vector of "C++ type for
command argument". This allows passing any kind of data using a single method.

Since templates are not (already) supported in Java, the implementation is somewhat different and an
array of DeviceData is used to pass the specific arguments.

In both cases (C++ and Java), the size of this vector must equal the number of device in the hierarchy
(respectively the number of device in the group) if the forward option is set to true (respectively set to
false). Otherwise, an exception is thrown.

The first item in the vector is applied to the first device in the hierarchy, the second to the second device
in the hierarchy, and so on. . . That’s why the user must have a "perfect" knowledge of the devices order in
the hierarchy.

Assuming that gauges are ordered by name, the SetDummyFactor command can be executed on group
"cell-01" (and its sub-groups) as follows:

Remember, "cell-01" has the following internal structure:

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 77

-> gauges
| -> cell-01
| |-> inst-c01/vac-gauge/strange
| |-> penning
| | |-> inst-c01/vac-gauge/penning-01
| | |-> inst-c01/vac-gauge/penning-02
| | |-> ...
| | |-> inst-c01/vac-gauge/penning-xx
| |-> pirani
| |-> inst-c01/vac-gauge/pirani-01
| |-> ...
| |-> inst-c01/vac-gauge/pirani-xx

Passing a specific argument to each device in C++:

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the hierarchy (starting at cell-01)
long n_dev = g->get_size(true);
//- Build argin list
std::vector<double> argins(n_dev);
//- argument for inst-c01/vac-gauge/strange
argins[0] = 0.0;
//- argument for inst-c01/vac-gauge/penning-01
argins[1] = 0.1;
//- argument for inst-c01/vac-gauge/penning-02
argins[2] = 0.2;
//- argument for remaining devices in cell-01.penning
. . .
//- argument for devices in cell-01.pirani
. . .
//- the reply list
Tango::GroupCmdReplyList crl;
//- enter a try/catch block (see below)
try
{
//- execute the command

crl = g->command_inout("SetDummyFactor", argins, true);
if (crl.has_failed())
{

//- error handling goes here (see case 1)
}

}
catch (const DevFailed& df)
{
//- see below
}
crl.reset();

If we want to execute the command locally on "cell-01" (i.e. not on its sub-groups), we should write
the following C++ code:

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 78

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the group (starting at cell-01)
long n_dev = g->get_size(false);
//- Build argin list
std::vector<double> argins(n_dev);
//- argins for inst-c01/vac-gauge/penning-01
argins[0] = 0.1;
//- argins for inst-c01/vac-gauge/penning-02
argins[1] = 0.2;
//- argins for remaining devices in cell-01.penning
. . .
//- the reply list
Tango::GroupCmdReplyList crl;
//- enter a try/catch block (see below)
try
{
//- execute the command

crl = g->command_inout("SetDummyFactor", argins, false);
if (crl.has_failed())
{

//- error handling goes here (see case 1)
}

}
catch (const DevFailed& df)
{
//- see below
}
crl.reset();

Passing a specific argument to each device in Java:

//- get a reference to the target group
Group g = gauges.get_group("cell-01");
//- get pre-build arguments list for the whole hierarchy (starting@cell-01)
DeviceData[] argins = g.get_command_specific_argument_list(true);
//- argument for inst-c01/vac-gauge/strange
argins[0].insert(0.0);
//- argument for inst-c01/vac-gauge/penning-01
argins[1].insert(0.1);
//- argument for inst-c01/vac-gauge/penning-02
argins[2].insert(0.2);
//- argument for remaining devices in cell-01.penning
. . .
//- argument for devices in cell-01.pirani
. . .
//- the reply list GroupCmdReplyList
crl = null;
//- enter a try/catch block (see below)

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 79

try
{
//- execute the command

crl = g.command_inout("SetDummyFactor", argins, false, true);
if (crl.has_failed())
{

//- error handling goes here (see case 1)
}

}
catch (DevFailed d)
{
//- see below
}

Note: if we want to execute the command locally on "cell-01" (i.e. not on its sub-groups), we should
write the following code:

//- get a reference to the target group
Group g = gauges.get_group("cell-01");
//- get pre-build arguments list for the group (starting@cell-01)
DeviceData[] argins = g.get_command_specific_argument_list(false);
//- argins for inst-c01/vac-gauge/penning-01
argins[0].insert(0.1);
//- argins for inst-c01/vac-gauge/penning-02
argins[1].insert(0.2);
//- argins for remaining devices in cell-01.penning
. . .
//- the reply list
GroupCmdReplyList crl;
//- enter a try/catch block (see below)
try
{
//- execute the command

crl = g.command_inout("SetDummyFactor", argins, false, false);
if (crl.has_failed())
{

//- error handling goes here (see case 1)
}

}
catch (DevFailed d)
{
//- see below
}

This form of command_inout (the one that accepts an array of value as its input argument), may throw
an exception before executing the command if the number of elements in the input array does not match
the number of individual devices in the group or in the hierarchy (depending on the forward option).

Java developers should use the Group.get_command_specific_argument_list helper method (see previ-
ous example). It guarantees than the "returned array" has the right number of elements. This array may be
kept and reused as far as the group size is not changed (i.e. no add or remove of elements).

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 80

An asynchronous version of this method is also available. See case 1 for an example of asynchronous
command.

4.7.4 Reading attribute(s)
In order to read attribute(s), the Group interface contains several implementations of the read_attribute()
and read_attributes() methods. Both synchronous and asynchronous forms are supported. Reading several
attributes is very similar to reading a single attribute. Simply replace the std::string used for attribute name
by a vector of std::string with one element for each attribute name. In case of read_attributes() call, the
order of attribute value returned in the GroupAttrReplyList is all attributes for first element in the group
followed by all attributes for the second group element and so on.

4.7.4.1 Obtaining attribute values

Attribute values are returned using a GroupAttrReplyList. This is nothing but an array containing a
GroupAttrReply for each device in the group. The GroupAttrReply contains the actual data (i.e. the De-
viceAttribute). By inheritance, it may also contain any error occurred during the execution of the command
(in which case the data is invalid).

Here again, the Tango Group implementation guarantees that the attribute values are returned in the
order in which its elements were attached to the group. See Obtaining command results for details.

The GroupAttrReply contains some public methods allowing the identification of both the device
(GroupAttrReply::dev_name) and the attribute (GroupAttrReply::obj_name). It means that, depending of
your application, you can associate a response with its source using its position in the response list or using
the Tango::GroupAttrReply::dev_name member.

4.7.4.2 A few words on error handling and data extraction

Here again, depending of the application and/or the developer’s programming habits, each individual er-
ror can be handle by the C++ exception mechanism or using the dedicated has_failed() method. The
GroupReply class - which is the mother class of both GroupCmdReply and GroupAttrReply - contains
a static method to enable (or disable) exceptions called enable_exception(). By default, exceptions are
disabled (in both Java and C++). The following example is proposed with both exceptions enable and
disable.

In C++, data can be extracted directly from an individual reply. The GroupAttrReply interface contains
a template operator>> allowing the extraction of any supported Tango type (in fact the actual data extraction
is delegated to DeviceAttribute::operator>>).

Reading an attribute is very similar to executing a command.
Reading an attribute in C++:

//---
//- synch. read "vacuum" attribute on each device in the hierarchy
//- with exceptions enabled - C++ example
//---
//- enable exceptions and save current mode
bool last_mode = GroupReply::enable_exception(true);
//- read attribute
Tango::GroupAttrReplyList arl = gauges->read_attribute("vacuum");
//- for each response in the list ...
for (int r = 0; r < arl.size(); r++)
{
//- enter a try/catch block

try

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 81

{
//- try to extract the data from the r-th reply
//- suppose data contains a double

double ans;
arl[r] >> ans;
cout << arl[r].dev_name()

<< "::"
<< arl[r].obj_name()
<< " value is "
<< ans << endl;

}
catch (const DevFailed& df)
{

//- DevFailed caught while trying to extract the data from reply
for (int err = 0; err < df.errors.length(); err++)
{

cout << "error: " << df.errors[err].desc.in() << endl;
}

//- alternatively, one can use arl[r].get_err_stack() see below
}
catch (...)
{

cout << "unknown exception caught";
}

}
//- restore last exception mode (if needed)
GroupReply::enable_exception(last_mode);
//- clear the reply list (if reused later in the code)
arl.reset();

Reading an attribute in Java:

//---
//- synch. read "vacuum" attribute on each device in the hierarchy
//- with exceptions enabled - Java example
//---
//- enable exceptions and save current mode
boolean last_mode = GroupReply.enable_exception(true);
//- read attribute
GroupAttrReplyList arl = gauges.read_attribute("vacuum",true);
//- try to extract the data from the each reply
//- suppose data contains a double
double ans;
while (it.hasNext())
{
//- cast from Object to GroupAttrReply

GroupAttrReply ar = (GroupAttrreply)it.next();
//- enter a try/catch block

try
{

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 82

//- extract value from data (may throw DevFailed)
ans = get_data().extractDouble();
//- verbose

System.out.println(cr.dev_name()
+ "::"
+ cr.obj_name()
+ " returned "
+ ans);

}
catch (DevFailed d)
{

//- DevFailed caught while trying to extract the data from reply
for (int err = 0; err < d.errors.length; err++)
{

System.out.println("error: " + d.errors[err].desc);
}

//- alternatively, one can use cr.get_err_stack() see below
}
catch (Exception e)
{

System.out.println("unknown exception caught");
}

}
//- restore last exception mode (if needed)
GroupReply.enable_exception(last_mode);

In C++, an asynchronous version of the previous example could be:

//- read the attribute asynchronously
long request_id = gauges->read_attribute_asynch("vacuum");
//- do some work
do_some_work();

//- get results
Tango::GroupAttrReplyList arl = gauges->read_attribute_reply(request_id);
//- process replies as previously described in the synch. implementation
for (int r = 0; r < arl.size(); r++)
{
//- data processing and/or error handling goes here
...
}
//- clear the reply list (if reused later in the code)
arl.reset();

The same asynchronous example in Java:

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 83

//- read the attribute asynchronously
int request_id = gauges.read_attribute_asynch("vacuum",true);
//- do some work
do_some_work();

//- get results
GroupAttrReplyList arl = gauges.read_attribute_reply(request_id);
Iterator it = arl.iterator();
//- try to extract the data from the each reply
while (it.hasNext())
{
//- data processing and error handling goes here
//- copy/paste code from previous example
. . .
}

4.7.5 Writing an attribute
The Group interface contains several implementations of the write_attribute() method. Both synchronous
and asynchronous forms are supported. However, writing more than one attribute at a time is not supported.

4.7.5.1 Obtaining acknowledgement

Acknowledgements are returned using a GroupReplyList. This is nothing but an array containing a GroupRe-
ply for each device in the group. The GroupReply may contain any error occurred during the execution of
the command. The return value of the has_failed() method indicates whether an error occurred or not. If
this flag is set to true, the GroupReply::get_err_stack() method gives error details.

Here again, the Tango Group implementation guarantees that the attribute values are returned in the
order in which its elements were attached to the group. See Obtaining command results for details.

The GroupReply contains some public members allowing the identification of both the device (GroupRe-
ply::dev_name) and the attribute (GroupReply::obj_name). It means that, depending of your application,
you can associate a response with its source using its position in the response list or using the GroupRe-
ply::dev_name member.

4.7.5.2 Case 1: one value for all devices

Here, we give an example in which the same attribute value is written on all devices in the group (or its
sub-groups). Exceptions are supposed to be disabled.

Writing an attribute in C++:

//---
//- synch. write "dummy" attribute on each device in the hierarchy
//---
//- assume each device support a "dummy" writable attribute
//- insert the value to be written into a generic container
Tango::DeviceAttribute value(std::string("dummy"), 3.14159);
//- write the attribute
Tango::GroupReplyList rl = gauges->write_attribute(value);
//- any error?

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 84

if (rl.has_failed() == false)
{

cout << "no error" << endl;
}
else
{

cout << "at least one error occurred" << endl;
//- for each response in the list ...

for (int r = 0; r < rl.size(); r++)
{

//- did the r-th device give error?
if (rl[r].has_failed() == true)
{

//- printout error description
cout << "an error occurred while reading "

<< rl[r].obj_name()
<< " on "
<< rl[r].dev_name()
<< endl;

//- dump error stack
const DevErrorList& el = rl[r].get_err_stack();
for (int err = 0; err < el.size(); err++)
{

cout << el[err].desc.in();
}

}
}

}
//- clear the reply list (if reused later in the code)
rl.reset();

Writing an attribute in Java:

//---
//- synch. write "dummy" attribute on each device in the hierarchy
//---
//- assume each device support a "dummy" writable attribute
//- insert the value to be written into a generic container
DeviceAttribute value = new DeviceAttribute("dummy"), 3.14159);
//- write the attribute
GroupReplyList rl = gauges.write_attribute(value,true);
//- any error?
if (rl.has_failed() == false)
{

System.out.println("no error");
}
else
{

System.out.println("at least one error occurred");
//- for each response in the list ...

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 85

Iterator it = rl.iterator();
while (it.hasNext())
{

//- cast from Object to GroupReply
GroupReply gr = (GroupReply)it.next();

//- did the r-th device give error?
if (gr.has_failed())
{

//- printout error description
System.out.println("an error occurred while reading "

+ gr.obj_name()
+ " on "
+ gr.dev_name());

//- dump error stack
DevError[] el = gr.get_err_stack();
for (int err = 0; err < el.length; err++)
{

System.out.println(el[err].desc);
}

}
}

}

Here is a C++ asynchronous version:

//- insert the value to be written into a generic container
Tango::DeviceAttribute value(std::string("dummy"), 3.14159);
//- write the attribute asynchronously
long request_id = gauges.write_attribute_asynch(value);
//- do some work
do_some_work();

//- get results
Tango::GroupReplyList rl = gauges->write_attribute_reply(request_id);
//- process replies as previously describe in the synch. implementation ...

The same asynchronous example in Java:

//- insert the value to be written into a generic container
DeviceAttribute value = new DeviceAttribute("dummy", 3.14159);
//- write the attribute asynchronously
int request_id = gauges.write_attribute_asynch(value,true);
//- do some work
do_some_work();

//- get results
GroupReplyList rl = gauges.write_attribute_reply(request_id, 0);
//- process replies as previously describe in the synch. implementation ...

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 86

4.7.5.3 Case 2: a specific value per device

Here, we give an example in which a specific attribute value is applied to each device in the hierarchy. In
order to use this form of write_attribute(), the user must have an "a priori" and "perfect" knowledge of the
devices order in the hierarchy.

The C++ implementation provides a template method which accepts a std::vector of "C++ type for
command argument". This allows passing any kind of data using a single method.

Since templates are not (already) supported in Java, the implementation is somewhat different and an
array of DeviceAttribute is used to pass the specific arguments.

In both cases (C++ and Java), the size of this vector must equal the number of device in the hierarchy
(respectively the number of device in the group) if the forward option is set to true (respectively set to
false). Otherwise, an exception is thrown.

The first item in the vector is applied to the first device in the group, the second to the second device
in the group, and so on. . . That’s why the user must have a "perfect" knowledge of the devices order in the
group.

Assuming that gauges are ordered by name, the dummy attribute can be written as follows on group
"cell-01" (and its sub-groups) as follows:

Remember, "cell-01" has the following internal structure:

-> gauges
| -> cell-01
| |-> inst-c01/vac-gauge/strange
| |-> penning
| | |-> inst-c01/vac-gauge/penning-01
| | |-> inst-c01/vac-gauge/penning-02
| | |-> ...
| | |-> inst-c01/vac-gauge/penning-xx
| |-> pirani
| |-> inst-c01/vac-gauge/pirani-01
| |-> ...
| |-> inst-c01/vac-gauge/pirani-xx

C++ version:

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the hierarchy (starting at cell-01)
long n_dev = g->get_size(true);
//- Build value list
std::vector<double> values(n_dev);
//- value for inst-c01/vac-gauge/strange
values[0] = 3.14159;
//- value for inst-c01/vac-gauge/penning-01
values[1] = 2 * 3.14159;
//- value for inst-c01/vac-gauge/penning-02
values[2] = 3 * 3.14159;
//- value for remaining devices in cell-01.penning
. . .
//- value for devices in cell-01.pirani
. . .
//- the reply list

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 87

Tango::GroupReplyList rl;
//- enter a try/catch block (see below)
try
{
//- write the "dummy" attribute

rl = g->write_attribute("dummy", values, true);
if (rl.has_failed())
{

//- error handling (see previous cases)
}

}
catch (const DevFailed& df)
{
//- see below
}
rl.reset();

Here is a Java version:

//- get a reference to the target group
Group g = gauges.get_group("cell-01");
//- get pre-build arguments list for the whole hierarchy (starting@cell-01)
DeviceAttribute[] values = g.get_attribute_specific_value_list(true);
//- value for inst-c01/vac-gauge/strange
values[0] = 3.14159;
//- value for inst-c01/vac-gauge/penning-01
values[1] = 2 * 3.14159;
//- value for inst-c01/vac-gauge/penning-02
values[2] = 3 * 3.14159;
//- value for remaining devices in cell-01.penning
. .
//- value for devices in cell-01.pirani
. . .
//- the reply list
GroupReplyList rl;
try
{
//- write the "dummy" attribute
rl = g.write_attribute("dummy", values, true);

if (rl.has_failed())
{

//- error handling (see previous cases)
}

}
catch (DevFailed d)
{
//- see below
}

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 88

Note: if we want to execute the command locally on "cell-01" (i.e. not on its sub-groups), we should
write the following code (example is only proposed for C++ - Java port is straightforward):

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the group
long n_dev = g->get_size(false);
//- Build value list
std::vector<double> values(n_dev);
//- value for inst-c01/vac-gauge/penning-01
values[0] = 2 * 3.14159;
//- value for inst-c01/vac-gauge/penning-02
values[1] = 3 * 3.14159;
//- value for remaining devices in cell-01.penning
. . .
//- the reply list
Tango::GroupReplyList rl;
//- enter a try/catch block (see below)
try
{
//- write the "dummy" attribute

rl = g->write_attribute("dummy", values, false);
if (rl.has_failed())
{

//- error handling (see previous cases)
}

}
catch (const DevFailed& df)
{
//- see below
}
rl.reset();

This form of write_attribute() (the one that accepts an array of value as its input argument), may throw
an exception before executing the command if the number of elements in the input array does not match
the number of individual devices in the group or in the hierarchy (depending on the forward option).

Java developers should use the Group.get_attribute_specific_value_list helper method (see previous
example). It guarantees than the "returned array" has the right number of elements. This array may be kept
and reused as far as the group size is not changed (i.e. no add or remove of elements).

An asynchronous version of this method is also available.

4.8 Device locking
Starting with Tango release 7 (and device inheriting from Device_4Impl), device locking is supported. For
instance, this feature could be used by an application doing a scan on a synchrotron beam line. In such a
case, you want to move an actuator then read a sensor, move the actuator again, read the sensor...You don’t
want the actuator to be moved by another client while the application is doing the scan. If the application
doing the scan locks the actuator device, it will be sure that this device is "reserved" for the application
doing the scan and other client will not be able to move it until the scan application un-locks this actuator.

A locked device is protected against:

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 89

• command_inout call except for device state and status requested via command and for the set of
commands defined as allowed following the definition of allowed command in the Tango control
access schema.

• write_attribute call

• write_read_attribute call

• set_attribute_config call

• polling and logging commands related to the locked device

Other clients trying to do one of these calls on a locked device will get a DevFailed exception. In case of
application with locked device crashed, the lock will be automatically release after a defined interval. The
API provides a set of methods for application code to lock/unlock device. These methods are:

• DeviceProxy::lock() and DeviceProxy::unlock() to lock/unlock device

• DeviceProxy::locking_status(), DeviceProxy::is_locked(), DeviceProxy::is_locked_by_me() and De-
viceProxy::get_locker() to get locking information

These methods are precisely described in the API reference chapters.

4.9 Reconnection and exception
The Tango API automatically manages re-connection between client and server in case of communi-
cation error during a network access between a client and a server. By default, when a communica-
tion error occurs, an exception is returned to the caller and the connection is internally marked as bad.
On the next try to contact the device, the API will try to re-build the network connection. With the
set_transparency_reconnection() method of the DeviceProxy class, it is even possible not to have any
exception thrown in case of communication error. The API will try to re-build the network connection as
soon as it is detected as bad. This is the default mode. See 6.17 for more details on this subject.

4.10 Compiling and linking a Tango client
Compiling and linking a Tango client is similar to compiling and linking a Tango device server. Please,
refer to chapter "Compiling, Linking and executing a Tango device server process" (8.6) to get all the
details.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 90

Chapter 5

TANGO Java API

THIS CHAPTER DOCUMENTS THE JAVA API FOR THE TANGO DATABASE AND DEVICE SERVERS.

91

CHAPTER 5. TANGO JAVA API 92

AttributeProxy

read()
write()

TANGO Java API Architecture

name

get_property()
.................

DbClass

name

get_property()
.................

DbDevice

name

DbServer

.................
put_info()
get_info()

name

DbDatum

is_empty()
insert()
extract()

Database

get_class_property()

get_device_property()

...................

get_server_info()

set_timeout()
get_timeout()

reconnection()

command_inout()

Connection

name

is_empty()
insert()
extract()

DbAttribute

DeviceDataHstory

getTime()

insert()
extract()

DeviceAttribute

insert()
extract()

DeviceData

name

DeviceProxy

ping()
command_list_query()
info()
...........................

...........................
info()

name

ping()

i...n

Database Objects
Static Vector of

ApiUtil

5.1 Introduction

5.1.1 Description
This chapter documents the high level interface for Java.

Remarks:

This java api is based on Jacorb ORB implementation. The Jacorb and Tango classes are both available in
TangORB.jar file.

5.1.2 Basic Philosophy
The basic philosophy is to have high level classes for the database, properties, device, group and database
object info. Classes also exist for sending and receiving database or device values.

CHAPTER 5. TANGO JAVA API 93

All classes and data types are defined in fr.esrf.TangoApi package. Group related classes are in a
package called fr.esrf.TangoApi.Group. Event related classes are in a package called fr.esrf.TangoApi.events

5.1.3 Classes
5.1.3.1 Data object classes

DeviceData: Obect used to send and receive data on device.

DbDatum: Object used to put or get properties on database.

DbDevInfo: Object used to read device information on database.

DbDevImportInfo: Object used to read imported device information on database.

DbDevExportInfo: Object used to read exported device information on database.

5.1.3.2 Asynchronous callback related classes

CallBack: Object called at asynchronous call reply

CmdDoneEvent: Object to pass asynchronous command reply data to a CallBack object.

ReadAttrEvent: Object to pass asynchronous read_attribute reply data to a CallBack object.

AttrWrittenEvent: Object to pass asynchronous write_attribute reply data to a CallBack object.

5.1.3.3 Devices and Database access classes

DeviceProxy: Device access (aggregates DbDevice class).

Group: Multiple device access class

Database: Direct access to TANGO database.

DbClass: Class properties access to TANGO database.

DbServer: Server properties access to TANGO database.

DbDevice Device properties access to TANGO database.

5.1.4 Reporting errors
For the device and database classes, most methods throw a DevFailed exception in case of error. See
Writing a TANGO Device Server chapter Reporting Errors (8.2.4) , except those which specified.

In opposite, for the data object classes, only the specified method throw DevFailed exception in case of
error.

The reason field could be set to:

• TangoApi_TANGO_HOST_NOT_SET : The TANGO_HOST environment variable has not been set
or has been set with a syntax error.

• TangoApi_DATABASE_CONNECTION_FAILED : The database server cannot be connected (bad
TANGO_HOST or database server stopped).

• TangoApi_CANNOT_IMPORT_DEVICE : The device is exported but cannot be connected.

• TangoApi_DEVICE_NOT_EXPORTED : The device has not be exported.

CHAPTER 5. TANGO JAVA API 94

5.1.5 Compiling a Java client
5.1.5.1 Supported java release

Tango client written using Java language needs release 1.4.0 (or above) of the Java environment.

5.1.5.2 Setting CLASSPATH and other environment variables

To correctly compile a Java Tango client, the CLASSPATH environment variable must be set to :

• The jar file with all the Tango, TangoDs, TangoApi and Jacorb package classes. This file is named
TangORB.jar

• The jar file with all the JDK classes (not always necessary, could be implicit)

• Your own package directory

For UNIX like operating system, setting environment variable is done with the export or setenv command
depending on the shell used. For Windows NT, setting environment variable is possible with the “Environ-
ment” tab of the “System” application in the control panel.

The client/server timeout as been fixed by default to 3000 milliseconds but it can be set to another value
a startup using TANGO_TIMEOUT environement variable.

eg : java -DTANGO_HOST=hal:20000 -DTANGO_TIMEOUT=5000 mypackage.MyClient
Will start MyClient class using the database server running on the host named hal on port 20000 with a

command timeout of 5 seconds.

5.2 Data object classes

5.2.1 DeviceData class
This class manage data object for Tango device access.

5.2.1.1 Public methods

5.2.1.1.1 public DeviceData() Constructor for DeviceData Object.
This method needs a database connection, that means that a DevFailed exception is thrown if the

connection failed.

5.2.1.1.2 public void insert(<Tango type> argin) Insert method for argin, where argin can be one
of the Tango type (boolean, short, String[]...). This value will be used as argin parameter for the com-
mand_inout0 method.

5.2.1.1.3 insertion for unsigned.

• public void insert_us(short argin) : Insert method for argin short as unsigned short.

• public void insert_us(int argin) : Insert method for argin int as unsigned short.

• public void insert_us(short[] argin) : Insert method for argin short array as unsigned short array.

• public void insert_us(int[] argin) : Insert method for argin int array as unsigned short array.

CHAPTER 5. TANGO JAVA API 95

5.2.1.1.3.1 ————————————-

• public void insert_ul(int argin) : Insert method for argin int as unsigned int.

• public void insert_ul(long argin) : Insert method for argin long as unsigned int.

• public void insert_ul(int[] argin) : Insert method for argin int array as unsigned int array.

• public void insert_ul(long[] argin) : Insert method for argin long array as unsigned int array.

5.2.1.1.4 public <TangoType> extract<Tango type>() Extract the argout value of the command_inout()
method.

i.e :
public short extractShort(): extract method for a short.
public int extractUShort(): extract method for an unsigned short.
public double extractDouble(): extract method for a double.
public String extractString(): extract method for a String.
public String[] extractStringArray(): extract method for a String array.
public float[] extractFloatArray(): extract method for a float array.
public long[] extractULongArray(): extract method for a float array.

WARNING: Due to the IDL mapping, the Tango_DevLong is an int for java ! That means that the ex-
tractLong method returns an int (and not a long).

5.2.1.2 Example

// Send a write command to the device
DeviceData argin = new DeviceData();
argin.insert(¨Hello World !¨);
dev.command_inout(¨DevWriteMessage¨, argin);

// Send a read command to the device
DeviceData argout = dev.command_inout(¨DevReadMessage¨);
String received = argout.extractString();
System.out.println(received);

5.2.2 DeviceDataHistory
This class manage device data for history command or attribute call.

It extends the DeviceData class.

5.2.2.1 Public fields

• public int source : Contains the data source (DeviceDataHistory.COMMAND or DeviceDataHis-
tory.ATTRIBUTE).

• public String name : The Command/Attribute name.

• public boolean failed : true if command/attribute hardware failed.

• public DevError[] errors : Error list if any in during hardware command or attribute.

CHAPTER 5. TANGO JAVA API 96

5.2.2.2 Public methods

5.2.2.2.1 public DeviceDataHistory(String cmdname, DevCmdHistory cmd_histo) Constructor from
a DevCmdHistory object.

• parameter cmdname : The Command/Attribute name.

• parameter cmd_histo : The IDL data object.

5.2.2.2.2 public DeviceDataHistory(DevAttrHistory att_histo) Constructor from an AttributeValue
object.

• parameter att_histo : The IDL data object.

5.2.2.2.3 public TimeVal getTimeVal() Return attribute time value.

5.2.2.2.4 public long getTimeValSec() Return attribute time value in seconds since EPOCH.

5.2.2.2.5 public long getTime() Return time in milliseconds since EPOCH to build a Date class.

5.2.2.2.6 public AttributeValue getAttributeValueObject() Return AttributeValue if from attribute.

5.2.2.2.7 public AttrQuality getAttrQuality() Return AttrQuality if from attribute.

5.2.2.2.8 public int getDimX() Return attribute dim_x if from attribute.

5.2.2.2.9 public int getDimY() Return attribute dim_y if from attribute.

5.2.3 CommandInfo
This class is an interface with the DevCmdInfo IDL object (see Reference Part for IDL).

5.2.3.1 Public fields

• public String cmd_name : Command name

• public DispLevel level : Diplay level DispLevel.OPERATORb or DispLevel.EXPERT

• public int in_type : Input argument type

• public int out_type : Output argument type

• public String in_type_desc : Input argument description

• String out_type_desc : Output argument description public

5.2.4 AttributeInfo
This class is an interface with the AttributeConfig IDL object (see Reference Part for IDL)..

CHAPTER 5. TANGO JAVA API 97

5.2.4.1 Public fields

• public String name : Attribute name.

• public AttrWriteType writable : Attribute writable state.

• public AttrDataFormat data_format : Attribute data format.

• public int data_type : Attribute data type.

• public int max_dim_x : Attribute maximum size for X dimention.

• public int max_dim_y : Attribute maximum size for Y dimention.

• public String description : Attribute description.

• public String label : Attribute label.

• public String unit : Attribute unit.

• public String standard_unit : Attribute standard unit.

• public String display_unit : Attribute display unit.

• public String format : Attribute display format.

• public String min_value : Attribute minimum value.

• public String max_value :Attribute maximum value.

• public String min_alarm :Attribute minimum value before alarm.

• public String max_alarm : Attribute maximum value before alarm.

• public String writable_attr_name :Attribute writable associated.

• public DispLevel level : Attribute display level. DispLevel.OPERATOR or DispLevel.EXPERT

5.2.5 AttributeInfoEx
This class extends AttributeInfo class with added data members.

5.2.5.1 Public fields

• public AttributeAlarmInfo alarms;

• public AttributeEventInfo events;

• public String[] extensions;

• public String[] sys_extensions;

5.2.6 AttributeAlarmInfo
This class is the same class as AttributeAlarm, but created for C++ compatibility.

CHAPTER 5. TANGO JAVA API 98

5.2.6.1 Public fields

• public String min_alarm ;

• public String max_alarm;

• public String min_warning;

• public String max_warning;

• public String delta_t;

• public String delta_val;

• public String[] extensions;

5.2.7 AttributeEventInfo
This class is the same class as EventProperties, but created for C++ compatibility.

5.2.7.1 Public fields

• public ChangeEventInfo ch_event;

• public PeriodicEventInfo per_event;

• public ArchiveEventInfo arch_event;

5.2.8 ChangeEventInfo
This class is the same class as fr.esrf.Tango.ChangeEventProp, but created for C++ compatibility.

5.2.8.1 Public fields

• public String rel_change;

• public String abs_change;

• public String[] extensions;

5.2.9 PeriodicEventInfo
This class is the same class as fr.esrf.Tango.PeriodicEventProp, but created for C++ compatibility.

5.2.9.1 Public fields

• public String period;

• public String[] extensions;

ArchiveEventInfo
This class is the same class as fr.esrf.Tango.ArchiveEventProp, but created for C++ compatibility.

CHAPTER 5. TANGO JAVA API 99

5.2.9.2 Public fields

• public String rel_change;

• public String abs_change;

• public String period;

• public String[] extensions;

5.2.10 DbDatum
5.2.10.1 Public fields

• public String name : The data name

5.2.10.2 public methods

5.2.10.2.1 public DbDatum(String name) Constructor for DbDatum Object.

• parameter name : The data name.

5.2.10.2.2 public DbDatum(String name, <Tango type> value) Constructor for DbDatum Object.

• parameter name : The data name.

• parameter value can be one of the Tango type (boolean, short, String[]...) and is the value to set the
data.

5.2.10.2.3 public void insert(<Tango type> value) Set the data value, where value can be one of the
Tango type (boolean, short, String[]...).

5.2.10.2.4 public boolean is_empty() This method does not throw exception.

• return true if the value has not been initialized.

5.2.10.2.5 public <TangoType> extract<Tango type>() Extract the data value.
i.e :
public short extractShort(): extract method for a short.
public short extractDouble(): extract method for a double.
public String extractString(): extract method for a String.
public String[] extractStringArray(): extract method for a String array.
public float[] extractFloatArray(): extract method for a float array.

WARNING: Due to the IDL mapping, the Tango_DEV_LONG is an int for java ! That means that the
extractLong method returns an int (and not a long).

CHAPTER 5. TANGO JAVA API 100

5.2.10.3 Example

// Update device properties.
devname = ¨my/serial/device¨;
DbDatum[] prop;
prop = new DbDatum[3];
prop[0] = new DbDatum(¨baudrate¨, 19200);
prop[1] = new DbDatum(¨parity¨, ¨none¨);
prop[2] = new DbDatum(¨stopbits¨, 1);
dbase.put_property(devname, prop);

5.2.11 DbAttribute Class
This class use a DbDatum vector associated to an attribute name to manage attribute properties.

5.2.11.1 Public fields

• public String name : The attribute name.

5.2.11.2 Public methods

5.2.11.2.1 public DbAttribute(String name) constructor for DbAttribute object.

• parameter name : attribute name.

5.2.11.2.2 public int size() return the number of properties (size of DbDatum Vector).

5.2.11.2.3 public DbDatum datum(int idx) Return the DbDatum object at specified index.

• parameter idx : an index into the array.

• Return the DbDatum object at the specified index.

5.2.11.2.4 public DbDatum datum(String name) Return the DbDatum object for the specified name.

• parameter name : property name.

• Return the DbDatum object for the specified name.

5.2.11.2.5 public boolean is_empty(String name) Return true if the property specified is not defined.

• parameter name : property name.

• Return true if the property specified is not defined.

5.2.11.2.6 public String get_value(String name) Return the property specified value as String.

• parameter name : property name.

• Return the property specified value as String.

CHAPTER 5. TANGO JAVA API 101

5.2.11.2.7 public String[] get_property_list() Return the list of property names defined in this class.

5.2.11.2.8 public void add(String name, String value) Add a new property (name and value) in DbAt-
tribute object.

• parameter name : property name

• parameter value : property value

5.2.11.2.9 public void add(String name, short value) Add a new property (name and value) in DbAt-
tribute object.

• parameter name : property name

• parameter value : property value

5.2.11.2.10 public void add(String name, long value) Add a new property (name and value) in DbAt-
tribute object.

• parameter name : property name

• parameter value : property value

5.2.11.2.11 public void add(String name, double value) Add a new property (name and value) in
DbAttribute object.

• parameter name : property name

• parameter value : property value

5.2.11.3 Example

String[] attnames = db.get_class_attribute_list(“MyClass”, “*”);
DbAttribute[] attr = db.get_class_attribute_property(“MyClass”, attnames);
for (int i=0 ; i<attr.length ; i++)
for (int j=0 ; j<attr[i].size() ; j++)
{

DbDatum datum = attr[i].datum(j);
System.out.println(datum.name + ¨:\t¨ + datum.extractString());

}
//
// ======== Or ==============
//
String[] attnames = db.get_class_attribute_list(“MyClass”, “*”);
DbAttribute[] attr = db.get_class_attribute_property(“MyClass”, attnames);
String label = “Default string”;
// Get the label field property
String propname = “Label”;
for (int i=0 ; i<attr.length ; i++)

if (attr[i].is_empty(propname)==false)
label = attr[i].get_value(propname);

CHAPTER 5. TANGO JAVA API 102

5.2.12 DeviceAttribute
5.2.12.1 Public methods

5.2.12.1.1 public DeviceAttribute(AttributeValue attrval) Device Attribute class constructor.

• Parameter attrval : AttributeValue IDL object (see TANGO IDL documentation).

5.2.12.1.2 public DeviceAttribute(String name, <Tango type> value) Device Attribute class con-
structor.

• Parameter name : Attribute name.

• Parameter value can be one of the Tango Attribute type (short, int, double or String).

5.2.12.1.3 public DeviceAttribute(String name, <Tango type array> value, int dim_x, int dim_y)
Device Attribute class constructor.

• Parameter name : Attribute name.

• Parameter value can be one of the Tango Attribute type (short[], int[], double[] or String[]).

• Parameter dim_x : array dimentiomn in X.

• Parameter dim_x : array dimentiomn in Y.

5.2.12.1.4 public void insert(<Tango type> value) Set the object value where values can be short, int,
double or String.

5.2.12.1.5 public void insert(<Tango type array> value) Set the object value where values can be
short[], int[], double[] or String[].

5.2.12.1.6 public <Tango type> extract<Tango type>() extract the data value.
ie:

• public short extractShort() : extract method for a short

• public short[] extractShortArray() : extract method for a short array

• public int extractLong() : extract method for a int (Tango_DEV_LONG).

• public int[] extractLongArray() : extract method for int (Tango_DEV_LONG) a array.

• public double extractDouble() : extract method for a double

• public double[] extractDoubleArray() : extract method for a double array

• public String extractString() : extract method for a String

• public String[] extractStringArray() : extract method for a String array

5.2.12.1.7 public int getDimX() Return the array dimention in X.

5.2.12.1.8 public int getDimY() Return the array dimention in Y.

5.2.12.1.9 public String getName() Return the attribute name.

CHAPTER 5. TANGO JAVA API 103

5.2.12.1.10 public AttrQuality getQuality() return the attribute quality (see TANGO IDL documen-
tatiom).

5.2.12.1.11 public TimeVal getTimeVal() return the attribute time value (see TANGO IDL documen-
tatiom).

5.2.12.1.12 Example

DeviceAttribute devattr = dev.read_attribute(“Current”);
double i = devattr.extractDouble();

5.2.13 DbDevInfo Class
Device information object.

5.2.13.1 Public fields

• public String name : The device name.

• public String _class : The class name.

• public String server : The server name.

5.2.13.2 Public methods

5.2.13.2.1 public DbDevInfo() Default constructor for DbDevInfo object.

5.2.13.2.2 public DbDevInfo(String name, String _class, String server) Constructor for DbDevInfo
object with values to set public fields.

5.2.13.3 Example

// Add a group of devices in the database
//--
DbDevInfo[] devinfos;
devinfos = new DbDevInfo[2];
devinfos[0] = new DbDevInfo(¨sys/dummy/check3¨, ¨Dummy¨, ¨Dummy/check3¨);
devinfos[1] = new DbDevInfo(¨sys/dummy/check4¨, ¨Dummy¨, ¨Dummy/check3¨); dbase.add_server(devinfos[0].name, devinfos);

5.2.14 DbDevImportInfo class
This class is an object containing the imported device information.

CHAPTER 5. TANGO JAVA API 104

5.2.14.1 Public fields

• public String name :The device name.

• public String ior : IOR connection as String.

• public String version : TANGO protocol version number.

• public boolean exported : true if device is exported.

• public String server : Server name and instance name.

5.2.14.2 Public methods

5.2.14.2.1 public DbDevImportInfo() Default constructor.

5.2.14.3 Example

DbDevImportInfo imp_info = dbase.import_device(devname); System.out.println(imp_info);

5.2.15 DbDevExportInfo class
This class is an object containing the exported device information.

5.2.15.1 Public fields

• public String name: the device name.

• public String ior : IOR connection as String.

• public String host : Host name where device will be exported.

• public String version : TANGO protocol version number.

• public boolean exported : true if device is exported.

5.2.15.2 Public methods

5.2.15.2.1 public DbDevExportInfo() Default constructor.

5.2.15.2.2 public DbDevExportInfo(String name, String ior, String host, String version) Complete
constructor.

5.2.15.3 Example

DbDevImportInfo imp_info = dbase.import_device(devname);

DbDevExportInfo exp_info =
new DbDevExportInfo(devname, ¨MyServer/domain¨, imp_info.ior, ¨corvus¨, imp_info.version);

dbase.export_device(exp_info);

CHAPTER 5. TANGO JAVA API 105

5.3 Asynchronous callback related classes

5.3.1 CallBack class
This class define an object to be called at command_inout, reat_attribute or write_attribute asynchronous
call reply or when an event is received. The user should implement a class inheriting from this one, where
at least one of the following methods must be overloaded to recieve callback.

5.3.1.1 Public methods

5.3.1.1.1 public void cmd_ended(CmdDoneEvent evt) This method is defined as being empty and
must be overloaded by the user when the asynchronous callback model is used. This is the method which
is executed when the server reply from a command_inout is received in both push and pull sub mode.

5.3.1.1.2 public void attr_read(AttrReadEvent evt) This method is defined as being empty and must
be overloaded by the user when the asynchronous callback model is used. This is the method which is
executed when the server reply from a read_attribute is received in both push and pull sub mode.

5.3.1.1.3 public void attr_written(AttrWrittenEvent evt) This method is defined as being empty and
must be overloaded by the user when the asynchronous callback model is used. This is the method which
is executed when the server reply from a write_attribute is received in both push and pull sub mode.

5.3.1.1.4 public void push_event(EventData evt) This is the method which is called by the event
system whenever it detects the event for which the user has subscribed with this callback. Information
about the related event is encapsulated in the EventData argument object.

5.3.2 CmdDoneEvent class
This class is used to pass data to the callback method in asynchrous callback model for command_inout
execution.

5.3.2.1 Public fields

• public DeviceProxy device : The deviceProxy object on which the call was executed.

• public String cmd_name : The command name.

• public DeviceData argout : The command output argument.

• public boolean err : Is true if the request failed, false otherwise.

• public DevError[] errors : The error stack.

5.3.3 AttrReadEvent class
This class is used to pass data to the callback method in asynchrous callback model for read_attribute
execution.

5.3.3.1 Public fields

• public DeviceProxy device : The deviceProxy object on which the call was executed.

• public String[] attr_name : The attribute names.

• public DeviceAttribute[] argout : The read attribute output data.

CHAPTER 5. TANGO JAVA API 106

• public boolean err : Is true if the request failed, false otherwise.

• public DevError[] errors : The error stack.

5.3.4 AttrWrittenEvent class
This class is used to pass data to the callback method in asynchrous callback model for write_attribute
execution.

5.3.4.1 Public fields

• public DeviceProxy device : The deviceProxy object on which the call was executed.

• public String[] attr_name : The attribute names.

• public boolean err : Is true if the request failed, false otherwise.

• public DevError[] errors : The error stack.

5.3.5 EventData class
This class is used to pass data to the callback method (push_event()) when it is called to react to an event.

5.3.5.1 Public fields

• public DeviceProxy device : the DeviceProxy object on which the subscription command was exe-
cuted (see DeviceProxy.subscribe_event()).

• public String name : the attribute name for which the subscription was made.

• public String event : the event type that it was for with this attribute ("change", "quality_change",
"periodic" or "archive")

• public DeviceAttribute attr_value : the event effective data

• public Boolean err : true if something wrong happened with the event delivery mechanism

• public DevError[] errors : the error stack.

5.4 Devices access

5.4.1 DeviceProxy class
5.4.1.1 Tango database management for Tango device.

The following methods are using database connection and could be used without exported device.

5.4.1.1.1 public DeviceProxy(String devname) Constructor for a DeviceProxy object.

• Parameter devname : The device name.

The device name could be just the device name (sr/powersupply/dipole) or it can use the URL definition.
<protocole>:<//host_name:port_number/>device_name<#reference>
For example, it could be:

• tango://gizmo:20000/sr/powersupply/dipole

CHAPTER 5. TANGO JAVA API 107

• tango://spica:5555/test/serial/1#dbase=no

• taco:sr/ct/1

If protocole is not specified, TANGO is the default one.
If host and port are not specifiend, the $TANGO_HOST environment variable is read.
If reference is not specified, the TANGO database is used for device connection.

5.4.1.1.2 public DeviceProxy(String devname, String hostname, String port) Constructor for a De-
viceProxy object.

• Parameter devname : The device name.

• parameter hostname : name of the host for TANGO database.

• parameter port : Port number (as String) for connection.

5.4.1.1.3 public DbDevImportInfo import_device() Query the database for the export info of this
device.

• Return the information in a DbDevImportInfo.

5.4.1.1.4 public void export_device(DbDevExportInfo devinfo) Update the export info for this de-
vice in the database.

• Parameter devinfo : Device information to export.

5.4.1.1.5 public void add_device(DbDevInfo devinfo) Add/update this device to the database

• Parameter devinfo : The device name, class and server specified in object.

5.4.1.1.6 String[] get_property_list(String wildcard) Query the database for a list of class properties
for this device.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the property names in a String array.

5.4.1.1.7 public DbDatum[] get_property(String[] propnames) Query the database for a list of de-
vice properties for this device.

• Parameter propnames : list of property names.

• Retun properties in DbDatum objects.

5.4.1.1.8 public DbDatum get_property(String propname) Query the database for a device property
for this device.

• Parameter propname : property name.

• Retun property in DbDatum objects.

// get device properties as from database.
String[] propnames = { ¨baudrate¨, ¨parity¨, ¨stopbits¨};
DeviceProxy dev = new DeviceProxy(¨my/serial/device¨);
prop = dev.get_property(propnames);
if (prop[0].is_empty()==false) baud = prop[0].extractLong();
if (prop[1].is_empty()==false) parity = prop[1].extractString();
if (prop[2].is_empty()==false) stop = prop[2].extractShort();

CHAPTER 5. TANGO JAVA API 108

5.4.1.1.9 public DbDatum[] get_property(DbDatum[] properties) Query the database for a list of
device properties for this device. The property names are specified by the DbDatum array objects.

• Parameter properties : list of property DbDatum objects.

• Retun properties in DbDatum objects.

5.4.1.1.10 public void put_property(DbDatum[] properties) Insert or update a list of properties for
this device. The property names and their values are specified by the DbDatum array.

• Parameter properties : Properties names and values array.

5.4.1.1.11 public void delete_property(String[] propnames) Delete a list of properties for this de-
vice.

• Parameter propnames : Property names.

5.4.1.1.12 public void delete_property(String propname) Delete a property for this device.
Parameter propname : Property name.

5.4.1.1.13 public void delete_property(DbDatum[] properties) Delete a list of properties for this
device.

• Parameter properties : Property DbDatum objects.

5.4.1.1.14 public void put_attribute_property(DbDatum[] properties) Insert or update a list of prop-
erties for this device attribute. The property names and their values are specified by the DbDatum array.

• Parameter properties : Properties names and values array.

5.4.1.1.15 public void delete_attribute_property(String[] propnames) Delete a list of properties for
this object.

• Parameter propnames : Property names.

5.4.1.1.16 public void delete_attribute_property(String propname) Delete a property for this ob-
ject.

• Parameter propname : Property name.

5.4.1.1.17 public void delete_attribute_property(DbDatum[] properties) Delete a list of properties
for this object.

• Parameter properties : Property DbDatum objects.

5.4.1.1.18 public DbDatum[] get_attribute_property(String[] propnames) Query the database for a
list of device attribute properties for this device.

• Parameter propnames : list of property names.

• Retun properties in DbDatum objects.

5.4.1.1.19 public DbDatum get_attribute_property(String propname) Query the database for a de-
vice attribute property for this device.

• Parameter propname : list of property name.

• Retun property in DbDatum object.

CHAPTER 5. TANGO JAVA API 109

5.4.1.1.20 public DbDatum[] get_attribute_property(DbDatum[] properties) Query the database
for a list of device attribute properties for this device. The property names are specified by the DbDa-
tum array objects.

• Parameter properties : list of property DbDatum objects.

• Retun properties in DbDatum objects.

5.4.1.1.21 public void delete_attribute(String attname) Delete an attribute for this device.

• parameter atname : attribute name.

5.4.1.1.22 public String name()

• Return the device name.

5.4.1.2 The exported device management methods

This class manage Tango device connection. It is an api between user and IDL Device object.

5.4.1.2.1 public int get_timeout_millis()

• Return the value of the timeout in milliseconds.

5.4.1.2.2 public void set_timeout_millis(int nb_millis)

• Set the value of the timeout in milliseconds.

5.4.1.2.3 public set_transparency_reconnection(boolean mode) Set to true or false the transparency
mode. If this mode is true, that means that in case of a connection lost with the device, the Api will try to
reconnect the server one time before throwing an exception.

5.4.1.2.4 public get_transparency_reconnection() Return the transparency mode.

5.4.1.2.5 public DeviceData command_inout(String command, DeviceData data) Send a command
to the device.

• Parameter command : Command name to send to the device.

• Parameter data : argin management object.

DeviceProxy dev = new DeviceProxy(¨my/serial/device¨);
// Send a write command to the device

DeviceData argin = new DeviceData();
argin.insert(¨Hello World !¨);
dev.command_inout(¨DevWriteMessage¨, argin);

// Send a read command to the device
DeviceData argout = dev.command_inout(¨DevReadMessage¨, data);
String received = argout.extractString();
System.out.println(received);

CHAPTER 5. TANGO JAVA API 110

5.4.1.2.6 public DeviceData command_inout(String command) Send a command to the device.

• Parameter device : Device instance to send the command.

• Parameter command : Command name to send to the device.

DeviceProxy dev = new DeviceProxy(¨sr/powersupply/dipole¨);
// Send a DevOn command to the device

dev.command_inout(¨DevOn¨);

5.4.1.2.7 public String[] black_box(int depth) The device black box is a circular buffer where the
commands are logged.

• parameter depth : the maximum depth to read in the buffer.

5.4.1.2.8 public int ping() Execute a ping command to the device.

• Return the elapsed time for the ping command in micro seconds.

5.4.1.2.9 public DevInfo info() Execute an info command to the device.

5.4.1.2.10 public CommandInfo[] command_list_query() Query the command info list to the de-
vice.

DeviceProxy dev = new DeviceProxy(¨sr/powersupply/dipole¨);
// Get the command list
CommandInfo[] info = dev.command_list_query;
for (int i=0 ; i<info.length ; i++)

System.out.print(info[i].cmd_name + "(" + info[i].in_type + ", " + info[i].out_type + ")");

5.4.1.2.11 public CommandInfo command_list_query() Querya command info to the device.

DeviceProxy dev = new DeviceProxy(¨sr/powersupply/dipole¨);
// Get the command list
CommandInfo info = dev.command_query;
System.out.print(info.cmd_name + "(" + info.in_type + ", " + info.out_type + ")");

5.4.1.2.12 public String status() Returns the device status.

5.4.1.2.13 public DevState state() Return the device state.

5.4.1.2.14 public String adm_name() Returns the administration device name.

CHAPTER 5. TANGO JAVA API 111

5.4.1.2.15 public String description() Returns the device description.

5.4.1.2.16 public int get_idl_version() Returns the IDL version supported for device connection.

5.4.1.3 Attribute methods

5.4.1.3.1 public String[] get_attribute_list() Query the device for a list of attribute names.

• Return attribute names found in a String array.

5.4.1.3.2 public AttributeInfo[] get_attribute_info() Get all attributes config from device server.

• Return the config for all attributes. Archive

5.4.1.3.3 public AttributeInfoEx[] get_attribute_info_ex() Get all attributes config from device server.

• Return the extended config for all attributes. Archive

5.4.1.3.4 public AttributeInfo[] get_attribute_info(String[] attnames) Get attribute config from de-
vice server for specified attributes.

• parameter attnames : attribute names to get config.

• Return the config for attributes.

5.4.1.3.5 public AttributeInfoEx[] get_attribute_info_ex(String[] attnames) Get attribute config from
device server for specified attributes.

• parameter attnames : attribute names to get config.

• Return the extended config for attributes.

5.4.1.3.6 public AttributeInfo get_attribute_info(String attname) Get the attribute config from de-
vice server.

• parameter attname : attribute name to get config.

• Return the config for attribute.

AttributeInfo[] ac = dev.get_attribute_info(attributes);
for (int i=0 ; i<attributes.length ; i++)
{

System.out.println(¨Attribute: ¨ + ac[i].name);
System.out.println(¨writable: ¨ + ac[i].writable);
System.out.println(¨data_format: ¨ + ac[i].data_format);
System.out.println(¨data_type: ¨ + ac[i].data_type);
System.out.println(¨max_dim_x: ¨ + ac[i].max_dim_x);
System.out.println(¨max_dim_y: ¨ + ac[i].max_dim_y);
System.out.println(¨description: ¨ + ac[i].description);
System.out.println(¨label: ¨ + ac[i].label);
System.out.println(¨unit: ¨ + ac[i].unit);
System.out.println(¨standard_unit: ¨ + ac[i].standard_unit);
System.out.println(¨display_unit: ¨ + ac[i].display_unit);

CHAPTER 5. TANGO JAVA API 112

System.out.println(¨format: ¨ + ac[i].format);
System.out.println(¨min_value: ¨ + ac[i].min_value);
System.out.println(¨max_value: ¨ + ac[i].max_value);
System.out.println(¨min_alarm: ¨ + ac[i].min_alarm);
System.out.println(¨max_alarm: ¨ + ac[i].max_alarm);

}

5.4.1.3.7 public AttributeInfoEx get_attribute_info_ex(String attname) Get the attribute config from
device server.

• parameter attname : attribute name to get config.

• Return the extended config for attribute.

5.4.1.3.8 public void set_attribute_info(AttributeConfig[] config) Set the attribute config to the de-
vice .

• parameter config : attribute config to be set.

5.4.1.3.9 public void set_attribute_info(AttributeConfigEx[] config) Set the attribute config to the
device .

• parameter config : attribute extended config to be set.

5.4.1.3.10 public DeviceAttribute read_attribute(String attname) Read attribute specified.

• parameter attname : attribute name to be read.

DeviceAttribute devattr = dev.read_attribute(¨Current¨);
System.out.println(¨\nRead ¨ + devattr.extractDouble() + ¨ on ¨ + devattr.getName());

5.4.1.3.11 public DeviceAttribute read_attribute(String[] attnames) Read attribute specified.

• parameter attnames : attribute names to be read.

5.4.1.3.12 public void write_attribute(DeviceAttribute devattr) Write attribute with new value(s).

• parameter devattr : attribute name and value to write.

DeviceAttribute wattr =
new DeviceAttribute(¨Current¨, (double) 7.6543);

dev.write_attribute(wattr);

5.4.1.3.13 public void write_attribute(DeviceAttribute[] devattr) Write attributes with new values.

• parameter devattr : attribute names and values to write.

CHAPTER 5. TANGO JAVA API 113

5.4.1.4 Polling methods.

5.4.1.4.1 public set_source(DevSource src) Set the device data source.

• Parameter src : new data source (CACHE_DEV, CACHE or DEV).

5.4.1.4.2 public DevSource get_source() Return the device data source.

5.4.1.4.3 public void poll_command(String cmdname, int period) Add a command to be polled for
the device. If already polled, update its polling period.

• Param cmdname : command name to be polled.

• Param period : polling period in milli seconds.

dev.poll_command(¨ReadCurrent¨, 1000);

5.4.1.4.4 public void poll_attribute(String attname, int period) Add an attribute to be polled for the
device. If already polled, update its polling period.

• Param attname : attribute name to be polled.

• Param period : polling period in milli seconds.

dev.poll_attribute(¨Current¨, 1000);

5.4.1.4.5 public void stop_poll_command(String cmdname) Remove command of polled object list

• Param cmdname : command name to be removed of polled object list.

5.4.1.4.6 public void stop_poll_attribute(String attname) Remove attribute of polled object list

• Param attname : attribute name to be removed of polled object list.

5.4.1.4.7 public String[] polling_status() Returns the polling status for the device.

5.4.1.4.8 public DeviceDataHistory[] command_history(String cmdname) Return the full history
for command polled.

• Param cmdname : command name to read polled history

CHAPTER 5. TANGO JAVA API 114

5.4.1.4.9 public DeviceDataHistory[] command_history(String cmdname, int nb) Return nb data
of the history for command polled.

• Param cmdname : command name to read polled history

• Param nb : nb data to read.

DeviceDataHistory[] histo = dev.command_history("IOStr1", 10);
for (int i=0 ; i<histo.length ; i++)
{

// Build measure date and display date and value.
Date date = new Date(histo[i].getTime());
System.out.println(date + " - " + histo[i].extractString());

}

5.4.1.4.10 public DeviceDataHistory[] attribute_history(String attname) Return the full history for
attribute polled.

• Param attname : attribute name to read polled history.

5.4.1.4.11 public DeviceDataHistory[] attribute_history(String attname, int nb) Return nb data of
the history for attribute polled.

• Param attname : attribute name to read polled history.

• Param nb : nb data to read.

5.4.1.5 Asynchronous command oriented methods

Asynchrous call can be used with two models:

• Polling model : The client send an idl command and check if the reply is arrived.

• Callback model : The reply result will be sent to an object. Callback model has two sub models:

– push sub model : the result will be sent automaticaly to the callback object when reply arrives.

– pull sub model : the result will be sent to the callback object when the client will ask for (default
mode).

The callback sub model (ApiDefs.PULL_CALLBACK or ApiDefs.PUSH_CALLBACK) need to be
selected before calling this method (see ApiUtil.set_asynch_cb_sub_model() method).

WARNING:Do not use the same DeviceData object as input parameter for many command_inout_asynch()
before the reply has been recieved. You risk trouble to overwrite object before it will be really sent.

5.4.1.5.1 public int command_inout_asynch(String cmdname) Execute asynchronously (pooling model)
a command on a device which takes no input argument.

• Parameter cmdname : Command name to send to the device..

• Returns an asynchronous call identifier which is needed to get the command result.

CHAPTER 5. TANGO JAVA API 115

5.4.1.5.2 public int command_inout_asynch(String cmdname, boolean forget) Execute asynchronously
(pooling model) a command on a device which takes no input argument and forget response if forget is true.

• Parameter cmdname : Command name to send to the device.

• Parameter forget : if true, the command reply will be forgotten.

• Returns an asynchronous call identifier which is needed to get the command result or 0 if forget is
true.

5.4.1.5.3 public int command_inout_asynch(String cmdname, DeviceData argin) Execute asyn-
chronously (pooling model) a command on a device with input argument.

• Parameter cmdname : Command name to send to the device.

• Parameter argin : Input command argument.

• Returns an asynchronous call identifier which is needed to get the command result.

DeviceData data = new DeviceData();
data.insert("Hello World");
int id = dev.command_inout_asynch("WriteMessage", data);

5.4.1.5.4 public int command_inout_asynch(String cmdname, DeviceData argin, boolean forget)
Execute asynchronously (pooling model) a command on a device with input argument and forget response
if forget is true.

• Parameter cmdname : Command name to send to the device.

• Parameter argin : Input command argument.

• Parameter forget : if true, the command reply will be forgotten.

• Returns an asynchronous call identifier which is needed to get the command result or 0 if forget is
true.

5.4.1.5.5 public DeviceData command_inout_reply(int id) Check if the answer of an asynchronous
command_inout is arrived (polling model).

If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceData object.
If the reply is an exception, it is re-thrown by this call.
If the answer is not arrived, an AsynReplyNotArrived exception is thrown.

• Parameter id : Asynchronous call identifier returned by command_inout_asych method.

5.4.1.5.6 public DeviceData command_inout_reply(int id, int timeout) Check if the answer of an
asynchronous command_inout is arrived (polling model).

If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceData object
If the reply is an exception, it is re-thrown by this call.
If the answer is not arrived, the call will wait for the time specified by timeout before reply or throws

an AsynReplyNotArrived exception is thrown.

• Parameter id : Asynchronous call identifier returned by command_inout_asych method.

• Parameter timeout : time to wait reply in milliseconds.

CHAPTER 5. TANGO JAVA API 116

DeviceData data = new DeviceData();
data.insert(setpoint);
int id = dev.command_inout_asynch("SetReadCurrent", data);

: : :
: : :
: : :

try {
// wiil wait reply 200 ms if reply not yet arrived
DeviceData argout = dev.command_inout_reply(id, 200);
displayCurrent(argout);

}
catch (AsynReplyNotArrived e)
{
Except.print_exception(e);

}
catch (DevFailed e)
{
Except.print_exception(e);

}

5.4.1.5.7 public void command_inout_asynch(String cmdname, CallBack cb) Execute asynchronously
(callback model) a command on a device without input argument. The command reply will be sent to the
CallBack object.

• Parameter cmdname : Command name to send to the device.

• Parameter cb : CallBack object to send the command result in a CmdDoneEvent object.

5.4.1.5.8 public void command_inout_asynch(String cmdname, DeviceData argin, CallBack cb)
Execute asynchronously (callback model) a command on a device with input argument. The command
reply will be sent to the CallBack object.

• Parameter cmdname : Command name to send to the device.

• Parameter argin : Input command argument.

• Parameter cb : CallBack object to send the command result in a CmdDoneEvent object.

class MyCallback extends CallBack
{

public void cmd_ended(CmdDoneEvent evt)
{
if (evt.err)

Except.print_exception(evt.errors);
else

System.out.println("The command " + evt.cmdname + " returns " +
evt.argout.extractDouble());

}
}
class MyClass

CHAPTER 5. TANGO JAVA API 117

{
public set_read_current(double setpoint)
{

: : :
: : :
: : :

// The callback will called at reply
MyCallback my_cb = new MyCallback();
ApiUtil.set_asynch_cb_sub_model(ApiDefs.PUSH_CALLBACK);
DeviceData data = new DeviceData();
data.insert(setpoint);
dev.command_inout_asynch("SetReadCurrent", data, my_cb);
: : :
: : :
: : :

}
}

5.4.1.6 Asynchronous attribute related methods

Asynchrous call can be used with two models:

• Polling model : The client send an idl command and check if the reply is arrived.

• Callback model : The reply result will be sent to an object. Callback model has two sub models:

– push sub model : the result will be sent automaticaly to the callback object when reply arrives.
– pull sub model : the result will be sent to the callback object when the client will ask for (default

mode).

The callback sub model (ApiDefs.PULL_CALLBACK or ApiDefs.PUSH_CALLBACK) need to be
selected before calling this method (see ApiUtil.set_asynch_cb_sub_model() method).

5.4.1.6.1 public int read_attribute_async(String attname) Read asynchronously (polling model) a
single attribute. This call returns an asynchronous call identifier which is needed to get attribute value.

• Parameter attname : attribute name to read.

• Returns an asynchronous call identifier which is needed to get the attribute result.

5.4.1.6.2 public int read_attribute_async(String[] attnames) Read asynchronously (polling model)
the list of specified attributes. This call returns an asynchronous call identifier which is needed to get
attribute value.

• Parameter attnames : attribute names to read

• Returns an asynchronous call identifier which is needed to get the attribute result

5.4.1.6.3 public DeviceAttribute[] read_attribute_reply(int id) Check if the answer of an asynchronous
read_attribute is arrived (polling model).

If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceAttribute array.
If the reply is an exception, it is re-thrown by this call.
If the answer is not arrived, throws an AsynReplyNotArrived exception is thrown.

• Parameter id : Asynchronous call identifier returned by read_attribute_asych method.

CHAPTER 5. TANGO JAVA API 118

5.4.1.6.4 public DeviceAttribute[] read_attribute_reply(int id, int timeout) Check if the answer of
an asynchronous read_attribute is arrived (polling model).

If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceAttribute array.
If the reply is an exception, it is re-thrown by this call.
If the answer is not arrived, the call will wait for the time specified by timeout before reply or throws

an AsynReplyNotArrived exception is thrown.

• Parameter id : Asynchronous call identifier returned by read_attribute_asych method.

• Parameter timeout : time to wait reply in milliseconds.

5.4.1.6.5 public void read_attribute_asynch(String attname, CallBack cb) Read asynchronously
(callback model) a read_attribute_asynch reply.The read_attribute reply will be sent to the CallBack object.

• Parameter attname : attribute name to read.

• Parameter cb : CallBack object to send the read_attribute result in a AttrReadEvent object.

class MyCallback extends CallBack
{

public void attr_read(AttrReadEvent evt)
{
if (evt.err)

Except.print_exception(evt.errors);
else

System.out.println("The attribute " + evt.attr_names[0] + " returns " +
evt.argout[0].extractDouble());

}
}
class MyClass
{

: : :
: : :
public read_current()
{

// The callback will automaticaly called
ApiUtil.set_asynch_cb_sub_model(ApiDefs.PUSH_CALLBACK);
dev.read_attribbute_asynch("Current", MyCallback);

}
: : :
: : :
: : :

}

5.4.1.6.6 public void read_attribute_asynch(String[] attnames, CallBack cb) Read asynchronously
(callback model) a read_attribute_asynch reply.The read_attribute reply will be sent to the CallBack object.

• Parameter attnames : array of attribute names to read.

• Parameter cb : CallBack object to send the read_attribute result in a AttrReadEvent object.

CHAPTER 5. TANGO JAVA API 119

5.4.1.6.7 public int write_attribute_assynch(DeviceAttribute attr) Write asynchronously (polling
model) a single attribute.

• Parameter attr : attribute data to write (name, value...)

5.4.1.6.8 public int write_attribute_assynch(DeviceAttribute attr, boolan forget) Write asynchronously
(polling model) a single attribute and forget reply if forget is true.

• Parameter attr : attribute data to write (name, value...).

• Parameter forget : if true, the command reply will be forgotten.

• Returns an asynchronous call identifier which is needed to get the attribute result or 0 if forget is
true.

5.4.1.6.9 public int write_attribute_assynch(DeviceAttribute[] attr) Write asynchronously (polling
model) a list of attributes.

• Parameter attr : attribute list to write (name, value...)

5.4.1.6.10 public int write_attribute_assynch(DeviceAttribute attr, boolan forget) Write asynchronously
(polling model) a list of attributes and forget reply if forget is true.

• Parameter attr : attribute list to write (name, value...).

• Parameter forget : if true, the command reply will be forgotten.

• Returns an asynchronous call identifier which is needed to get the attribute result or 0 if forget is
true.

5.4.1.6.11 public void write_attribute_reply(int id) Check if the answer of an asynchronous write_attribute
is arrived (polling model).

If the reply is arrived and if it is a valid reply, the call is returned.
If the reply is an exception, it is re-thrown by this call.
If the answer is not arrived, throws an AsynReplyNotArrived exception is thrown.

• Parameter id : Asynchronous call identifier returned by write_attribute_asych method.

5.4.1.6.12 public void write_attribute_reply(int id, int timeout) Check if the answer of an asyn-
chronous write_attribute is arrived (polling model).

If the reply is arrived and if it is a valid reply, the call is returned.
If the reply is an exception, it is re-thrown by this call.
If the answer is not arrived, the call will wait for the time specified by timeout before reply or throws

an AsynReplyNotArrived exception is thrown.

• Parameter id : Asynchronous call identifier returned by write_attribute_asych method.

• Parameter timeout : time to wait reply in milliseconds.

5.4.1.6.13 public void write_attribute_asynch(DeviceAttribute attr, CallBack cb) Write asynchronously
(callback model) a write_attribute_asynch reply.The write_attribute reply will be sent to the CallBack ob-
ject.

• Parameter attr : attribute data to write (name, value...)

• Parameter cb : CallBack object to send the write_attribute result in a AttrWrittenEvent object.

CHAPTER 5. TANGO JAVA API 120

5.4.1.6.14 public void write_attribute_asynch(DeviceAttribute[] attr, CallBack cb) Write asynchronously
(callback model) a write_attribute_asynch reply.The write_attribute reply will be sent to the CallBack ob-
ject.

• Parameter attr : attribute list to write (name, value...).

• Parameter cb : CallBack object to send the write_attribute result in a AttrWrittenEvent object.

5.4.1.7 Miscellaneous asynchronous related methods

5.4.1.7.1 public int pending_asynch_call(int type_req) Returns number of device asynchronous pend-
ing requests.

• Parameter type_req :

– ApiDefs.POLLING : returns device polling model pending asynchronous request number.

– ApiDefs.CALLBACK : returns device callback model pending asynchronous request number.

– ApiDefs.ALL_ASYNCH : returns all device pending asynchronous request number.

5.4.1.7.2 public void get_asynch_replies() Fire all callback methods for device asynchronous requests
with already arrived replied.

class MyCallback extends CallBack
{

public void cmd_ended(CmdDoneEvent evt)
{
if (evt.err)

Except.print_exception(evt.errors);
else

System.out.println("The command " + evt.cmdname + " returns " +
evt.argout.extractDouble());

}
}
class MyClass
{

: : :
: : :
public set_read_current(double setpoint)
{

: : :
: : :
: : :

// The callback will trigged later
ApiUtil.set_asynch_cb_sub_model(ApiDefs.PULL_CALLBACK);
DeviceData data = new DeviceData();
data.insert(setpoint);
dev.command_inout_asynch("SetReadCurrent", data, MyCallback);
: : :
: : :
: : :

// Trig callback now.

CHAPTER 5. TANGO JAVA API 121

dev.get_asych_replies();
}
: : :
: : :

}

5.4.1.7.3 public void get_asynch_replies(int timeout) Fire all callback methods for device asynchronous
requests with already arrived replied or arrived before the end of timeout.

• Parameter timeout : number of milliseconds to wait reply.

5.4.1.8 Event related methods

5.4.1.8.1 public int subscribe_event(String attr_name, int event, EventCallBack callback, String[]
filters) Notifies the event system that client is interested in some type of event concerning a given at-
tribute.

• Parameter attr_name : the device attribute name which will be sent as an event

• Parameter event : the event type for which we subscribe (one of Tango constants : CHANGE_EVENT,
QUALITY_EVENT, PERIODIC_EVENT, ARCHIVE_EVENT)

• Parameter callabck : EventCallBack object which will receive the event

• Parametr filters : filters on events (Not implemented in release 4.0.0)

• Returns an event identifier which is need to unsubscribe from the event.

5.4.1.8.2 public void unsubscribe_event(int event_id) Notifies the event system that client is no more
interested in a given event for which it has subscribed before.

• Parameter event_id : the event identifier that was returned when subscription was made for this event.

5.4.1.9 Logging related methods

5.4.1.9.1 public void add_logging_target(String target) Adds a new logging target to the device.
Supported target types are: console, file and device. For a device target, the target parameter must con-
tain the name of a log consumer device (as defined in A.8). For a file target, target is the full path to the
file to log to. If omitted, the device’s name is used to build the file name (which is something like do-
main_family_member.log). Finally, target name is ignored in case of a console target and can be omitted.

5.4.1.9.2 public void remove_logging_target(String target_type, String target_name) Removes a
logging target from the device’s target list. Supported target types are: console, file and device. For a
device target, the target_name contains the name of a log consumer device (as defined in). For a file
target, target_name is the full path to the file to remove. If omitted, the default log file is removed. Finally,
target_name is ignored in case of a console target and can be omitted.

If target_name is set to "*", all targets of the specified target_type are removed.

5.4.1.9.3 public String[] get_logging_target() Returns an array of string containing the current de-
vice’s logging targets. Each vector element has the following format: target_type::target_name. An empty
array is returned is the device has no logging targets.

CHAPTER 5. TANGO JAVA API 122

5.4.1.9.4 public void set_logging_level(int level) Set the device’s loggin level:

• ApiDefs.LOGGING_OFF = 0;

• ApiDefs.LOGGING_FATAL = 1;

• ApiDefs.LOGGING_ERROR = 2;

• ApiDefs.LOGGING_WARNING = 3;

• ApiDefs.LOGGING_INFO = 4;

• ApiDefs.LOGGING_DEBUG = 5;

5.4.1.9.5 public int get_logging_level() Returns the device’s loggin level:

• ApiDefs.LOGGING_OFF = 0;

• ApiDefs.LOGGING_FATAL = 1;

• ApiDefs.LOGGING_ERROR = 2;

• ApiDefs.LOGGING_WARNING = 3;

• ApiDefs.LOGGING_INFO = 4;

• ApiDefs.LOGGING_DEBUG = 5;

5.4.1.9.6 Logging example

// Set a logging target and level to the device.
DeviceProxy dev = new DeviceProxy(devname);
dev.add_logging_target("file", "/tmp/logging_device");
dev.set_logging_level(ApiDefs.LOGGING_INFO);

5.4.1.10 TACO Device access

An interface with TACO world has been impemented for basic argument types and commands.
It uses a JNI (Java Native Interface) class to load a C++ library called libjtaco.so. That means that

your LD_LIBRARY_PATH environment variable must be set to found this library and the taco libraries
(libdbapi.so, libdsapi.so, libdsxdr.so, libdcapi.so), and the NETHOST must be set the host where the TACO
database is running.

To specify that your device is a TACO device, the device name must be preceded by “taco:“, when the
DeviceProxy constructor is called.

CHAPTER 5. TANGO JAVA API 123

5.4.1.10.1 public DeviceData command_inout(String command, DeviceData data) Send a com-
mand to the device as a TANGO device.

• Parameter command : Command name to send to the device.

• Parameter data : argin management object.

DeviceProxy dev = new DeviceProxy(¨taco:my/serial/device¨);
// Send a write command to the device

DeviceData argin = new DeviceData();
argin.insert(¨Hello World !¨);
dev.command_inout(¨DevWriteMessage¨, argin);

// Send a read command to the device
DeviceData argout = dev.command_inout(¨DevReadMessage¨, data);
String received = argout.extractString();
System.out.println(received);

5.4.1.10.2 public DeviceData command_inout(String command) Send a command to the device as
a TANGO device.

• Parameter command : Command name to send to the device.

DeviceProxy dev = new DeviceProxy(¨taco:sr/powersupply/dipole¨);
// Set the power supply on.
dev.command_inout(¨On¨);

5.4.1.10.3 Supported arguments for command_inout methods.

Input Argument Output Argument
D_VOID_TYPE D_VOID_TYPE
D_CHAR_TYPE D_CHAR_TYPE
D_SHORT_TYPE D_SHORT_TYPE
D_LONG_TYPE D_LONG_TYPE
D_FLOAT_TYPE D_FLOAT_TYPE

D_DOUBLE_TYPE D_DOUBLE_TYPE
D_STRING_TYPE D_STRING_TYPE

D_VAR_CHARARR D_VAR_CHARARR
D_VAR_SHORTARR D_VAR_SHORTARR
D_VAR_LONGARR D_VAR_LONGARR
D_VAR_FLOATARR D_VAR_FLOATARR

D_VAR_DOUBLEARR D_VAR_DOUBLEARR
D_VAR_STRINGARR D_VAR_STRINGARR

D_STATE_FLOAT_READPOINT
D_OPAQUE_TYPE

CHAPTER 5. TANGO JAVA API 124

5.4.1.10.4 public DevCmdInfo[] command_list_query() Execute a command_list_query command
to the device as a TANGO device.

DevCmdInfo[] cmdInfo = tacodev.command_list_query();
for (int i=0 ; i<cmdInfo.length ; i++)

System.out.println(¨ ¨ + cmdInfo[i].cmd_name + ¨(¨ +
cmdInfo[i].in_type + ¨, ¨ +
cmdInfo[i].out_type + ¨)¨);

WARNING:

• The cmd_name coulb be null if the command name has not been found in database for the TACO
command code.

• The in_type or/and out_type could be set to -1 if the TACO argument type is not supported.

5.4.1.10.5 public int get_timeout_millis()

• Return the value of the timeout in milliseconds as TANGO device.

5.4.1.10.6 public String status() Returns the device status.

5.4.1.10.7 public DevState state() Return the device state.

5.4.1.10.8 public String[] dev_inform() Read device information (TACO specific). The array index
are :

• 0: Device name.

• 1: Class name.

• 2: Device type.

• 3: Server name.

• 4: Server host.

5.4.1.10.9 public void dev_rpc_protocol(int mode) Set the RPC mode for further commands.

• parameter mode : ApiDefs.D_TCP or ApiDefs.D_UDP.

5.4.1.10.10 public String[] get_attribute_list(String wildcard) Query the TACO device server for a
list of attribute names for the specified object.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return attribute names found in a String array.

5.4.1.10.11 public AttributeConfig[] get_attribute_config(String[] attnames) Get the TACO signals
config from device server as TANGO attributes (use DevGetSigConfig command).

• parameter attnames : attribute names to get config.

• Return the config for attributes.

CHAPTER 5. TANGO JAVA API 125

5.4.1.10.12 public AttributeConfig get_attribute_config(String attname) Get the TACO signal con-
fig from device server as a TANGO attribute (use DevGetSigConfig command).

• parameter attname : attribute name to get config.

• Return the config for attribute.

AttributeConfig[] ac = dev.get_attribute_config(attributes);
for (int i=0 ; i<attributes.length ; i++)
{

System.out.println(¨Attribute: ¨ + ac[i].name);
System.out.println(¨writable: ¨ + ac[i].writable);
System.out.println(¨data_format: ¨ + ac[i].data_format);
System.out.println(¨data_type: ¨ + ac[i].data_type);
System.out.println(¨max_dim_x: ¨ + ac[i].max_dim_x);
System.out.println(¨max_dim_y: ¨ + ac[i].max_dim_y);
System.out.println(¨description: ¨ + ac[i].description);
System.out.println(¨label: ¨ + ac[i].label);
System.out.println(¨unit: ¨ + ac[i].unit);
System.out.println(¨standard_unit: ¨ + ac[i].standard_unit);
System.out.println(¨display_unit: ¨ + ac[i].display_unit);
System.out.println(¨format: ¨ + ac[i].format);
System.out.println(¨min_value: ¨ + ac[i].min_value);
System.out.println(¨max_value: ¨ + ac[i].max_value);
System.out.println(¨min_alarm: ¨ + ac[i].min_alarm);
System.out.println(¨max_alarm: ¨ + ac[i].max_alarm);

}

5.4.1.10.13 public DeviceAttribute read_attribute(String attname) Read TACO signal specified as
a TANGO attribute.

• parameter attname : attribute name to be read.

DeviceAttribute devattr = dev.read_attribute(¨Current¨);
System.out.println(¨\nRead ¨ + devattr.extractDouble() + ¨ on ¨ + devattr.getName());

5.4.1.10.14 public DeviceAttribute read_attribute(String[] attnames) Read TACO signals specified
as TANGO attributes.

• parameter attnames : attribute names to be read.

5.4.2 AttributeProxy class
This class manage an attribute as a remote object and it contains a DeviceProxy object. That means that a
new connection is created for each AttributeProxy created.

See DeviceProxy - Attributes methods chapter (5.4.1.3) for more details.

CHAPTER 5. TANGO JAVA API 126

5.4.2.0.15 public AttributeProxy(String attname) AttributeProxy class constructor.

• parameter attname: full attribute name containing the device name and the attribute name (e.g.
sr/ps/1/current create an AttributeProxy object for attribute current on device sr/ps/1).

5.4.2.1 Attribute access related methods

5.4.2.1.1 public String fullName() Return the full attribute name as specified for constructor().

5.4.2.1.2 public String name() Return the attribute name (last field of the the name specified for con-
structor).

5.4.2.1.3 public DbAttribute get_property() Query the database for a list of device attribute properties
for this device.

AttributeProxy att = new AttributeProxy(“sr/ps/1/current”);
DbAttribute db_att = att.get_property();
for (int i=0 ; i<db_att.size() ; i++)
{

DbDatum datum = db_att.datum(i);
System.out.println(datum.name + " : " + datum.extractString());

}

5.4.2.1.4 public void put_property(DbDatum property) Insert or update an attribute property for this
device.

• parameter property : The property name and its value.

5.4.2.1.5 public void put_property(DbDatum[] properties) Insert or update an attribute properties
for this device.

• parameter properties : The property names and their values.

5.4.2.1.6 public void delete_property(String propname) Delete a property for this object.

• parameter propname : property’s name to be deleted.

5.4.2.1.7 public void delete_property(String[] propnames) Delete properties for this object.

• parameter propnames : properties’ names to be deleted.

5.4.2.1.8 public AttributeInfo get_info() Get the attribute’s configuration.

5.4.2.1.9 public AttributeInfoEx get_info_ex() Get the attribute’s extended configuration.

5.4.2.1.10 public void set_info_ex(AttributeInfo attr) Set the attribute’s configuration.

5.4.2.1.11 public void set_info_ex(AttributeInfoEx attr) Set the attribute’s extended configuration.

CHAPTER 5. TANGO JAVA API 127

5.4.2.1.12 public DeviceAttribute read() Read the attribute value.

AttributeProxy att = new AttributeProxy(“sr/ps/1/current”);
DeviceAttribute da = att.read();
System.out.println(att.name() + " : " + da.extractDouble());

5.4.2.1.13 public void write(DeviceAttribute devattr) Write the attribute value for the specified de-
vice.

• parameter devattr : attribute name and value.

AttributeProxy att = new AttributeProxy(“sr/ps/1/current”);
DeviceAttribute da = new DeviceAttribute(att.name(),(double)512.427);
att.write(da);

5.4.2.1.14 public DeviceDataHistory[] history(int nb) Return the history for attribute polled.

• parameter nb : number of data to read in history.

5.4.2.1.15 public DeviceDataHistory[] history() Return the full history for attribute polled.

5.4.2.1.16 public void poll(int period) Add this attribute to be polled for the device. If already polled,
update its polling period.

• parameter period : polling period in milliseconds.

5.4.2.1.17 public void stop_poll() Remove attribute of polled object list.

5.4.2.2 Asynchronous call related methods.

See DeviceProxy - Asynchronous call related methods chapter (5.4.1.6) for more details.

5.4.2.2.1 public int read_asynch() Asynchronous read method.

5.4.2.2.2 public void read_asynch(CallBack cb) Asynchronous read method using callback for reply.

• parameter cb : a CallBack object instance called at end of reading.

5.4.2.2.3 public DeviceAttribute[] read_reply(int id) Read Asynchronous read_attribute reply.

• parameter id : asynchronous call id (returned by read_asynch).

5.4.2.2.4 public DeviceAttribute[] read_reply(int id, int timeout) Read Asynchronous read_attribute
reply.

• parameter id : asynchronous call id (returned by read_asynch).

• parameter timeout : number of millisonds to wait reply before throw an excption.

CHAPTER 5. TANGO JAVA API 128

5.4.2.2.5 public int write_asynch(DeviceAttribute attr) Asynchronous write_attribute.

• parameter attr : Attribute value (name, writing value...).

5.4.2.2.6 public int write_asynch(DeviceAttribute attr, boolean forget) Asynchronous write_attribute.

• parameter attr : Attribute value (name, writing value...).

• parameter forget : forget the response if true.

5.4.2.2.7 public void write_asynch(DeviceAttribute attr, CallBack cb) Asynchronous write_attribute
using callback for reply.

• parameter attr : Attribute value (name, writing value...).

• parameter cb : a CallBack object instance called at end of writing.

5.4.2.2.8 public void write_reply(int id) check for Asynchronous write reply.

• param id asynchronous call id (returned by read_asynch).

5.4.2.2.9 public void write_reply(int id) check for Asynchronous write reply.

• parameter id : asynchronous call id (returned by write_asynch).

5.4.2.2.10 public void write_reply(int id, int timeout) check for Asynchronous write reply.

• parameter id : asynchronous call id (returned by write_asynch).

• parameter timeout : number of millisonds to wait reply before throw an excption.

5.4.2.3 Events related methods

See DeviceProxy - Events related methods chapter (5.4.1.8) for more details.

5.4.2.3.1 public int subscribe_event(int event, EventCallBack callback, String[] filters) Subscribe
to an event.

• Parameter event : the event type for which we subscribe (one of Tango constants : CHANGE_EVENT,
QUALITY_EVENT, PERIODIC_EVENT, ARCHIVE_EVENT)

• Parameter callabck : EventCallBack object which will receive the event

• Parametr filters : filters on events (Not implemented in release 4.0.0)

• Returns an event identifier which is need to unsubscribe from the event.

5.4.2.3.2 public void unsubscribe_event(int event_id) Notifies the event system that client is no more
interested in a given event for which it has subscribed before.

• Parameter event_id : the event identifier that was returned when subscription was made for this event.

CHAPTER 5. TANGO JAVA API 129

5.5 Utility classes

5.5.1 ApiUtil class
This class manage a vector of Database object created. The goal of this class is to have ONLY ONE con-
nection on a TANGO database for a host. This class manage also some utilities for users (e.g. asynchronous
call or state names).

5.5.1.0.3 static public Database get_db_obj() If no Databse object has been created before (no con-
nection done) for the host specified in $TANGO_HOST, it create and return a new Database object. If a
Database object has ben already created, it just returns this Datbase object.

5.5.1.0.4 static public Database get_db_obj(String hostname, String port) If no Databse object has
been created before (no connection done) for the host specified by hostname and port parameters, it creates
and returns a new Database object. If a Database object has ben already created for this host, it just returns
this Datbase object.

• parameter hostname : name of the host for TANGO database.

• parameter port : Port number (as String) for connection.

5.5.1.0.5 static public int pending_asynch_call(int type_req) Returns number of asynchronous pend-
ing requests (any device).

• Parameter type_req :

– ApiDefs.POLLING : returns polling model pending asynchronous request number.

– ApiDefs.CALLBACK : returns callback model pending asynchronous request number.

– ApiDefs.ALL_ASYNCH : returns all pending asynchronous request number.

5.5.1.0.6 static public void get_asynch_replies() Fire all callback methods for asynchronous requests
with already arrived replied or arrived before the end of timeout.

5.5.1.0.7 static public void get_asynch_replies(int timeout) Fire all callback methods for asynchronous
requests with already arrived replied or arrived before the end of timeout.

• Parameter timeout : number of milliseconds to wait reply.

5.5.1.0.8 static public void set_asynch_cb_sub_model(int model) Set the asycnchronous callbaback
sub-model between the pull and pushsub-model.

• Parameter model :

– ApiDefs.PULL_CALLBACK : the pull callback sub-model.

– ApiDefs.PUSH_CALLBACK : the push callback sub-model.

By default, all Tango client using asynchronous callback model are in pull callback sub-model.
NOTE: in push sub-model, a separate thread is spawned to deal with server replies.

ApiUtil.set_asynch_cb_sub_model(ApiDefs.PUSH_CALLBACK);

CHAPTER 5. TANGO JAVA API 130

5.5.1.0.9 static public int get_asynch_cb_sub_model() Returns the asycnchronous callbaback sub-
model.

5.5.1.0.10 static public String stateName(DevState state) Returns the associated name of a state to a
DevState parameter.

System.out.println(“device is “ + ApiUtil.stateName(dev.state());

5.6 Multiple devices access

5.6.1 The Group class
5.6.1.1 Constructor

5.6.1.1.1 Group (String name) Instanciate an empty group. The group name allows retrieving a sub-
group in the hierarchy.

See also: Group.get_group.

5.6.1.2 Group Management Related Methods

5.6.1.2.1 void add (Group group) Attaches a (sub)group.
This method does nothing if the specified group if already attached (i.e. it is silently ignored).
See also: all other forms of Group.add.

5.6.1.2.2 void add (String pattern) Attaches any device which name matches the specified pattern.
The pattern parameter can be a simple device name or a device name pattern (e.g. domain_*/ fam-

ily/member_*).
This method first asks the Tango database the list of device names matching the pattern. Devices are

then attached to the group in the order in which they are retuned by the database.
Any device already present in the hierarchy (i.e. a device belonging to the group or to one of its

subgroups) is silently ignored.
See also: all other forms of Group.add.

5.6.1.2.3 void add (String[] patterns) Attaches any device which name matches one of the specified
patterns.

The patterns parameter can be an array of device names and/or device name patterns.
This method first asks the Tango database the list of device names matching one the patterns. Devices

are then attached to the group in the order in which they are retuned by the database.
Any device already present in the hierarchy (i.e. a device belonging to the group or to one of its

subgroups), is silently ignored.
See also: all other forms of Group.add.

CHAPTER 5. TANGO JAVA API 131

5.6.1.2.4 void remove (String pattern, boolean fwd) Removes any group or device which name
matches the specified pattern.

The pattern parameter can be a group name, a device name or a device name pattern (e.g domain_*/family/member_*).
Since we can have groups with the same name in the hierarchy, a group name can be fully qualified to

specify which group should be removed. Considering the following group:

-> gauges
| -> cell-01
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
| -> cell-02
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
| -> cell-03
| |-> ...
|
| -> ...

A call to gauges.remove("penning") will remove any group named "penning" in the hierarchy while gauges.remove("gauges.cell-
02.penning") will only remove the specified group.

If fwd is set to true, the remove request is also forwarded to subgroups. Otherwise, it is only applied to
the local set of elements. For instance, the following code remove any stepper motor in the hierarchy:

root_group.remove("*/stepper_motor/*");

See also: all other forms of Group.remove.

5.6.1.2.5 void remove (String[] patterns, bool fwd) Removes any group or device which name matches
the specified patterns.

The patterns parameter can be an array of group names and/or device names and/or device name pat-
terns.

Since we can have groups with the same name in the hierarchy, a group name can be fully qualified to
specify which group should be removed. See previous method for details.

If fwd is set to true, the remove request is also forwarded to subgroups. Otherwise, it is only applied to
the local set of elements.

See also: all other forms of Group.remove.

5.6.1.2.6 void remove_all () Removes all elements in the group. After such a call, the group is empty.
See also: all forms of Group.remove.

5.6.1.2.7 boolean contains (String pattern, boolean fwd) Returns true if the hierarchy contains groups
and/or devices which name matches the specified pattern. Returns false otherwise.

The pattern can be a fully qualified or simple group name, a device name or a device name pattern.
If fwd is set to true, the request is also forwarded to subgroups. Otherwise, it is only applied to the local

set of elements.
See also: Group::get_device, Group::get_group.

CHAPTER 5. TANGO JAVA API 132

5.6.1.2.8 DeviceProxy get_device (String device_name) Returns a reference to the specified device
or null if there is no device by that name in the group. See the TangoApi.DeviceProxy class documentation
for details.

The request is systematically forwarded to subgroups (i.e. if no device named device_name could be
found in the local set of devices, the request is forwarded to subgroups).

See also: other form of Group.get_device, Group.get_size, Group.get_group, Group.contains.

5.6.1.2.9 DeviceProxy get_device (int idx) Returns a reference to the "idx-th" device in the hierarchy
or null if the hierarchy contains less than "idx" devices. See the Tango.DeviceProxy class documentation
for details.

The request is systematically forwarded to subgroups (i.e. if the local set of devices contains less than
"idx” devices, the request is forwarded to subgroups).

See also: other form of Group.get_device, Group.get_size, Group.get_group, Group.contains.

5.6.1.2.10 Group get_group (String group_name) Returns a reference to the specified group or null
if there is no group by that name. The group_name can be a fully qualified name.

Considering the following group:

-> gauges
| -> cell-01
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
| -> cell-02
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
| -> cell-03
| |-> ...
|
| -> ...

A call to gauges.get_group("penning") returns the first group named "penning" in the hierarchy (i.e. gauges.cell-
01.penning) while gauges.get_group("gauges.cell-02.penning") returns the specified group.

The request is systematically forwarded to subgroups (i.e. if no group named group_name could be
found in the local set of elements, the request is forwarded to subgroups).

See also: Group.get_device, Group.contains.

5.6.1.2.11 int get_size (boolean fwd) Return the number of devices in the hierarchy (respectively the
number of device in the group) if the fwd option is set to true (respectively set to false).

5.6.1.2.12 String[] get_device_list (boolean fwd) Returns the list of devices currently in the hierarchy.
If fwd is set to true the request is forwarded to subgroups. Otherwise, it is only applied to the local set

of devices.
Considering the following hierarchy:

g2.add("my/device/04"); g2.add("my/device/05");

g4.add("my/device/08"); g4.add("my/device/09");

g3.add("my/device/06");
g3.add(g4);

CHAPTER 5. TANGO JAVA API 133

g3.add("my/device/07");

g1.add("my/device/01");
g1.add(g2);
g1.add("my/device/03");
g1.add(g3);
g1.add("my/device/02");

The list content depends on the value of the forward option. If set to true, the results will be organized as
follows:

String[] dl = g1.get_device_list(true);

dl[0] contains "my/device/01" which belongs to g1
dl[1] contains "my/device/04" which belongs to g1.g2
dl[2] contains "my/device/05" which belongs to g1.g2
dl[3] contains "my/device/03" which belongs to g1
dl[4] contains "my/device/06" which belongs to g1.g3
dl[5] contains "my/device/08" which belongs to g1.g3.g4
dl[6] contains "my/device/09" which belongs to g1.g3.g4
dl[7] contains "my/device/07" which belongs to g1.g3
dl[8] contains "my/device/02" which belongs to g1
If the forward option is set to false, the results are:

String[] dl = g1.get_device_list(false);

dl[0] contains "my/device/01" which belongs to g1
dl[1] contains "my/device/03" which belongs to g1
dl[2] contains "my/device/02" which belongs to g1

5.6.1.3 "A la" DeviceProxy Methods

5.6.1.3.1 boolean ping (boolean fwd) Ping all devices in a group. This method returns true if all
devices in the group are alive, false otherwise.

If fwd is set to true, the request is also forwarded to subgroups. Otherwise, it is only applied to the local
set of devices.

5.6.1.3.2 GroupCmdReplyList command_inout (String c, boolean fwd) Executes a Tango com-
mand on a group. This method is synchronous and does not return until replies are obtained or timeouts
occurred.

The parameter c is the name of the command.
If fwd is set to true, the request is also forwarded to subgroups. Otherwise, it is only applied to the local

set of devices.
Command results are returned in a GroupCmdReplyList. See Obtaining command results for details

(4.7.3.1). See also Case 1 of Excuting a command (4.7.3.2) for an example.

5.6.1.3.3 GroupCmdReplyList command_inout (String c, DeviceData d, boolean fwd) Executes a
Tango command on each device in the group. This method is synchronous and does not return until replies
are obtained or timeouts occurred.

The parameter c is the name of the command.
The second parameter d is a Tango generic container for command carrying the command argument.

See the Tango.DeviceData documentation.
If fwd is set to true, the request is also forwarded to subgroups. Otherwise, it is only applied to the local

set of devices.
Command results are returned in a GroupCmdReplyList. See Obtaining command results for details

(4.7.3.1). See also Case 2 of Excuting a command (4.7.3.4) for an example.

CHAPTER 5. TANGO JAVA API 134

5.6.1.3.4 DeviceData[] get_command_specific_argument_list (boolean fwd) This helper method re-
turns a "pre-build" argument list for commands executed with a specific argument for each device (see next
method).

If fwd is set to true, the returned array’s length equals the number of devices in the local set. Otherwise,
it equals the number of devices in the whole hierarchy.

The returned array can be kept and reused as far as the group structure is not changed (i.e. as far as no
add/remove are executed on the group).

See Case 3 of Excuting a command (4.7.3.5) for an example of this special form of command_inout.

5.6.1.3.5 GroupCmdReplyList command_inout (String c, DeviceData[] d, boolean fwd) Executes
a Tango command on each device in the group. This method is synchronous and does not return until
replies are obtained or timeouts occurred.

This implementation of command_inout allows passing a specific input argument to each device in
the group. In order to use this form of command_inout, the user must have an "a priori" and "perfect"
knowledge of the devices order in the group.

The parameter c is the name of the command.
The array d contains a specific argument value for each device in the group. Its length must equal

Group.get_size(fwd). Otherwise, an exception is thrown. The order of the argument values must follows
the order of the devices in the group (d[0] => 1st device, d[1] => 2nd device and so on). A pre-build array
of DeviceData can be obtained using Group. get_command_specific_argument_list.

If fwd is set to true, the request is also forwarded to subgroups. Otherwise, it is only applied to the local
set of devices.

Command results are returned in a GroupCmdReplyList. See Obtaining command results for details
(4.7.3.1). See also Case 3 of Excuting a command (4.7.3.5) for an example of this special form of com-
mand_inout.

5.6.1.3.6 int command_inout_asynch (String c, boolean fgt, boolean fwd) Executes a Tango com-
mand on each device in the group asynchronously. The method send the request to all devices and return
immediately. Pass the returned request id to Group::command_inout_reply to obtain the results.

The parameter c is the name of the command.
The parameter fgt is a fire and forget flag. If set to true, it means that no reply is expected (i.e. the caller

does not care about it and will not even try to get it).
If the parameter fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to

the local set of devices.
See Case 1 of Executing a command (4.7.3.2) for an example.

5.6.1.3.7 int command_inout_asynch (String c, DeviceData d, boolean fgt, boolean fwd) Executes
a Tango command on each device in the group asynchronously. The method sends the request to all devices
and returns immediately. Pass the returned request id to Group.command_inout_reply to obtain the results.

The parameter c is the name of the command.
The second parameter d is a Tango generic container for command carrying the command argument.

See the TangoApi.DeviceData documentation for details.
The parameter fgt is a fire and forget flag. If set to true, it means that no reply is expected (i.e. the caller

does not care about it and will not even try to get it).
If the parameter fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to

the local set of devices.
See Case 2 of Executing a command for an example (4.7.3.4).

5.6.1.3.8 int command_inout_asynch (String c,DeviceData[] d,boolean fgt,boolean fwd) Executes
a Tango command on each device in the group asynchronously. The method sends the request to all
devices and returns immediately. Pass the returned request id to Group.command_inout_reply() to obtain
the results.

CHAPTER 5. TANGO JAVA API 135

This implementation of command_inout allows passing a specific input argument to each device in the
group. In order to use this form of command_inout_asynch, the user must have an "a priori" and "perfect"
knowledge of the devices order in the group.

The parameter c is the name of the command.
The array d contains a specific argument value for each device in the group. Its length must equal

Group.get_size(fwd). Otherwise, an exception is thrown. The order of the argument values must follows
the order of the devices in the group (d[0] => 1st device, d[1] => 2nd device and so on). A pre-build array
of DeviceData can be obtained using Group. get_command_specific_argument_list.

The parameter fgt is a fire and forget flag. If set to true, it means that no reply is expected (i.e. the caller
does not care about it and will not even try to get it).

If fwd is set to true, the request is also forwarded to subgroups. Otherwise, it is only applied to the local
set of devices.

See Case 3 of Executing a command (4.7.3.5) for an example of this special form of command_inout.

5.6.1.3.9 GroupCmdReplyList command_inout_reply (int req_id, int timeout_ms) Returns the re-
sults of an asynchronous command.

The first parameter req_id is a request identifier previously returned by one of the command_inout_asynch
methods.

For each device in the hierarchy, if the command result is not yet available, command_inout_reply wait
timeout_ms milliseconds before throwing an exception. This exception will be part of the global reply. If
timeout_ms is set to 0, command_inout_reply waits "indefinitely".

Command results are returned in a GroupCmdReplyList. See Obtaining command results for details
(4.7.3.1).

5.6.1.3.10 GroupAttrReplyList read_attribute (String a, boolean fwd) Reads an attribute on each
device in the group. This method is synchronous and does not return until replies are obtained or timeouts
occurred.

The parameter a is the name of the attribute to read.
If fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to the local set of

devices.
Attribute values are returned in a GroupAttrReplyList. See Obtaining attribute values for details

(4.7.4.1). See also Reading an attribute for an example (4.7.4).

5.6.1.3.11 int read_attribute_asynch (String a, boolean fwd) Reads an attribute on each device in
the group asynchronously. The method send the request to all devices and return immediately. Pass the
returned request id to Group.read_attribute_reply to obtain the results.

The parameter a is the name of the attribute to read.
If fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to the local set of

devices.
See Reading an attribute for an example (4.7.4).

5.6.1.3.12 GroupAttrReplyList read_attribute_reply (int req_id, int timeout_ms) Returns the re-
sults of an asynchronous attribute reading.

The first parameter req_id is a request identifier previously returned by read_attribute_asynch.
For each device in the hierarchy, if the attribute value is not yet available, read_attribute_reply wait

timeout_ms milliseconds before throwing an exception. This exception will be part of the global reply. If
timeout_ms is set to 0, read_attribute_reply waits "indefinitely".

Replies are returned in a GroupAttrReplyList. See Obtaining attribute values for details (4.7.4.1).

5.6.1.3.13 GroupReplyList write_attribute (DeviceAttribute d, boolean fwd) Writes an attribute on
each device in the group. This method is synchronous and does not return until acknowledgements are
obtained or timeouts occurred.

CHAPTER 5. TANGO JAVA API 136

The first parameter d is a Tango generic container for attribute carrying both the attribute name and the
value. See the Tango.DeviceAttribute documentation for details.

If fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to the local set of
devices.

Acknowledgements are returned in a GroupReplyList. See Obtaining acknowledgements for details
(4.7.5.1). See also Case 1 of Writing an attribute for an example (4.7.5.2).

5.6.1.3.14 DeviceAttribute[] get_attribute_specific_value_list (boolean fwd) This helper method re-
turns a "pre-build" argument list for attribute writing executed with a specific argument for each device (see
next method).

If fwd is set to true, the returned array?s length equals the number of devices in the local set. Otherwise,
it equals the number of devices in the whole hierarchy.

The returned array can be kept and reused as far as the group structure is not changed (i.e. as far as no
add/remove are executed on the group).

See also Case 2 of Writing an attribute for an example (4.7.5.3).

5.6.1.3.15 GroupReplyList write_attribute (String a, DeviceAttribute[] d, boolean fwd) Writes an
attribute on each device in the group. This method is synchronous and does not return until replies are
obtained or timeouts occurred.

This implementation of write_attribute allows writing a specific value to each device in the group. In
order to use this form of write_attribute, the user must have an "a priori" and "perfect" knowledge of the
devices order in the group.

The parameter a is the name of the attribute.
The array d contains a specific value for each device in the group. Its size must equal Group.get_size(fwd).

Otherwise, an exception is thrown. The order of the attribute values must follows the order of the devices
in the group (d[0] => 1st device, d[1] => 2nd device and so on). A pre-build array of DeviceAttribute can
be obtained using Group. get_attribute_specific_value_list.

If fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to the local set of
devices.

Acknowledgements are returned in a GroupReplyList. See Obtaining acknowledgements for details
(4.7.5.1). See also Case 2 of Writing an attribute for an example (4.7.5.3).

5.6.1.3.16 int write_attribute_asynch (DeviceAttribute d, boolean fwd) Writes an attribute on each
device in the group asynchronously. The method sends the request to all devices and returns immediately.
Pass the returned request id to Group.write_attribute_reply() to obtain the acknowledgements.

The first parameter d is a Tango generic container for attribute carrying both the attribute name and the
value. See the DeviceAttribute documentation for details.

If fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to the local set of
devices.

See Case 1 of Writing an attribute for an example (4.7.5.2).

5.6.1.3.17 int write_attribute_asynch (String a, DeviceAttribute[] d, boolean fwd) Writes an at-
tribute on each device in the group asynchronously. The method send the request to all devices and return
immediately. Pass the returned request id to Group.write_attribute_reply() to obtain the acknowledge-
ments.

This implementation of write_attribute_asynch allows writing a specific value to each device in the
group. Here, and contrary to the previous cases, the request is not and cannot be forwarded to sub-groups.
Supporting such a feature introduces to much complexity for both the developer and the end user. In order
to use this form of write_attribute_asynch, the user must have an "a priori" and "perfect" knowledge of the
devices order in the group.

The parameter a is the name of the attribute.
The array d contains a specific value for each device in the group. Its size must equal Group.get_size(fwd).

Otherwise, an exception is thrown. The order of the attribute values must follows the order of the devices

CHAPTER 5. TANGO JAVA API 137

in the group (d[0] => 1st device, d[1] => 2nd device and so on). A pre-build array of DeviceAttribute can
be obtained using Group. get_attribute_specific_value_list.

If fwd is set to true request is forwarded to subgroups. Otherwise, it is only applied to the local set of
devices.

See Case 2 of Writing an attribute for an example (4.7.5.3).

5.6.1.3.18 GroupReplyList write_attribute_reply (int req_id, int timeout_ms) Returns the acknowl-
edgements of an asynchronous attribute writing.

The first parameter req_id is a request identifier previously returned by one of the write_attribute_asynch
implementation.

For each device in the hierarchy, if the acknowledgement is not yet available, write_attribute_reply wait
timeout_ms milliseconds before throwing an exception. This exception will be part of the global reply. If
timeout_ms is set to 0, write_attribute_reply waits "indefinitely".

Acknowledgements are returned in a GroupReplyList. See Obtaining acknowledgements for details
(4.7.5.1).

5.7 Event related classes

5.7.1 TangoEventsAdapter class
This class is the main entry point for clients to subscribe as listeners of events coming from a given device.
To instantiate an object of this class it is necessary to pass a DeviceProxy reference on the related device to
its constructor

5.7.1.0.19 Public void addTangoPeriodicListener(ITangoPeriodicListener listener, String attr_name,
String[] filters) Subscribes for a "periodic" event.

• Parameter listener : an object of a class implementing the ITangoPeriodicListener interface,.

• Parameter attr_name : name of the attributes, the values of which will be pushed periodically to the
listener object. The period will be fixed to the value of the event_period attribute’s property otherwise
it defaults to 1 second.

• Parameter filters : can be used to reduce the frequency at which periodic event is received. Not
implemented in release 4.0.0

5.7.1.0.20 Public void removeTangoPeriodicListener(ITangoPeriodicListener listener, String attr_name)
Unsubscribes from a "periodic" event.

• Parameter listener : an object of a class implementing the ITangoPeriodicListener interface that was
listening to the "periodic" event.

• Parameter attr_name : name of the attribute for which the subscription was made.

5.7.1.0.21 Public void addTangoChangeListener(ITangoChangeListener listener, String attr_name,
String[] filters) Subscribes for a "change" event.

• Parameter listener : an object of a class implementing the ITangoChangeListener interface

• Parameter attr_name : name of the attributes, the values of which will be pushed if they have changed
relatively or absolutely depending on the "rel_change" and "abs_change" attribute’s property values.

• Parameter filters : can be specified to filter events on relative change or absolute change. Not imple-
mented in release 4.0.0

CHAPTER 5. TANGO JAVA API 138

5.7.1.0.22 Public void removeTangoChangeListener(ITangoChangeListener listener, String attr_name)
Unsubscribes from a "change" event.

• Parameter listener : an object of a class implementing the ITangoChangeListener interface that was
listening to the "change" event

• Parameter attr_name : name of the attribute for which the subscription was made.

5.7.1.0.23 Public void addTangoArchiveListener(ITangoArchiveListener listener, String attr_name,
String[] filters) Subscribes for an "archive" event.

• Parameter listener : an object of a class implementing the ITangoArchiveListener interface.

• Parameter attr_name : name of the attributes, the values of which will be pushed to the listener
object based on a mixture of conditions defined by the attribute’s properties : archive_rel_change,
archive_abs_change and archive_period.

• Parameter filters : can be specified to define the mixture of archiving related attribute’s properties.
No timplemented in Release 4.0.0

5.7.1.0.24 Public void removeTangoArchiveListener(ITangoArchiveListener listener, String attr_name,
String[] filters) Unsubscribes from a "archive" event.

• Parameter listener : an object of a class implementing the ITangoArchiveListener interface that was
listening to the "periodic" event.

• Parameter attr_name : name of the attribute for which the subscription was made.

5.7.2 ITangoPeriodicListener interface
When a client subscribes for a periodic event, it passes to the TangoEventsAdapter an object reference on
a class implementing the ITangoPeriodicListener interface that declares only one method.

5.7.2.0.25 public void periodic(TangoPeriodicEvent evt) This method is called by the event source
each time a new period has elapsed

• Parameter evt : a TangoPeriodicEvent holding all necessary information

5.7.3 ITangoChangeListener interface
When a client subscribes for a change event, it passes to the TangoEventsAdapter an object reference on a
class implementing the ITangoChangeListener interface that declares only one method.

5.7.3.0.26 public void change(TangoChangeEvent evt) This method is called by the event source
each time the value of the attribute associated to the event has changed

• Parameter evt : a TangoChangeEvent holding all necessary information

5.7.4 ITangoArchiveListener interface
When a client subscribes for an archive event, it passes to the TangoEventsAdapter an object reference on
a class implementing the ITangoArchiveListener interface that declares only one method.

5.7.4.0.27 public void archive(TangoArchiveEvent evt) This method is called by the event source
each time a new attribute’s data is ready to be archived based on the archiving modes chosen for this
attribute.

• Parameter evt : a TangoArchiveEvent holding all necessary information

CHAPTER 5. TANGO JAVA API 139

5.7.5 TangoPeriodicEvent class
This class represents data objects associated with a periodic event. To get the attribute’s related data, the
following method has to be called.

5.7.5.0.28 public DeviceAttribute getValue() Returns value of the attribute associated to the event

5.7.6 TangoChangeEvent class
This class represents data objects associated with a change event. To get the attribute’s related data, the
following method has to be called,.

5.7.6.0.29 public DeviceAttribute getValue() Returns value of the attribute associated to the event

5.7.7 TangoArchiveEvent class
This class represents data objects associated with an archive event. To get the attribute’s related data, the
following method has to be called.

5.7.7.0.30 public DeviceAttribute getValue() Returns value of the attribute associated to the event

5.8 Database access classes

5.8.1 Database class
5.8.1.1 General information methods

5.8.1.1.1 Creating a Database object Do NOT use a Database constructor.
To manage an single connection an a host database, the Database object must be created through the

ApiUtil class.

Database dbase = ApiUtil.get_db_obj();

5.8.1.1.2 String get_info() Query the database for general info about the table in the database.

• Return the result of the query as String.

Database dbase = ApiUtil.get_db_obj();
String info = dbase.get_info();
System.out.println(info);

5.8.1.1.3 String[] get_host_list() Query the database for a list of host registred.

• Return the list of all hosts registred in TANGO database.

CHAPTER 5. TANGO JAVA API 140

5.8.1.1.4 String[] get_host_list(String wildcard) Query the database for a list of host registred.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the list of the hosts registred in TANGO database with the specified wildcard.

String[] hosts = get_host_list(“amber*”);
for (int i=0 ; i<hosts.length ; i++)

System.out.println(hosts[i]);

5.8.1.1.5 String[] get_server_list() Query the database for a list of servers registred in the database.

• Return the list of all servers registred in TANGO database.

5.8.1.1.6 String[] get_server_list(String wildcard) Query the database for a list of servers registred
in the database.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the list of all servers registred in TANGO database.

5.8.1.1.7 String[] get_host_server_list(String hostname) Query the database for a list of servers reg-
istred on the specified host.

• parameter hostname : the specified host name.

• Return the list of the servers registred in TANGO database for the specified host.

String[] servers = get_host_server__list(“corvus”);
for (int i=0 ; i<servers.length ; i++)

System.out.println(servers[i]);

5.8.1.1.8 String[] get_server_class_list(String servname) Query the database for a list of classes in-
stancied by the server. The DServer class exists in all TANGO servers and for this reason this class is
removed of the returned list.

• parameter servname : the specified server and its instance name (e.g. Serial/1).

• Return The list of classes instancied by this server.

5.8.1.1.9 void put_server_info(DbServInfo info) Add/update server information in databse.

• parameter info : Server information for the specified server

• in a DbServinfo object.

DbServerInfo info = new DbServerInfo(“Serial/line1”);
info.host = corvus; // Will be registred on
info.controled = true; // Will be controlled by Astor
info.startup_level = 4; // Startup level used by Astor.
put_server_info(info);

CHAPTER 5. TANGO JAVA API 141

5.8.1.1.10 DbServInfo get_server_info(String servname) Query the database for server information.

• parameter servname : The specified server name.

• Return The information found for the specified server in a DBServInfo object.

5.8.1.2 Object property methods

5.8.1.2.1 DbDatum[] get_property(String name, String[] propnames) Query the database for a list
of object (i.e. non-device) properties for the pecified object.

• parameter name : Object name.

• parameter propnames : list of property names.

• Retun properties in DbDatum objects.

String[] propnames = { ¨Speed¨, ¨Temperatures¨ };
DbDatum[] prop = dbase.get_property(¨my_object¨, data);
if (prop[0].is_empty()==false)

System.out.println(prop[0].name + ¨: ¨ + prop[0].extractDouble());
if (prop[1].is_empty()==false)

System.out.println(prop[1].name + ¨: ¨ + prop[1].extractFloat());

5.8.1.2.2 DbDatum get_property(String name, String propname) Query the database for an object
(i.e. non-device) property for the pecified object.

• parameter name : Object name.

• parameter propname : list of property names.

• Retun property in DbDatum object.

DbDatum prop = dbase.get_property(¨my_object¨, “Speed”);

if (prop.is_empty()==false)
System.out.println(prop.name + ¨: ¨ + prop.extractDouble());

5.8.1.2.3 DbDatum[] get_property(String name, DbDatum[] properties) Query the database for a
list of object (i.e. non-device) properties for thr dpecified object. The property names are specified by the
DbDatum array objects.

• parameter name : Object name.

• parameter properties : list of property DbDatum objects.

• Retun properties in DbDatum objects.

CHAPTER 5. TANGO JAVA API 142

DbDatum[] datum;
datum = new DbDatum[2];
datum[0] = new DbDatum(“Speed”);
datum[1] = new DbDatum(“Temperature”);
DbDatum[] prop = dbase.get_property(¨my_object¨, data);

if (prop[0].is_empty()==false)
System.out.println(prop[0].name + ¨: ¨ + prop[0].extractDouble());

if (prop[1].is_empty()==false)
System.out.println(prop[1].name + ¨: ¨ + prop[1].extractFloat());

5.8.1.2.4 void put_property(String name, DbDatum[] properties) Insert or update a list of properties
for the specified object The property names and their values are specified by the DbDatum array.

• parameter name : Object name.

• parameter properties : Properties names and values array.

DbDatum[] datum;
datum = new DbDatum[2];
datum[0] = new DbDatum(“Speed”, 123.456);
datum[1] = new DbDatum(“Temperature”, 21.5);
dbase.put_property(¨my_object¨, data);

5.8.1.2.5 void delete_property(String name, String[] propnames) Delete a list of properties for the
specified object.

• parameter name : Object name.

• parameter propnames : Property names.

5.8.1.2.6 void delete_property(String name, String propname) Delete a property for the specified
object.

• parameter name : Object name.

• parameter propname : Property names.

5.8.1.2.7 void delete_property(String name, DbDatum[] properties) Delete a list of properties for
the specified object.

• parameter name : Object name.

• parameter properties : Property DbDatum objects.

CHAPTER 5. TANGO JAVA API 143

5.8.1.3 Device Methods

5.8.1.3.1 void add_device(DbDevInfo devinfo) Add/update a device to the database

• parameter devinfo : The device name, class and server specified in object.

DbDevInfo devinfo =
new DbDevInfo(¨sys/database/1¨, ¨Dbase¨, ¨Databse/1¨);

dbase.add_device(devinfo);

5.8.1.3.2 void delete_device(String devname) Delete the device of the specified name from the database

• parameter devname : The device name.

5.8.1.3.3 DbDevImportInfo import_device(String devname) Query the database for the export info
of the specified device.

• parameter devname : The device name.

• Return the information in a DbDevImportInfo.

DbDevImportInfo info = dbase.import_device(devname);
String name = info.name;
String ior = info.ior; // IOR connection as String.
String version = info.version; // TANGO protocol version number.
boolean exp = info.exported; // true if device is exported.

5.8.1.3.4 void unexport_device(String servname) Mark the specified server as unexported in the database.

• parameter sevrname : The server name.

5.8.1.3.5 void export_device(DbDevExportInfo devinfo) Update the export info fort this device in
the database.

• parameter devinfo : Device information to export.

DbDevExportInfo exp_info =
new DbDevExportInfo(devname, ¨Serial/line1¨, imp_info.ior,

¨corvus¨, imp_info.version);
dbase.export_device(exp_info);

5.8.1.3.6 String[] get_device_class_list(String servname) Query the database for a list of devices and
classes served by the specified server.

• parameter servname : The server name.

• Return the device names are stored in an array of strings.

CHAPTER 5. TANGO JAVA API 144

5.8.1.3.7 String[] get_device_name(String servname, String classname) Query the database for a
list of devices served by the specified server and of the specified class.

• parameter servname : The server name.

• parameter clasname : The class name

• Return the device names are stored in an array of strings.

String[] names = dbase.get_device_name(“Serial/line1”, “Serial”);

5.8.1.3.8 String[] get_device_domain(String wildcard) Query the database for a list of device domain
names witch match the wildcard provided.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the device domain are stored in an array of strings.

String[] domains = get_device_domain(“sy*”);

5.8.1.3.9 String[] get_device_family(String wildcard) Query the database for a list of device family
names witch match the wildcard provided.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the device family are stored in an array of strings.

String[] families = get_device_family(“sys/*data*”);

5.8.1.3.10 String[] get_device_member(String wildcard) Query the database for a list of device mem-
ber names witch match the wildcard provided.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the device member are stored in an array of strings.

String[] members = get_device_member(“sys/database/*”);

CHAPTER 5. TANGO JAVA API 145

5.8.1.4 Device property methods

5.8.1.4.1 String[] get_device_property_list(String devname, String wildcard) Query the database
for a list of device properties for the specified object.

• parameter devname : name of the specified device.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the property names in a String array.

5.8.1.4.2 DbDatum[] get_device_property(String name, String[] propnames) Query the database
for a list of device properties for the pecified object.

• parameter name : device name.

• parameter propnames : list of property names.

• Retun properties in DbDatum objects.

String[] propnames = { ¨Speed¨, ¨Temperatures¨ };
DbDatum[] prop = dbase.get_property(¨sys/motor/1¨, propnames);

if (prop[0].is_empty()==false)
System.out.println(prop[0].name + ¨: ¨ + prop[0].extractDouble());

if (prop[1].is_empty()==false)
System.out.println(prop[1].name + ¨: ¨ + prop[1].extractFloat());

5.8.1.4.3 DbDatum get_device_property(String name, String propname) Query the database for a
device property for the pecified object.

• parameter name : device name.

• parameter propname : property name.

• Retun property in DbDatum object.

DbDatum prop = dbase.get_property(¨sys/motor/1¨, “Speed”);

if (prop.is_empty()==false)
System.out.println(prop.name + ¨: ¨ + prop.extractDouble());

5.8.1.4.4 DbDatum[] get_device_property(String name, DbDatum[] properties) Query the database
for a list of device properties for the pecified object. The property names are specified by the DbDatum
array objects.

• parameter name : device name.

• parameter properties : list of property DbDatum objects.

• Retun properties in DbDatum objects.

CHAPTER 5. TANGO JAVA API 146

DbDatum[] datum;
datum = new DbDatum[2];
datum[0] = new DbDatum(“Speed”);
datum[1] = new DbDatum(“Temperature”);
DbDatum[] prop = dbase.get_property(¨sys/motor/1¨, datum);

if (prop[0].is_empty()==false)
System.out.println(prop[0].name + ¨: ¨ + prop[0].extractDouble());

if (prop[1].is_empty()==false)
System.out.println(prop[1].name + ¨: ¨ + prop[1].extractFloat());

5.8.1.4.5 void put_device_property(String name, DbDatum[] properties) Insert or update a list of
properties for the specified device The property names and their values are specified by the DbDatum array.

• parameter name : device name.

• parameter properties : Properties names and values array.

DbDatum[] datum;
datum = new DbDatum[2];
datum[0] = new DbDatum(“Speed”, 123.456);
datum[1] = new DbDatum(“Temperature”, 21.5);
dbase.put_property(¨sys/motor/1¨, datum);

5.8.1.4.6 void delete_device_property(String name, String[] propnames) Delete a list of properties
for the specified object.

• parameter name : Device name.

• parameter propnames : Property names.

5.8.1.4.7 void delete_device_property(String name, String propname) Delete a property for the
specified object.

• parameter name : Device name.

• parameter propname : Property name.

5.8.1.4.8 void delete_device_property(String name, DbDatum[] properties) Delete a list of proper-
ties for the specified object.

• parameter name : Device name.

• parameter properties : Property DbDatum objects.

CHAPTER 5. TANGO JAVA API 147

5.8.1.5 Device attribute methods

5.8.1.5.1 String[] get_device_attribute_list(String devname, String wildcard) Query the database
for a list of attribute names for the specified object.

• parameter devname : device name.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return attribute names found in a String array.

5.8.1.5.2 DbAttribute[] get_device_attribute_property(String name, String[] attnames) Query the
database for a list of device attribute properties for the pecified object.

• parameter name : Device name.

• parameter propnames : list of attribute names.

• Retun properties in DbAttribute array.

String devname = “sys/serial/1”;
String[] attnames = db.get_device_attribute_list(devname, “*”);
DbAttribute[] attr = db.get_device_attribute_property(devname, attnames);
for (int i=0 ; i<attr.length ; i++)
for (int j=0 ; j<attr[i].size() ; j++)
{

DbDatum datum = attr[i].datum(j);
System.out.println(datum.name + ¨:\t¨ + datum.extractString());

}
//
// ======== Or ==============
//
String propname = “Label”;
String devname = “sys/serial/1”;
String[] attnames = db.get_device_attribute_list(devname, “*”);
DbAttribute[] attr = db.get_device_attribute_property(devname, attnames);
// Get the label field property
String label = “Default string”;
for (int i=0 ; i<attr.length ; i++)

if (attr[i].is_empty(propname)==false)
label = attr[i].get_value(propname);

5.8.1.5.3 DbAttribute get_device_attribute_property(String name, String attname) Query the database
for a list of device attribute properties for the specified objects.

• parameter name : device name.

• parameter propname : attribute name.

• Retun properties in DbAttribute array.

CHAPTER 5. TANGO JAVA API 148

5.8.1.5.4 void put_device_attribute_property(String name, DbAttribute[] attr) Insert or update a
list of attribute properties for the specified device. The property names and their values are specified by the
DbAttribute array.

• parameter name : device name.

• parameter attr : attribute names and properties (names and values) array.

DbAttribute[] attr = new DbAttribute[2];
// Set Second attribute properties
//---------------------------------------
attr[0] = new DbAttribute(¨Temperature¨);
attr[0].add(¨Unit¨, ¨Kelvin¨);
attr[0].add(¨Format¨, ¨fixed;showpos;setprecision(1)¨);
attr[0].add(¨Label¨, ¨Temperature read¨);
// Set Second attribute properties
//---------------------------------------
attr[1] = new DbAttribute(¨Current¨);
attr[1].add(¨Unit¨, ¨Amp.¨);
attr[1].add(¨Format¨, ¨fixed;setprecision(3)¨);
attr[1].add(¨Label¨, ¨Dipole Current Read¨);
// Put property in database
//---------------------------------------
db.put_device_attribute_property(devname, attr);

5.8.1.5.5 void put_device_attribute_property(String name, DbAttribute[] attr) Insert or update a
list of attribute properties for the specified device. The property names and their values are specified by the
DbAttribute array.

• parameter name : device name.

• parameter attr : attribute name and properties (names and values).

5.8.1.5.6 void delete_device_attribute_property(String name, String[] propnames) Delete a list of
properties for the specified object.

• parameter name : Device name.

• parameter propnames : Property names.

5.8.1.5.7 void delete_device_attribute_property(String name, String propname) Delete a property
for the specified object.

• parameter name : Device name.

• parameter propname : Property name.

5.8.1.5.8 void delete_device_attribute_property(String name, DbAttribute[] attr) Delete a list of
properties for the specified object.

• parameter name : Device name.

• parameter attr : attribute names and properties (names and values).

CHAPTER 5. TANGO JAVA API 149

5.8.1.5.9 void delete_device_attribute_property(String name, DbAttribute attr) Delete a list of
properties for the specified object.

• parameter name : Device name.

• parameter attr : attribute name and properties (names and values).

5.8.1.5.10 void delete_device_attribute(String devname, String attname) Delete an attribute for a
device.

• parameter devname : Device name.

• parameter attname : Attribute name.

5.8.1.6 Server methods

5.8.1.6.1 void add_server(String servname, DbDevInfo[] devinfos) Add a group of devices to the
database.

• parameter servname : Server name for these devices.

• parameter devinfo : Devices and server information.

DbDevInfo[] devinfos;
devinfos = new DbDevInfo[2];
devinfos[0] = new DbDevInfo(¨sys/dummy/check3¨, ¨Dummy¨, ¨Dummy/check3¨);
devinfos[1] = new DbDevInfo(¨sys/dummy/check4¨, ¨Dummy¨, ¨Dummy/check3¨);
dbase.add_server(devinfos[0].name, devinfos);

5.8.1.6.2 void delete_server(String servname) Delete the device server and its associated devices
from the database.

• parameter servname : the server name.

5.8.1.6.3 void export_server(DbDevExportInfo[] devinfos) Export a group of devices to the database.
The device name, IOR, servr name etc are specified in the DbDevExportInfo array.

• parameter servname : server name for these devices.

• parameter devinfo : Devices and server information.

5.8.1.6.4 void unexport_server(String devname) Mark all devices exported for this device server as
unexported.

• parameter devname : the device name.

5.8.1.7 Class property methods

5.8.1.7.1 String[] get_class_property_list(String classname, String wildcard) Query the database
for a list of class properties for the specified object.

• parameter classname : name of the specified class.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the property names in a String array.

CHAPTER 5. TANGO JAVA API 150

5.8.1.7.2 DbDatum[] get_class_property(String name, String[] propnames) Query the database for
a list of class properties for the pecified object.

• parameter name : Class name.

• parameter propnames : list of property names.

• Retun properties in DbDatum objects.

5.8.1.7.3 DbDatum get_class_property(String name, String propname) Query the database for a
class property for the pecified object.

• parameter name : Class name.

• parameter propname : list of property names.

• Retun property in DbDatum object.

5.8.1.7.4 DbDatum[] get_class_property(String name, DbDatum[] properties) Query the database
for a list of class properties for the pecified object. The property names are specified by the DbDatum array
objects.

• parameter name : Class name.

• parameter properties : list of property DbDatum objects.

• Retun properties in DbDatum objects.

5.8.1.7.5 void put_class_property(String name, DbDatum[] properties) Insert or update a list of
properties for the specified class. The property names and their values are specified by the DbDatum array.

• parameter name : Class name.

• parameter properties : Properties names and values array.

5.8.1.7.6 void delete_class_property(String name, String[] propnames) Delete a list of properties
for the specified object.

• parameter name : Class name.

• parameter propnames : Property names.

5.8.1.7.7 void delete_class_property(String name, String propname) Delete a property for the spec-
ified object.

• parameter name : Class name.

• parameter propname : Property name.

5.8.1.7.8 void delete_class_property(String name, DbDatum[] properties) Delete a list of properties
for the specified object.

• parameter name : Class name.

• parameter properties : Property DbDatum objects.

CHAPTER 5. TANGO JAVA API 151

5.8.1.8 Class attribute Methods

5.8.1.8.1 String[] get_class_attribute_list(String classname, String wildcard) Query the database
for a list of attribute names for the specified object.

• parameter classname : class name.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return attribute names found in a String array.

5.8.1.8.2 DbAttribute[] get_class_attribute_property(String name, String[] attnames) Query the
database for a list of class attribute properties for the pecified object.

• parameter name : Class name.

• parameter propnames : list of attribute names.

• Retun properties in DbAttribute array.

String[] attnames = db.get_class_attribute_list(“MyClass”, “*”);
DbAttribute[] attr = db.get_class_attribute_property(“MyClass”, attnames);
for (int i=0 ; i<attr.length ; i++)
for (int j=0 ; j<attr[i].getSize() ; j++)
{

DbDatum datum = attr[i].datum(j);
System.out.println(datum.name + ¨:\t¨ + datum.extractString());

}
//
// ======== Or ==============
//
String propname = “Label”;
String[] attnames = db.get_class_attribute_list(“MyClass”, “*”);
DbAttribute[] attr = db.get_class_attribute_property(“MyClass”, attnames);
String label = “Default string”;
if (attr[i].is_empty(propname)==false)

label = attr[i].get_value(propname);

5.8.1.8.3 DbAttribute get_class_attribute_property(String name, String attname) Query the database
for a list of class attribute properties for the pecified objects.

• parameter name : Class name.

• parameter propname : attribute name.

• Retun properties in DbAttibute object.

CHAPTER 5. TANGO JAVA API 152

5.8.1.8.4 void put_class_attribute_property(String name, DbAttribute[] attr) Insert or update a list
of attribute properties for the specified class. The property names and their values are specified by the
DbAttribute array.

• parameter name : Class name.

• parameter attr : attribute names and properties (names and values) array.

DbAttribute[] attr = new DbAttribute[2];
// Set Second attribute properties
//---------------------------------------
attr[0] = new DbAttribute(¨Temperature¨);
attr[0].add(¨Unit¨, ¨Kelvin¨);
attr[0].add(¨Format¨, ¨fixed;showpos;setprecision(1)¨);
attr[0].add(¨Label¨, ¨Temperature read¨);
// Set Second attribute properties
//---------------------------------------
attr[1] = new DbAttribute(¨Current¨);
attr[1].add(¨Unit¨, ¨Amp.¨);
attr[1].add(¨Format¨, ¨fixed;setprecision(3)¨);
attr[1].add(¨Label¨, ¨Dipole Current Read¨);
// Put property in database
//---------------------------------------
db.put_class_attribute_property(“MyClass”, attr);

5.8.1.8.5 void put_class_attribute_property(String name, DbAttribute attr) Insert or update a list
of attribute properties for the specified class. The property names and their values are specified by the
DbAttribute array.

• parameter name : Class name.

• parameter attr : attribute name and properties (names and values) array.

5.8.1.8.6 void delete_class_attribute_property(String name, String[] propnames) Delete a list of
properties for the specified object.

• parameter name : Class name.

• parameter propnames : Property names.

5.8.1.8.7 void delete_class_attribute_property(String name, String propname) Delete a property
for the specified object.

• parameter name : Class name.

• parameter propname : Property names.

5.8.1.8.8 void delete_class_attribute_property(String name, DbDatum[] properties) Delete a list
of properties for the specified object.

• parameter name : Class name.

• parameter properties : Property DbDatum objects.

CHAPTER 5. TANGO JAVA API 153

5.8.2 DbClass class
5.8.2.1 Class property methods

5.8.2.1.1 DbClass(String classname) Database object used for TANGO database access.

5.8.2.1.2 String[] get_property_list(String wildcard) Query the database for a list of class properties
for this class.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return the property names in a String array.

5.8.2.1.3 DbDatum[] get_property(String[] propnames) Query the database for a list of properties
for this class.

• parameter propnames : list of property names.

• Return properties in DbDatum objects.

5.8.2.1.4 DbDatum get_property(String propnames) Query the database for a property for this class.

• parameter propname : property name.

• Return properties in DbDatum object.

5.8.2.1.5 DbDatum[] get_property(DbDatum[] properties) Query the database for a list of properties
for this class. The property names are specified by the DbDatum array objects.

• parameter properties : list of property DbDatum objects.

• Return properties in DbDatum objects.

5.8.2.1.6 void put_property(DbDatum[] properties) Insert or update a list of properties for this class
The property names and their values are specified by the DbDatum array.

• parameter properties : Properties names and values array.

5.8.2.1.7 void delete_property(String[] propnames) Delete a list of properties for this class.

• parameter propnames : Property names.

5.8.2.1.8 void delete_property(String propname) Delete a property for this class.

• parameter propname : Property name.

5.8.2.1.9 void delete_property(DbDatum[] properties) Delete a list of properties for this class.

• parameter properties : Property DbDatum objects.

5.8.2.2 Class attribute methods

5.8.2.2.1 String[] get_attribute_list(String wildcard) Query the database for a list of attribute names
for the specified object.

• parameter wildcard : filter (* matches any character e.g. a*).

• Return attribute names found in a String array.

CHAPTER 5. TANGO JAVA API 154

5.8.2.2.2 void put_attibute_property(DbAttribute attr) Insert or update a list of attribute properties
for this class. The property names and their values are specified by the DbAttribute array.

• parameter attr : Attribute names and properties (names and values).

5.8.2.2.3 void put_attibute_property(DbAttribute attr) Insert or update a list of attribute properties
for this class. The property names and their values are specified by the DbAttribute array.

• parameter attr : Attribute names and properties (names and values).

5.8.2.2.4 void delete_attribute_property(String[] propnames) Delete a list of properties for this ob-
ject.

• parameter propnames : Property names.

5.8.2.2.5 delete_attribute_property(String propname) Delete a property for this object.

• parameter propname : Property name.

5.8.2.2.6 delete_attribute_property(DbDatum[] properties) Delete a list of properties for this object.

• parameter properties : Property DbDatum objects.

5.8.2.2.7 DbDatum[] get_attribute_property(String[] propnames) Query the database for a list of
class attribute properties for this device.

• parameter propnames : list of property names.

• Return properties in DbDatum objects.

5.8.2.2.8 DbAttribute[] get_attribute_property(String[] attnames) Query the database for a list of
class attribute properties for the pecified object.

• parameter propnames : list of attribute names.

• Retun properties in DbAttribute array.

DbClass myclass = new DbClass(“MyClass”);
String[] attnames = myclass.get_property_list(“*”);
DbAttribute[] attr = myclass.get_attribute_property(attnames);
for (int i=0 ; i<attr.length ; i++)
for (int j=0 ; j<attr[i].size() ; j++)
{

DbDatum datum = attr[i].datum(j);
System.out.print(datum.name + “:\t” + datum.extractString());

}

5.8.2.2.9 DbAttribute get_attribute_property(String propname) Query the database for of class at-
tribute property for this object.

• parameter propname : property name.

• Return property in DbAttribute objects.

CHAPTER 5. TANGO JAVA API 155

5.8.2.2.10 DbDatum[] get_attribute_property(DbDatum[] properties) Query the database for a list
of class attribute properties for this device. The property names are specified by the DbDatum array objects.

• parameter properties : list of property DbDatum objects.

• Return properties in DbDatum objects.

5.8.2.3 General information methods

5.8.2.3.1 String name() This method does not throw any exception.

• return the class name.

5.8.2.4 Device aliases related methods

5.8.2.4.1 public String[] get_device_alias_list(String wildcard) Query the database for a list of aliases
for the specified wildcard.

• parameter wildcard : Wildcard char is ’*’ and matches wildvcard characters.

• return the device aliases are stored in an array of strings.

5.8.2.4.2 String[] get_device_alias(String devname) Query the database for a list of aliases for the
specified device.

• parameter devvname : The server name.

• Return the device aliases are stored in an array of strings.

5.8.2.4.3 public String get_alias_device(String alias) Query the database a device for the specified
alias.

• parameter alias: alias name to query device name.

• returns the device name for specified alias.

5.8.2.4.4 public void put_device_alias(String devname, String aliasname) Set an alias for a device
name.

• parameter devname: device name.

• parameter aliasname: alias name.

5.8.2.4.5 public void delete_device_alias(String alias) Query the database to delete alias for the spec-
ified device alias.

• parameter alias: device alias name.

5.8.2.5 Device aliases related methods.

5.8.2.5.1 String[] get_attribute_alias_list(String wildcard) Query the database for a list of aliases for
the specified wildcard.

• parameter wildcard: Wildcard char is ’*’ and matches wildvcard characters.

• return the device aliases are stored in an array of strings.

CHAPTER 5. TANGO JAVA API 156

5.8.2.5.2 public String get_attribute_alias(String attname) Query the database for a list of aliases
for the specified attribute.

• parameter devvname: The server name.

• return the device aliases are stored in an array of strings.

5.8.2.5.3 public void put_attribute_alias(String attname, String aliasname) Set an alias for a at-
tribute name.

• parameter attname: attribute name.

• parameter aliasname: alias name.

5.8.2.5.4 public void delete_attribute_alias(String alias) Query the database to delete alias for the
specified attribute alias.

• parameter alias: device alias name.

5.8.3 DbServer class
This class manage database connection for Tango server.

5.8.3.0.5 public DbServer(String servname) DbServer constructor.It makes a connection to the TANGO
database for server management.

• Parameter servname : Name of the class oject.

5.8.3.0.6 public DbServer(String servname, Database dbase) DbServer constructor.It makes a con-
nection to the TANGO database for server management.

• Parameter servname : Name of the class oject.

• Parameter dbase : Database object previously created.

5.8.3.0.7 String[] get_class_list() Query the database for a list of classes instancied by this server. The
DServer class exists in all TANGO servers and for this reason this class is removed of the returned list.

• Return The list of classes instancied by this server.

5.8.3.0.8 public DbServInfo get_info() Query the database for server information.

• Return The information found for this server in a DbServInfo object.

DbServer server = new DbServer(“Serial/line1”);
DbServInfo info = server.get_info();
System.out.println(“Server name: “ + server.name);
System.out.println(“Registred on: “ + server.host);
if (server.controled)

System.out.println(“Auto Start level: “ + server.startup_level);

CHAPTER 5. TANGO JAVA API 157

5.8.3.0.9 public void put_info(DbServInfo info) throws DevFailed Add/update server information in
databse.

• Parameter info : Server information for this server in a DbServinfo object.

5.8.3.0.10 String[] get_device_class_list() Query the database for a list of devices and classes served
by this server.

• Return the device names are stored in an array of strings.

5.8.3.0.11 String[] get_device_name(String classname) Query the database for a list of devices served
by this server, for the specified class.

• parameter clasname : The class name

• Return the device names are stored in an array of strings.

String[] names = server.get_device_name(“Serial”);

5.8.3.0.12 public String name() This method does not throw any exception.

• return the server name.

Chapter 6

The TANGO C++ Application
Programmer Interface

6.1 Tango::DeviceProxy()
The high level object which provides the client with an easy-to-use interface to TANGO devices. De-
viceProxy is a handle to the real Device (hence the name Proxy) and is not the real Device (of course).
DeviceProxy provides interfaces to all TANGO Device interfaces. The DeviceProxy manages timeouts,
stateless connections (new DeviceProxy() nearly always works), and reconnection if the device server is
restarted.

6.1.1 Constructors
6.1.1.1 DeviceProxy::DeviceProxy(string &name, CORBA::ORB *orb=NULL)

Create a DeviceProxy to a device of the specified name. The TANGO_HOST environment variable is used
to determine which TANGO database to connect to. The client can specify an ORB as argument if she
wants to. The constructor will connect to the TANGO database, query for the client’s network address and
build a connection to the device. If the device is defined in the TANGO database but the device server is
not running DeviceProxy will try to build a connection every time the client tries to access the device. If
the device is not defined an exception is thrown. Example :

DeviceProxy *my_device = new DeviceProxy(“my/own/device”);

See appendix on device naming for all details about Tango device naming syntax. If an alias name is
defined for the device, this alias name can be used to create the DeviceProxy instance.

Exception: WrongNameSyntax, ConnectionFailed

6.1.1.2 DeviceProxy::DeviceProxy(const char *name, CORBA::ORB *orb = NULL)

Idem previous call

6.1.2 Miscellaneous methods
6.1.2.1 DeviceInfo DeviceProxy::info()

A method which returns information on the device in a DeviceInfo structure. Example :

158

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 159

cout << " device info : " << endl
DeviceInfo dev_info = my_device->info() << endl;
cout << " dev_class " << dev_info.dev_class;
cout << " server_id " << dev_info.server_id;
cout << " server_host " << dev_info.server_host;
cout << " server_version " << dev_info.server_version;
cout << " doc_url " << dev_info.doc_url;
cout << " device_type " << dev_info.dev_type;

All DeviceInfo fields are strings except for the server_version server_version which is a long integer.
Exception: Connection Failed, CommunicationFailed, DevFailed from device

6.1.2.2 DevState DeviceProxy::state()

A method which return the state of the device as a Tango::DevState type. Example :

dev_state = my_device->state() << endl;

Exception: ConnectionFailed, CommunicationFailed

6.1.2.3 string DeviceProxy::status()

A method which return the status of the device as a string. Example :

cout << "device status " << my_device->status() << endl;

Exception: ConnectionFailed, CommunicationFailed

6.1.2.4 int DeviceProxy::ping()

A method which sends a ping to the device and returns the time elapsed as microseconds. Example :

cout << " device ping took " << my_device->ping() << " microseconds" << endl;

Exception: ConnectionFailed, CommunicationFailed

6.1.2.5 void DeviceProxy::set_timeout_millis(int timeout)

Set client side timeout for device in milliseconds. Any method which takes longer than this time to execute
will throw an exception.

Exception: none

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 160

6.1.2.6 int DeviceProxy::get_timeout_millis()

Get the client side timeout in milliseconds.
Exception: none

6.1.2.7 int DeviceProxy::get_idl_version()

Get the version of the Tango Device IDL interface implemented by the device
Exception: none

6.1.2.8 void DeviceProxy::set_source(DevSource source)

Set the data source (device, polling buffer, polling buffer than device) for command_inout and read_attribute
methods. The DevSource is an enumerated type which can be one of {DEV, CACHE, CACHE_DEV}. The
default value is CACHE_DEV. See chapter on Advanced Feature for all details regarding polling.

Exception: none

6.1.2.9 DevSource DeviceProxy::get_source()

Get the device data source used by command_inout or read_attribute methods. The DevSource is an enu-
merated type which can be one of {DEV, CACHE, CACHE_DEV}. See chapter on Advanced Feature for
all details regarding polling.

Exception: none

6.1.2.10 vector<string> *DeviceProxy::black_box(int n)

Get the last n commands executed on the device server and return a pointer to a vector of strings containing
the date, time, command, and from which client computer the command was executed. This method
allocates memory for the vector of strings returned to the caller. It is the caller responsibility to delete this
memory.

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.2.11 string DeviceProxy::name()

Return the device name (from the device itself)
Exception: ConnectionFailed, CommunicationFailed

6.1.2.12 string DeviceProxy::adm_name()

Returns the name of the corresponding administrator device. This is useful if you need to send an admin-
istration command to the device server e.g. restart it.

Exception: ConnectionFailed, CommunicationFailed

6.1.2.13 string DeviceProxy::dev_name()

Return the device name as it is stored locally

6.1.2.14 string DeviceProxy::description()

Returns the device description as a string.
Exception: ConnectionFailed, CommunicationFailed

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 161

6.1.2.15 DbDevImportInfo DeviceProxy::import_info()

Query the device for import info from the database. This method returns a DbDevImprtInfo type. The
DbDevImportInfo type is a struct defined as follows :

class DbDevImportInfo {
public :

string name;
long exported;
string ior;
string version; };

Exception: NonDbDevice

6.1.2.16 void DeviceProxy::set_transparency_reconnection(bool flag)

If flag is true, no exception will be thrown in case of network communication error between client and
server. The API will try to re-build the network connection between client and server as soon as an error is
detected. See 6.17 more more details on reconnection and exception

6.1.2.17 bool DeviceProxy::get_transparency_reconnection()

Returns the transparency reconnection flag.

6.1.2.18 string DeviceProxy::alias()

Returns the device alias name if one is defined otherwise, throws a DevFailed exception with the reason
field set to Db_AliasNotDefined.

6.1.3 Synchronous command oriented methods
6.1.3.1 CommandInfo DeviceProxy::command_query(string command)

Query the device for information about a single command. This command returns a single CommandInfo
type. The CommandInfo type is a struct described in command_list_query().

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.3.2 CommandInfoList *DeviceProxy::command_list_query()

Query the device for info on all commands. This method returns a vector of CommandInfo types. This
method allocates memory for the vector of CommandInfo returned to the caller. It is the caller responsibility
to delete this memory. The CommandInfo type is a struct defined as follows :

typedef _CommandInfo
{

string cmd_name; /* command name as ascii string */
long cmd_tag; /* command as binary value (for TACO) */
long in_type; /* in type as binary value */
long out_type; /* out type as binary value */
string in_type_desc; /* description of in type (optional) */
string out_type_desc; /* description of out type (optional) */

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 162

Tango::DispLevel disp_level; /* Command display level */
} CommandInfo;
typedef CommandInfoList vector<CommandInfo>;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.3.3 DeviceData DeviceProxy::command_inout(string)

Execute a command on a device which takes no input arguments (void). The result is returned in a Device-
Data object (cf. below how to insert and extract data from DeviceData).

Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.1.3.4 DeviceData DeviceProxy::command_inout(const char *)

Idem previous call

6.1.3.5 DeviceData Deviceproxy::command_inout(string, DeviceData &)

Execute a command on a device. Input arguments are passed in a DeviceData object, output is returned as
a DeviceData object (see below on how to insert and extract data from DeviceData).

Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.1.3.6 DeviceData DeviceProxy::command_inout(const char *, DeviceData &)

Idem previous call

6.1.3.7 vector<DeviceDataHistory> *command_history(string &, int)

Retrieve command history from the command polling buffer. The first argument is the command name.
The second argument is the wanted history depth. This method returns a vector of DeviceDataHistory
types. This method allocates memory for the vector of DeviceDataHistory returned to the caller. It is the
caller responsibility to delete this memory. Class DeviceDataHistory is detailed on chapter 6.3. See chapter
on Advanced Feature for all details regarding polling.

DeviceProxy dev = new DeviceProxy("...");
vector<DeviceDataHistory> *hist;
hist = dev->command_history("Status",5);
for (int i = 0;i < 5;i++)
{

bool fail = (*hist)[i].failed();
if (fail == false)
{

string str;
(*hist)[i] >> str;
cout << "Status = " << str << endl;

}
else
{

cout << "Command failed !" << endl;
cout << "Error level 0 desc = " << ((*hist)[i].errors())[0].desc << endl;

}
cout << "Date = " << (*hist)[i].date().tv_sec << endl;

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 163

}
delete hist;

Exception: NonSupportedFeature, ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.3.8 DeviceDataHistoryList *command_history(const char *, int)

Idem previous call

6.1.4 Synchronous attribute related methods
6.1.4.1 Compatibility between Tango release 4 and release 5 regarding attribute properties

Between Tango V4 and Tango V5, attribute configuration has been modified to incorporate alarm and event
related parameters. This explains why it exists two structure types for attribute configuration parameters.
All Tango V4 parameters are defined in a structure called AttributeInfo and a new structure called At-
tributeInfoEx has been defined for all Tango V5 parameters. Nevertheless, AttributeInfoEx inherits from
AttributeInfo and it is always possible to call the Tango V5 DeviceProxy::attribute_query() method and to
store its result in one AttributeInfo structure thus allowing compatibility for client written for Tango V4
but linked with Tango V5. It is also possible for a client written and linked with Tango V5 to call Tango
V5 DeviceProxy::attribute_query() method to all kind of Tango devices. For device using Tango V4, the
alarm and event related parameters will be retrieved from the database instead of from the device.

6.1.4.2 AttributeInfoEx DeviceProxy::attribute_query(string attribute)

Query the device for information about a single attribute. This command returns a single AttributeInfoEx
type which inherits from the AttributeInfo type. The AttributeInfoEx and AttributeInfo types are structures
described in get_attribute_config() and get_attribute_config_ex().

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.4.3 AttributeInfoList * DeviceProxy::attribute_list_query()

Query the device for info on all attributes. This method returns a vector of AttributeInfo types. The
AttributeInfo type is a structure described in get_attribute_config(). This method allocates memory for the
vector of AttributeInfo structures returned to the caller. It is the caller responsibility to delete this memory.

6.1.4.4 AttributeInfoListEx * DeviceProxy::attribute_list_query_ex()

Query the device for info on all attributes. This method returns a vector of AttributeInfoEx types. The
AttributeInfoEx type is a structure described in get_attribute_config_ex(). This method allocates memory
for the vector of AttributeInfoEx structures returned to the caller. It is the caller responsibility to delete this
memory.

6.1.4.5 vector<string> *DeviceProxy::get_attribute_list()

Return the names of all attributes implemented for this device as a vector of strings. This method allocates
memory for the vector of strings returned to the caller. It is the caller responsibility to delete this memory.

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 164

6.1.4.6 AttributeInfoList *DeviceProxy::get_attribute_config(vector<string>&)

Return the attribute configuration for the list of specified attributes. To get all the attributes pass a vector
containing the string AllAttr (defined in tango_const.h). This method allocates memory for the vector of
AttributeInfo returned to the caller. It is the caller responsibility to delete this memory. AttributeInfo is a
struct defined as follows :

typedef struct _AttributeInfo
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
int data_type;
int max_dim_x;
int max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;
string min_value;
string max_value;
string min_alarm;
string max_alarm;
string writable_attr_name;
vector<string> extensions;
Tango::DispLevel disp_level;

} AttributeInfo;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.4.7 AttributeInfoListEx *DeviceProxy::get_attribute_config_ex(vector<string>&)

Return the extended attribute configuration for the list of specified attributes. To get all the attributes
pass a vector containing the string AllAttr (defined in tango_const.h). This method allocates memory for
the vector of AttributeInfoEx returned to the caller. It is the caller responsibility to delete this memory.
AttributeInfoEx is a structure defined as follows :

struct AttributeInfoEx: public AttributeInfo
{

AttributeAlarmInfo alarms;
AttributeEventInfo events;
vector<string> sys_extensions;

};

struct AttributeAlarmInfo
{

string min_alarm;
string max_alarm;

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 165

string min_warning;
string max_warning;
string delta_t;
string delta_val;
vector<string> extensions;

};

struct AttributeEventInfo
{

ChangeEventInfo ch_event;
PeriodicEventInfo per_event;
ArchiveEventInfo arch_event;

};

struct ChangeEventInfo
{

string rel_change;
string abs_change;
vector<string> extensions;

};

struct PeriodicEventInfo
{

string period;
vector<string> extensions;

};

struct ArchiveEventInfo
{

string archive_rel_change;
string archive_abs_change;
string archive_period;
vector<string> extensions;

};

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.4.8 AttributeInfoEx DeviceProxy::get_attribute_config(string&)

Return the attribute configuration for a single attributes. The AttributeInfoEx is a structure defined above.
Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.4.9 void DeviceProxy::set_attribute_config(AttributeInfoList &)

Change the attribute configuration for the specified attributes.
Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.1.4.10 void DeviceProxy::set_attribute_config(AttributeInfoListEx &)

Change the attribute configuration for the specified attributes.
Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 166

6.1.4.11 vector<DeviceAttribute> *DeviceProxy::read_attributes(vector<string>&)

Read the list of specified attributes. To extract the value you have to use the operator of the class DeviceAt-
tribute which corresponds to the data type of the attribute. NOTE: There is no automatic type conversion
from the attribute native type to user type e.g. if an attribute returns a short you cannot extract it as a
double, you have to extract it as a short. By default, if the server reports error for one of the attribute
in the list, this error will be passed to the user using exception when he (she) will try to extract the data
form the corresponding See sub-chapter on DeviceAttribute to learn how to change this default behaviour.
DeviceAttribute object. This method allocates memory for the vector of DeviceAttribute objects returned
to the caller. This is the caller responsibility to delete this memory. Example :

vector<DeviceAttribute> *devattr;
vector<string> attr_names;

attr_names.push_back("attribute_1");
attr_names.push_back("attribute_2");
devattr = device->read_attributes(attr_names);
short short_attr_1;
long long_attr_2;
(*devattr)[0] >> short_attr_1;
(*devattr)[1] >> long_attr_2;
cout << "my_attribute value " << short_attr;
delete devattr;

Exception: ConnectionFailed, CommunicationFailed

6.1.4.12 DeviceAttribute DeviceProxy::read_attribute(string&)

Read a single attribute. To extract the value you have to use the operator of the class DeviceAttribute
which corresponds to the data type of the attribute. NOTE: There is no automatic type conversion from the
attribute native type to user type e.g. if an attribute returns a short you cannot extract it as a double (this
will return 0) you have to extract it as a short. See example above.

Exception: ConnectionFailed, CommunicationFailed

6.1.4.13 DeviceAttribute DeviceProxy::read_attribute(const char *)

Idem previous call

6.1.4.14 void DeviceProxy::write_attributes(vector<DeviceAttribute>&)

Write the specified attributes. To insert the values to write you have to use the operator of the DeviceAt-
tribute class which corresponds to the data type of the attribute. NOTE: There is no automatic type conver-
sion from the user type to the attribute native type e.g. if an attribute expects a short you cannot insert it as
a double (this will throw an exception) you have to insert it as a short. Note that this is the only API call
which could throw a NamedDevFailedList exception. See 6.16.10 to get all the details on this exception.
Example :

vector<DeviceAttribute> attr_in;
string att1_name("First_attr");
string att2_name("Second_attr");

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 167

short short_attr;
double double_attr; attr_in.push_back(DeviceAttribute(att1_name,short_attr));
attr_in.push_back(DeviceAttribute(att2_name,double_attr));
device->write_attributes(attr_in);

Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed or NamedDevFailedList
from device

6.1.4.15 void DeviceProxy::write_attribute(DeviceAttribute&)

Write a single attribute. To insert the value to write you have to use the operator of the class DeviceAttribute
which corresponds to the data type of the attribute. NOTE: There is no automatic type conversion from the
user type to the attribute native type e.g. if an attribute expects a short you cannot insert it as a double (this
will throw an exception) you have to insert it as a short. See example above.

Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.1.4.16 DeviceAttribute DeviceProxy::write_read_attribute(DeviceAttribute&)

Write then read a single attribute in a single network call. By default (serialisation by device), the execution
of this call in the server can’t be interrupted by other clients. To insert/extract the value to write/read you
have to use the operator of the class DeviceAttribute which corresponds to the data type of the attribute.
NOTE: There is no automatic type conversion from the user type to the attribute native type e.g. if an
attribute expects a short you cannot insert it as a double (this will throw an exception) you have to insert it
as a short.

Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.1.4.17 vector<DeviceAttributeHistory> *DeviceProxy::attribute_history(string &, int)

Retrieve attribute history from the attribute polling buffer. The first argument is the attribute name. The
second argument is the wanted history depth. This method returns a vector of DeviceAttributeHistory
types. This method allocates memory for the vector of DeviceAttributeHistory returned to the caller. It is
the caller responsibility to delete this memory. Class DeviceAttributeHistory is detailed on chapter 6.5See
also chapter on Advanced Feature for all details regarding polling.

DeviceProxy dev = new DeviceProxy("...");
vector<DeviceAttributeHistory> *hist;
hist = dev->attribute_history("Current",5);
for (int i = 0;i < 5;i++)
{

bool fail = (*hist)[i].has_failed();
if (fail == false)
{

cout << "Attribute name = " << (*hist)[i].get_name() << endl;
cout << "Attribute quality factor = " << (*hist)[i].get_quality() << endl;
long value;
(*hist)[i] >> value;
cout << "Current = " << value << endl;

}
else

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 168

{
cout << "Attribute failed !" << endl;
cout << "Error level 0 desc = " << ((*hist)[i].get_err_stack())[0].desc << endl;

}
cout << "Date = " << (*hist)[i].get_date().tv_sec << endl;

}
delete hist;

Exception: NonSupportedFeature, ConnectionFailed, CommunicationFailed, DevFailed from device

6.1.4.18 vector<DeviceAttributeHistory> *DeviceProxy::attribute_history(const char *, int)

Idem previous call

6.1.5 Asynchronous command oriented methods
6.1.5.1 long DeviceProxy::command_inout_asynch(string &name, bool forget)

Execute asynchronously (polling model) a command on a device which takes no input argument. The last
argument is a fire and forget flag. If this flag is set to true, this means that the client does not care at all
about the server answer and will even not try to get it. A false default value is provided. Please, note that
device re-connection will not take place (in case it is needed) if the fire and forget mode is used. Therefore,
an application using only fire and forget requests is not able to automatically re-connnect to device. This
call returns an asynchronous call identifier which is needed to get the command result.

Exception: ConnectionFailed

6.1.5.2 long DeviceProxy::command_inout_asynch(const char *name, bool forget)

Idem previous call

6.1.5.3 long DeviceProxy::command_inout_asynch(string &name, DeviceData &argin, bool forget)

Execute asynchronously (polling model) a command on a device. Input arguments are passed in a De-
viceData object (see following chapters on how to insert data into DeviceData object). The last argument
is a fire and forget flag. If this flag is set to true, this means that the client does not care at all about the
server answer and will even not try to get it. A false default value is provided. Please, note that device
re-connection will not take place (in case it is needed) if the fire and forget mode is used. Therefore, an
application using only fire and forget requests is not able to automatically re-connnect to device. This call
returns an asynchronous call identifier which is needed to get the command result.

Exception: ConnectionFailed

6.1.5.4 long DeviceProxy::command_inout_asynch(const char *name, Devicedata &argin, bool for-
get)

Idem previous call

6.1.5.5 DeviceData DeviceProxy::command_inout_reply(long id)

Check if the answer of an asynchronous command_inout is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceData
object. If the reply is an exception, it is re-thrown by this call. An exception is also thrown in case of the
reply is not yet arrived. Example :

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 169

Tango::DeviceProxy dev("...");
long asyn_id;
asyn_id = dev.command_inout_asynch("MyCmd");
...
...
...
Tango::DeviceData arg;
try
{

arg = dev.command_inout_reply(asyn_id);
}
catch(Tango::AsynReplyNotArrived)
{

cerr << "Command not arrived !" << endl;
}
catch (Tango::DevFailed &e)
{

Tango::Except::print_exception(e);
}

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.5.6 DeviceData DeviceProxy::command_inout_reply(long id, long timeout)

Check if the answer of an asynchronous command_inout is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceData
object. If the reply is an exception, it is re-thrown by this call. If the reply is not yet arrived, the call will
wait (blocking the process) for the time specified in timeout. If after timeout milliseconds, the reply is still
not there, an exception is thrown. If timeout is set to 0, the call waits until the reply arrived.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.5.7 void DeviceProxy::command_inout_asynch(string &name, CallBack &cb)

Execute asynchronously (callback model) a command on a device which takes no input argument. The
last argument is a reference to a callback object. This callback object should be an instance of a user class
inheriting from the Tango::CallBack class with the cmd_ended() method overloaded.

Exception: ConnectionFailed

6.1.5.8 void DeviceProxy::command_inout_asynch(const char *name, CallBack &cb)

Idem previous call

6.1.5.9 void DeviceProxy::command_inout_asynch(string &name, DeviceData &argin, CallBack
&cb)

Execute asynchronously (callback model) a command on a device. Input arguments are passed in a De-
viceData object (see following chapters on how to insert data into DeviceData object). The last argument is
a reference to a callback object. This callback object should be an instance of a user class inheriting from
the Tango::CallBack class with the cmd_ended() method overloaded.

Exception: ConnectionFailed

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 170

6.1.5.10 void DeviceProxy::command_inout_asynch(const char *name, DeviceData &argin, Call-
back &cb)

Idem previous call

6.1.6 Asynchronous attribute related methods
6.1.6.1 long DeviceProxy::read_attribute_asynch(string &name)

Read asynchronously (polling model) a single attribute. This call returns an asynchronous call identifier
which is needed to get the attribute value.

Exception: ConnectionFailed

6.1.6.2 long DeviceProxy::read_attribute_asynch(const char *name)

Idem previous call

6.1.6.3 long DeviceProxy::read_attributes_asynch(vector<string> &names)

Read asynchronously (polling model) the list of specified attributes. This call returns an asynchronous call
identifier which is needed to get attributes value.

Exception: ConnectionFailed

6.1.6.4 DeviceAttribute *DeviceProxy::read_attribute_reply(long id)

Check if the answer of an asynchronous read_attribute is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceAttribute
object. If the reply is an exception, it is re-thrown by this call. An exception is also thrown in case of the
reply is not yet arrived. To extract attribute value, you have to use the operator of the class DeviceAttribute
which corresponds to the data type of the attribute. NOTE: There is no automatic type conversion from
the attribute native type to user type e.g. if an attribute returns a short you cannot extract it as a double,
you have to extract it as a short. Memory has been allocated for the DeviceAttribute object returned to the
caller. This is the caller responsibility to delete this memory.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.6.5 DeviceAttribute *DeviceProxy::read_attribute_reply(long id, long timeout)

Check if the answer of an asynchronous read_attribute is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceAttribute
object. If the reply is an exception, it is re-thrown by this call. If the reply is not yet arrived, the call will
wait (blocking the process) for the time specified in timeout. If after timeout milliseconds, the reply is still
not there, an exception is thrown. If timeout is set to 0, the call waits until the reply arrived. To extract
attribute value, you have to use the operator of the class DeviceAttribute which corresponds to the data type
of the attribute. NOTE: There is no automatic type conversion from the attribute native type to user type
e.g. if an attribute returns a short you cannot extract it as a double, you have to extract it as a short. Memory
has been allocated for the DeviceAttribute object returned to the caller. This is the caller responsibility to
delete this memory.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.6.6 vector<DeviceAttribute> *DeviceProxy::read_attributes_reply(long id)

Check if the answer of an asynchronous read_attributes is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a vector<DeviceAttribute>.
If the reply is an exception, it is re-thrown by this call. An exception is also thrown in case of the reply

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 171

is not yet arrived. To extract attribute value, you have to use the operator of the class DeviceAttribute
which corresponds to the data type of the attribute. NOTE: There is no automatic type conversion from the
attribute native type to user type e.g. if an attribute returns a short you cannot extract it as a double, you
have to extract it as a short. Memory has been allocated for the vector<DeviceAttribute> object returned to
the caller. This is the caller responsibility to delete this memory.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.6.7 vector<DeviceAttribute> *DeviceProxy::read_attributes_reply(long id, long timeout)

Check if the answer of an asynchronous read_attributes is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a vector<DeviceAttribute>.
If the reply is an exception, it is re-thrown by this call. If the reply is not yet arrived, the call will wait
(blocking the process) for the time specified in timeout. If after timeout milliseconds, the reply is still not
there, an exception is thrown. If timeout is set to 0, the call waits until the reply arrived. To extract attribute
value, you have to use the operator of the class DeviceAttribute which corresponds to the data type of the
attribute. NOTE: There is no automatic type conversion from the attribute native type to user type e.g. if an
attribute returns a short you cannot extract it as a double, you have to extract it as a short. Memory has been
allocated for the vector<DeviceAttribute> object returned to the caller. This is the caller responsibility to
delete this memory.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.6.8 long DeviceProxy::write_attribute_asynch(DeviceAttribute &argin)

Write asynchronously (polling model) a single attribute. To insert the value to write you have to use the
operator of the class DeviceAttribute which corresponds to the data type of the attribute. NOTE: There is
no automatic type conversion from the user type to the attribute native type e.g. if an attribute expects a
short you cannot insert it as a double (this will throw an exception) you have to insert it as a short. This
call returns an asynchronous call identifier which is needed to get the server reply.

Exception: ConnectionFailed

6.1.6.9 long DeviceProxy::write_attributes_asynch(vector<DeviceAttribute> &argin)

Write asynchronously (polling model) the specified attributes. To insert the value to write you have to use
the operator of the class DeviceAttribute which corresponds to the data type of the attribute. NOTE: There
is no automatic type conversion from the user type to the attribute native type e.g. if an attribute expects
a short you cannot insert it as a double (this will throw an exception) you have to insert it as a short. This
call returns an asynchronous call identifier which is needed to get the server reply.

Exception: ConnectionFailed

6.1.6.10 void DeviceProxy::write_attribute_reply(long id)

Check if the answer of an asynchronous write_attribute is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, the call returned. If the reply is an exception,
it is re-thrown by this call. An exception is also thrown in case of the reply is not yet arrived.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.6.11 void DeviceProxy::write_attribute_reply(long id, long timeout)

Check if the answer of an asynchronous write_attribute is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, the call returned. If the reply is an exception,
it is re-thrown by this call. If the reply is not yet arrived, the call will wait (blocking the process) for the
time specified in timeout. If after timeout milliseconds, the reply is still not there, an exception is thrown.
If timeout is set to 0, the call waits until the reply arrived.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 172

6.1.6.12 void DeviceProxy::write_attributes_reply(long id)

Check if the answer of an asynchronous write_attributes is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, the call returned. If the reply is an exception,
it is re-thrown by this call. An exception is also thrown in case of the reply is not yet arrived.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.6.13 void DeviceProxy::write_attributes_reply(long id, long timeout)

Check if the answer of an asynchronous write_attributes is arrived (polling model). id is the asynchronous
call identifier. If the reply is arrived and if it is a valid reply, the call returned. If the reply is an exception,
it is re-thrown by this call. If the reply is not yet arrived, the call will wait (blocking the process) for the
time specified in timeout. If after timeout milliseconds, the reply is still not there, an exception is thrown.
If timeout is set to 0, the call waits until the reply arrived.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.1.6.14 void DeviceProxy::read_attribute_asynch(string &name, CallBack &cb)

Read asynchronously (callback model) a single attribute. The last argument is a reference to a callback
object. This callback object should be an instance of a user class inheriting from the Tango::CallBack class
with the attr_read() method overloaded.

Exception: ConnectionFailed

6.1.6.15 void DeviceProxy::read_attribute_asynch(const char *name, CallBack &cb)

Idem previous call

6.1.6.16 void DeviceProxy::read_attributes_asynch(vector<string> &names, CallBack &cb)

Read asynchronously (callback model) an attribute list. The last argument is a reference to a callback
object. This callback object should be an instance of a user class inheriting from the Tango::CallBack class
with the attr_read() method overloaded.

Exception: ConnectionFailed

6.1.6.17 void DeviceProxy::write_attribute_asynch(DeviceAttribute &argin, CallBack &cb)

Write asynchronously (callback model) a single attribute. The last argument is a reference to a callback
object. This callback object should be an instance of a user class inheriting from the Tango::CallBack class
with the attr_written() method overloaded.

Exception: ConnectionFailed

6.1.6.18 void DeviceProxy::write_attributes_asynch(vector<DeviceAttribute> &argin, CallBack &cb)

Write asynchronously (callback model) an attribute list. The last argument is a reference to a callback
object. This callback object should be an instance of a user class inheriting from the Tango::CallBack class
with the attr_written() method overloaded.

Exception: ConnectionFailed

6.1.7 Miscellaneous asynchronous related methods
6.1.7.1 long DeviceProxy::pending_asynch_call(asyn_req_type req)

Return number of device asynchronous pending requests. The input parameter is an enumeration with three
values which are:

POLLING : Returns only device polling model asynchronous request number

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 173

CALLBACK : Returns only device callback model asynchronous request number

ALL_ASYNCH : Returns device asynchronous request number

Exception: None

6.1.7.2 void DeviceProxy::get_asynch_replies()

Fire callback methods for device asynchronous requests with already arrived replied. Returns immediately
if there is no replies already arrived or if there is no asynchronous request for the device. Example :

class MyCallBack: Tango::CallBack
{
public:

MyCallback(double d):data(d) {};
virtual void cmd_ended(Tango::CmdDoneEvent *);

private:
double data;

};

void MyCallBack::cmd_ended(Tango CmdDoneEvent *cmd)
{

if (cmd->err == true)
Tango::Except::print_error_stack(cmd->errors);

else
{

short cmd_result;
cmd->argout >> cmd_result;
cout << "Command result = " << cmd_result << endl;
cout << "Callback personal data = " << data << endl;

}
}

int main(int argc, char *argv[])
{

....

....
Tango::DeviceProxy dev("...");
double my_data = ...;
MyCallBack cb(my_data);
dev.command_inout_asynch("MyCmd",cb);
...
...
...
dev.get_asynch_replies();
...
...

}

Exception: None, all errors are reported using the err and errors fields of the parameter passed to the
callback method. See chapter 6.8 for details.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 174

6.1.7.3 void DeviceProxy::get_asynch_replies(long timeout)

Fire callback methods for device asynchronous requests (command and attributes) with already arrived
replied. Wait and block the caller for timeout milliseconds if they are some device asynchronous requests
which are not yet arrived. Returns immediately if there is no asynchronous request for the device. If
timeout is set to 0, the call waits until all the asynchronous requests sent to the device has received a reply.

Exception: AsynReplyNotArrived. All other errors are reported using the err and errors fields of the
object passed to the callback methods. See chapter 6.8 for details.

6.1.7.4 void DeviceProxy::cancel_asynch_request(long id)

Cancel a pending asynchronous request. id is the asynchronous call identifier. This is a call local to the
client. It simply allows the caller not to get the answer of the asynchronous request. It does not interrupt
the call execution on the remote device.

Exception: AsynCall

6.1.7.5 void DeviceProxy::cancel_all_polling_asynch_request()

Cancel all pending polling asynchronous requests. This is a call local to the client. It simply allows the
caller not to get the answers of the asynchronous requests. It does not interrupt the call execution on the
remote devices.

6.1.8 Polling related methods
6.1.8.1 bool DeviceProxy::is_command_polled(string &cmd_name)

Returns true if the command "cmd_name" is polled. Otherwise, returns false.

6.1.8.2 bool DeviceProxy::is_command_polled(const char *cmd_name)

Idem previous call

6.1.8.3 bool DeviceProxy::is_attribute_polled(string &attr_name)

Returns true if the attribute "attr_name" is polled. Otherwise, returns false.

6.1.8.4 bool Deviceproxy::is_attribute_polled(const char *attr_name)

Idem previous call

6.1.8.5 int DeviceProxy::get_command_poll_period(string &cmd_name)

Returns the command "cmd_name" polling period in mS. If the command is not polled, it returns 0.

6.1.8.6 int DeviceProxy::get_command_poll_period(const char *cmd_name)

Idem previous call

6.1.8.7 int DeviceProxy::get_attribute_poll_period(string &attr_name)

Returns the attribute "attr_name" polling period in mS. If the attribute is not polled, it returns 0.

6.1.8.8 int Deviceproxy::get_attribute_poll_period(const char *attr_name)

Idem previous call

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 175

6.1.8.9 vector<string> *DeviceProxy::polling_status()

Returns the device polling status. There is one string for each polled command/attribute. Each string is
multi-line string with :

• The attribute/command name

• The attribute/command polling period (in mS)

• The attribute/command polling ring buffer depth

• The time needed for the last command/attribute execution (in mS)

• The time since data in the ring buffer has not been updated

• The delta time between the last records in the ring buffer

• The exception parameters in case of the last command/attribute execution failed

This method allocates memory for the vector of string(s) returned to the caller. It is the caller responsibility
to delete this memory.

6.1.8.10 void DeviceProxy::poll_command(string &cmd_name,int period)

Add the command "cmd_name" to the list of polled command. The polling period is specified by "period"
(in mS). If the command is already polled, this method will update the polling period according to "period".

6.1.8.11 void DeviceProxy::poll_command(const char *cmd_name, int period)

Idem previous call

6.1.8.12 void DeviceProxy::poll_attribute(string &attr_name, int period)

Add the attribute "attr_name" to the list of polled attributes. The polling period is specified by "period" (in
mS). If the attribute is already polled, this method will update the polling period according to "period".

6.1.8.13 void DeviceProxy::poll_attribute(const char *attr_name, int period)

Idem previous call

6.1.8.14 void DeviceProxy::stop_poll_command(string &cmd_name)

Remove command "cmd_name" from the list of polled command.

6.1.8.15 void DeviceProxy::stop_poll_command(const char *cmd_name)

Idem previous call

6.1.8.16 void DeviceProxy::stop_poll_attribute(string &attr_name)

Remove attribute "attr_name" from the list of polled attributes.

6.1.8.17 void DeviceProxy::stop_poll_attribute(const char *attr_name)

Idem previous call

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 176

6.1.9 Event related methods
6.1.9.1 int DeviceProxy::subscribe_event(const string &attribute, EventType event, CallBack *cb,

const vector<string> &filters)

The client call to subscribe for event reception in the push model. The client implements a callback method
which is triggered when the event is received. Filtering is done based on the reason specified and the event
type. For example when reading the state and the reason specified is "change" the event will be fired only
when the state changes. Events consist of an attribute name and the event reason. A standard set of reasons
are implemented by the system, additional device specific reasons can be implemented by device servers
programmers.

The attribute parameter is the device attribute name which will be sent as an event e.g. “current”, event
parameter is the event reason and must be on the enumerated values:

• Tango::CHANGE_EVENT

• Tango::PERIODIC_EVENT

• Tango::ARCHIVE_EVENT

• Tango::ATTR_CONF_EVENT

• Tango::DATA_READY_EVENT

• Tango::USER_EVENT

cb is a pointer to a class inheriting from the Tango CallBack class and implementing a push_event() method,
filters is a variable list of name,value pairs which define additional filters for events.

The subscribe_event() call returns an event id which has to be specified when unsubscribing from this
event. Please, note that the cb parameter is a pointer. The lifetime of the pointed to object must at least
be equal to the time when events are requested because only the pointer is stored into the event machinery.
The same thing is true for the DeviceProxy instance on which the subscribe_event() method is called.

Exception: EventSystemFailed

6.1.9.2 int DeviceProxy::subscribe_event(const string &attribute, EventType event, CallBack *cb,
const vector<string> &filters, bool stateless)

This subscribe event method has the same functionality as described in the last section. It adds an additional
flag called stateless. When the stateless flag is set to false, an exception will be thrown when the event
subscription encounters a problem.

With the stateless flag set to true, the event subscription will always succeed, even if the corresponding
device server is not running. The keep alive thread will try every 10 seconds to subscribe for the specified
event. At every subscription retry, a callback is executed which contains the corresponding exception.

Exception: EventSystemFailed

6.1.9.3 int DeviceProxy::subscribe_event(const string &attribute, EventType event, int event_queue_size,
const vector<string> &filters, bool stateless)

The client call to subscribe for event reception in the pull model. Instead of a callback method the client
has to specify the size of the event reception buffer.

The event reception buffer is implemented as a round robin buffer. This way the client can set-up
different ways to receive events.

• Event reception buffer size = 1 : The client is interested only in the value of the last event received.
All other events that have been received since the last reading are discarded.

• Event reception buffer size > 1 : The client has chosen to keep an event history of a given size. When
more events arrive since the last reading, older events will be discarded.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 177

• Event reception buffer size = ALL_EVENTS : The client buffers all received events. The buffer size
is unlimited and only restricted by the available memory for the client.

All other parameters are similar to the descriptions given in the last two sections.
Exception: EventSystemFailed

6.1.9.4 void DeviceProxy::unsubscribe_event(int event_id)

Unsubscribe a client from receiving the event specified by event_id. event_id is the event identifier returned
by the DeviceProxy::subscribe_event() method.

Exception: EventSystemFailed

6.1.9.5 void DeviceProxy::get_events(int event_id, CallBack *cb)

The method extracts all waiting events from the event reception buffer and executes the callback method
cb for every event. During event subscription the client must have chosen the pull model for this event.
event_id is the event identifier returned by the DeviceProxy::subscribe_event() method.

Exception: EventSystemFailed

6.1.9.6 void DeviceProxy::get_events(int event_id, EventDataList &event_list)

The method extracts all waiting events from the event reception buffer. The returned event_list is a vector
of EventData pointers. The EventData object contains the event information as for the callback methods.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the DeviceProxy::subscribe_event() method.

Exception: EventSystemFailed

6.1.9.7 void DeviceProxy::get_events(int event_id, AttrConfEventDataList &event_list)

The method extracts all waiting attribute configuration events from the event reception buffer. The returned
event_list is a vector of AttrConfEventData pointers. The AttrConfEventData object contains the event
information as for the callback methods.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the DeviceProxy::subscribe_event() method.

Exception: EventSystemFailed

6.1.9.8 void DeviceProxy::get_events(int event_id, DataReadyEventDataList &event_list)

The method extracts all waiting attribute configuration events from the event reception buffer. The returned
event_list is a vector of DataReadyEventData pointers. The DataReadyEventData object contains the event
information as for the callback methods.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the DeviceProxy::subscribe_event() method.

Exception: EventSystemFailed

6.1.9.9 int DeviceProxy::event_queue_size(int event_id)

Returns the number of stored events in the event reception buffer. After every call to DeviceProxy:get_events(),
the event queue size is 0.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the DeviceProxy::subscribe_event() method.

Exception: EventSystemFailed

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 178

6.1.9.10 TimeVal DeviceProxy::get_last_event_date(int event_id)

Returns the arrival time of the last event stored in the event reception buffer. After every call to Device-
Proxy:get_events(), the event reception buffer is empty. In this case an exception will be returned.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the DeviceProxy::subscribe_event() method.

Exception: EventSystemFailed

6.1.9.11 bool DeviceProxy::is_event_queue_empty(int event_id)

Returns true when the event reception buffer is empty.
During event subscription the client must have chosen the pull model for this event. event_id is the

event identifier returned by the DeviceProxy::subscribe_event() method.
Exception: EventSystemFailed

6.1.10 Property related methods
6.1.10.1 void DeviceProxy::get_property (string&, DbData&)

Get a single property for a device. The property to get is specified as a string. Refer to DbDevice::get_property()
and DbData sections below for details on the DbData type.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.1.10.2 void DeviceProxy::get_property (vector<string>&, DbData&)

Get a list of properties for a device. The properties to get are specified as a vector of strings. Refer to
DbDevice::get_property() and DbData sections below for details on the DbData type.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.1.10.3 void DeviceProxy::get_property(DbData&)

Get property(ies) for a device. Properties to get are specified using the DbData type. Refer to DbDe-
vice::get_property() and DbData sections below for details.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.1.10.4 void DeviceProxy::put_property(DbData&)

Put property(ies) for a device. Properties to put are specified using the DbData type. Refer to DbDe-
vice::put_property() and DbData sections below for details.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.1.10.5 void DeviceProxy::delete_property (string&)

Delete a single property for a device. The property to delete is specified as a string.
Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),

DevFailed from database device

6.1.10.6 void DeviceProxy::delete_property (vector<string>&)

Delete a list of properties for a device. The properties to delete are specified as a vector of strings.
Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),

DevFailed from database device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 179

6.1.10.7 void DeviceProxy::delete_property(DbData&)

Delete property(ies) for a device. Properties to delete are specified using the DbData type. Refer to DbDe-
vice::get_property() and DbData sections below for details.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.1.10.8 void DeviceProxy::get_property_list(const string &filter,vector<string> &prop_list)

Get the list of property names for the device. The parameter filter allows the user to filter the returned name
list. The wildcard character is ’*’. Only one wildcard character is allowed in the filter parameter. The name
list is returned in the vector of strings passed as the method second argument.

Exception: NonDbDevice, WrongNameSyntax, ConnectionFailed (with database), Communication-
Failed (with database), DevFailed from database device

6.1.11 Logging related methods
6.1.11.1 void DeviceProxy::add_logging_target(const string &target_type_target_name)

Adds a new logging target to the device. The target_type_target_name input parameter must follow the
format: target_type::target_name. Supported target types are: console, file and device. For a device target,
the target_name part of the target_type_target_name parameter must contain the name of a log consumer
device (as defined in A.8). For a file target, target_name is the full path to the file to log to. If omitted, the
device’s name is used to build the file name (which is something like domain_family_member.log). Finally,
the target_name part of the target_type_target_name input parameter is ignored in case of a console target
and can be omitted.

Exception: DevFailed from device

6.1.11.2 void DeviceProxy::add_logging_target (const char *target_type_target_name)

Idem previous call

6.1.11.3 void DeviceProxy::remove_logging_target(const string &target_type_target_name)

Removes a logging target from the device’s target list. The target_type_target_name input parameter must
follow the format: target_type::target_name. Supported target types are: console, file and device. For a
device target, the target_name part of the target_type_target_name parameter must contain the name of a
log consumer device (as defined in). For a file target, target_name is the full path to the file to remove. If
omitted, the default log file is removed. Finally, the target_name part of the target_type_target_name input
parameter is ignored in case of a console target and can be omitted.

If target_name is set to "*", all targets of the specified target_type are removed.

6.1.11.4 void DeviceProxy::remove_logging_target (const char *target_type_target_name)

Idem previous call

6.1.11.5 vector<string> DeviceProxy::get_logging_target ()

Returns a vector of string containing the current device’s logging targets. Each vector element has the
following format: target_type::target_name. An empty vector is returned is the device has no logging
targets.

6.1.11.6 int DeviceProxy::get_logging_level ()

Returns the current device’s logging level (0=OFF, 1=FATAL, 2=ERROR, 3=WARNING, 4=INFO, 5=DE-
BUG).

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 180

6.1.11.7 void DeviceProxy::set_logging_level (int level)

Changes the device’s logging level. (0=OFF, 1=FATAL, 2=ERROR, 3=WARNING, 4=INFO, 5=DEBUG).

6.1.12 Locking related methods
6.1.12.1 void DeviceProxy::lock(int lock_validity = 10)

Lock a device. The lock_validity is the time (in seconds) the lock is kept valid after the previous lock call.
A default value of 10 seconds is provided and should be fine in most cases. In case it is necessary to change
the lock validity, it’s not possible to ask for a validity less than a minimum value set to 2 seconds. The
library provided an automatic system to periodically re lock the device until an unlock call. No code is
needed to start/stop this automatic re-locking system. The locking system is re-entrant. It is then allowed
to call this method on a device already locked by the same process. The locking system has the following
features:

• It is impossible to lock the database device or any device server process admin device

• Destroying a locked DeviceProxy unlocks the device

• Restarting a locked device keeps the lock

• It is impossible to restart a device locked by someone else

• Restarting a server breaks the lock

A locked device is protected against the following calls when executed by another client:

• command_inout call except for device state and status requested via command and for the set of
commands defined as allowed following the definition of allowed command in the Tango control
access schema.

• write_attribute call

• write_read_attribute call

• set_attribute_config call

6.1.12.2 void DeviceProxy::unlock(bool force = false)

Unlock a device. If used, the method argument provides a back door on the locking system. If this argument
is set to true, the device will be unlocked even if the caller is not the locker. This feature is provided for
administration purpopse and should be used very carefully. If this feature is used, the locker will receive a
DeviceUnlocked during the next call which is normally protected by the locking Tango system.

6.1.12.3 string DeviceProxy::locking_status()

This method returns a plain string describing the device locking status. This string can be:

• "Device <device name> is not locked" in case the device is not locked

• "Device <device name> is locked by CPP or Python client with PID <pid> from host <host name>"
in case the device is locked by a CPP client

• "Device <device name> is locked by JAVA client class <main class> from host <host name>" in case
the device is locked by a JAVA client

6.1.12.4 bool DeviceProxy::is_locked()

Returns true if the device is locked. Otherwise, returns false.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 181

6.1.12.5 bool DeviceProxy::is_locked_by_me()

Returns true if the device is locked by the caller. Otherwise, returns false (device not locked or locked by
someone else)

6.1.12.6 bool DeviceProxy::get_locker(LockerInfo &li)

If the device is locked, this method returns true an set some locker process informations in the structure
passed as argument. If the device is not locked, the method returns false. The LockerInfo structure defini-
tion is

typedef union
{

pid_t LockerPid;
unsigned long UUID[4];

}LockerId;

enum LockerLanguage
{

CPP,
JAVA

};

struct LockerInfo
{

LockerLanguage ll;
LockerId li;
string locker_host;
string locker_class;

};

The structure ll field is set to either CPP or JAVA depending on the locker process language. In case
of CPP client, the li union is set to the locker process pid (LockerPid field). In case of Java client, it is set
to the Java client UUID (Universal Uniq IDentifier) in the UUID field. The locker_host field is initialised
with the host name where the locker process is running (or its IP adress as a string if it is not possiblr to get
the name associated with this address). The locker_class field is set to the Java virtual machine main class
name when the locker client process is written in Java. For CPP client, it is set to the string "Not defined".

6.2 Tango::DeviceData
This is the fundamental type for sending and receiving data from device commands. The values can be
inserted and extracted using the operators << and >> respectively and insert() for mixed data types. A
status flag indicates if there is data in the DbDatum object or not. An additional flag allows the user to
activate exceptions.

6.2.1 Operators
The insert and extract operators are specified for the following C++ types :

1. bool

2. short

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 182

3. unsigned short

4. DevLong

5. DevULong

6. DevLong64

7. DevULong64

8. float

9. double

10. string

11. char* (insert only)

12. const char *

13. vector<unsigned char>

14. vector<string>

15. vector<short>

16. vector<unsigned short>

17. vector<DevLong>

18. vector<DevULong>

19. vector<DevLong64>

20. vector<DevULong64>

21. vector<float>

22. vector<double>

Operators exist for inserting and extracting the native TANGO CORBA sequence types. These can be
useful for programmers who want to use the TANGO api internally in their device servers and do not want
to convert from CORBA to C++ types. Insert and extract operators exist for the following types :

1. DevVarUCharArray * (const DevVarUCharArray * for extraction)

2. DevVarShortArray * (const DevVarShortArray * for extraction)

3. DevVarUShortArray * (const DevVarUShortArray * for extraction)

4. DevVarLongArray * (const DevVarLongArray * for extraction)

5. DevVarULongArray * (const DevVarULongArray * for extraction)

6. DevVarLong64Array * (const DevVarLong64Array * for extraction)

7. DevVarULong64Array * (const DevVarULong64Array * for extraction)

8. DevVarFloatArray * (const DevVarFloatArray * for extraction)

9. DevVarDoubleArray * (const DevVarDoubleArray * for extraction)

10. DevVarStringArray * (const DevVarStringArray * for extraction)

11. DevVarLongStringArray * (const DevVarLongStringArray * for extraction)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 183

12. DevVarDoubleStringArray * (const DevVarDoubleStringArray * for extraction)

Note :
Insertion by pointers takes full ownership of the pointed to memory. The insertion copy the data in
the DeviceData object and delete the pointed to memory. Therefore, the memory is not more usable
after the insertion. Also note that when using extraction by pointers, the pointed to memory is inside
the DeviceData object and its lifetime is the same than the DeviceData object lifetime.

Operators also exist for inserting TANGO CORBA sequence type by reference. The insertion copy the
data into the DeviceData object. Insert operator exist for the following types :

1. DevVarUCharArray &

2. DevVarShortArray &

3. DevVarUShortArray &

4. DevVarLongArray &

5. DevVarULongArray &

6. DevVarLong64Array &

7. DevVarULong64Array &

8. DevVarFloatArray &

9. DevVarDoubleArray &

10. DevVarStringArray &

11. DevVarLongStringArray &

12. DevVarDoubleStringArray &

Additional methods exist for inserting a mixture of strings and long (Tango::DevVarLongStringArray) and
string and doubles (Tango::DevVarDoubleStringArray). These are :

1. insert(vector<long>&, vector<string>&)

2. insert(vector<double>&, vector<string>&)

3. extract(vector<long>&, vector<string>&)

4. extract(vector<double>&, vector<string>&)

All the extraction methods returns a boolean set to false if the extraction has failed (empty DeviceData,
wrong data type...)
Special care has been taken to avoid memory copy between the network layer and the user application.
Nevertheless, C++ vector types are not the CORBA native type and one copy is unavoidable when using
vectors. Using the native TANGO CORBA sequence types avoid any copy. When using these TANGO
CORBA sequence types, insertion into the DeviceData object consumes the memory pointed to by the
pointer. After the insertion, it is not necessary to delete the memory. It will be done by the destruction of
the DeviceData object. For extraction, the pointer used for the extraction points into memory inside the
DeviceData object and you should not delete it
Here is an example of creating, inserting and extracting some data type from/into DeviceData object :

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 184

DeviceData my_short, my_long, my_string;
DeviceData my_float_vector, my_double_vector;
string a_string;
short a_short;
DevLong a_long;
vector<float> a_float_vector;
vector<double> a_double_vector;
my_short << 100; // insert a short
my_short >> a_short; // extract a short
my_long << 1000; // insert a long
my_long >> a_long; // extract a long
my_string << string(“estas lista a bailar el tango ?”); // insert a string
my_string >> a_string; // extract a string
my_float_vector << a_float_vector // insert a vector of floats
my_float_vector >> a_float_vector; // extract a vector of floats
my_double_vector << a_double_vector; // insert a vector of doubles
my_double_vector >> a_double_vector; // extract a vector of doubles
//
// Example of memory management with TANGO sequence types without memory leaks
//
for (int i = 0;i < 10;i++)
{

DeviceData din,dout;
DevVarLongArray *in = new DevVarLongArray();
in->length(2);
(*in)[0] = 2;
(*in)[1] = 4;
din << in;
try
{

dout = device->command_inout(“Cmd”,din);
}
catch(DevFailed &e)
{

....
}
const DevVarLongArray *out;
dout >> out;
cout << “Received value = “ << (*out)[0];

}

Exception: WrongData if requested

6.2.2 bool DeviceData::is_empty()
is_empty() is a boolean method which returns true or false depending on whether the DeviceData object
contains data or not. It can be used to test whether the DeviceData has been initialized or not e.g.

string string_read;

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 185

DeviceData sl_read = my_device->command_inout(“ReadLine”);
if (! sl_read.is_empty())
{

sl_read >> string_read;
}
else
{

cout << “ no data read from serial line !” << endl;
}

Exception: WrongData if requested

6.2.3 int DeviceData::get_type()
This method returns the Tango data type of the data inside the DeviceData object

6.2.4 void DeviceData::exceptions(bitset<DeviceData::numFlags>)
Is a method which allows the user to switch on/off exception throwing when trying to extract data from an
empty DeviceData object or using a wrong data type. The default is to not throw exception. The following
flags are supported :

1. isempty_flag - throw a WrongData exception (reason = API_EmptyDeviceData) if user tries to ex-
tract data from an empty DeviceData object

2. wrongtype_flag - throw a WrongData exception (reason = API_IncompatibleCmdArgumentType)
if user tries to extract data with a type different than the type used for insertion

6.2.5 bitset<DeviceData::numFlags> exceptions()
Returns the whole exception flags.

6.2.6 void DeviceData::reset_exceptions(DeviceData::except_flags fl)
Resets one exception flag

6.2.7 void DeviceData::set_exceptions(DeviceData::except_flags fl)
Sets one exception flag

The following is an example of how to use these exceptions related methods

1 DeviceData da;
2
3 bitset<DeviceData::numFlags> bs = da.exceptions();
4 cout << "bs = " << bs << endl;
5
6 da.set_exceptions(DeviceData::wrongtype_flag);
7 bs = da.exceptions();
8
9 cout << "bs = " << bs << endl;

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 186

6.2.8 ostream &operator<<(ostream &, DeviceData &)
Is an utility function to easily print the contents of a DeviceData object. This function knows all types
which could be inserted in a DeviceData object and print them accordingly. A special string is printed if
the DeviceData object is empty

DeviceProxy *dev = new DeviceProxy(“...”);
DeviceData out;
out = dev->command_inout(“MyCommand”);
cout << “Command returned: ” << out << endl;

6.3 Tango::DeviceDataHistory
This is the fundamental type for receiving data from device command polling buffers. This class inherits
from the Tango::DeviceData class. One instance of this class is created for each command result history.
Within this class, you find the command result data or the exception parameters, a flag indicating if the
command has failed when it was invoked by the device server polling thread and the date when the com-
mand was executed. For history calls, it is not possible to returns command error as exception. See chapter
on Advanced Features for all details regarding device polling. On top of the methods inherited from the
DeviceData class, it offers the following methods

6.3.1 bool DeviceDataHistory::has_failed()
Returns true if the corresponding command has failed when it was executed by the device server polling
thread. Otherwise returns false (amazing!)

Exception: none

6.3.2 TimeVal &DeviceDataHistory::get_date()
Returns the date when the device server polling thread has executed the command.

Exception: none

6.3.3 const DevErrorList &DeviceDataHistory::get_err_stack()
Return the error stack recorded by the device server polling thread in case of the command failed when it
was invoked.

Exception: none

6.3.4 ostream &operator<<(ostream &, DeviceDataHistory &)
Is an utility function to easily print the contents of a DeviceDataHistory object. This function knows all
types which could be inserted in a DeviceDataHistory object and print them accordingly. It also prints date
and error stack in case the command returned an error.

DeviceProxy *dev = new DeviceProxy(“...”);
int hist_depth = 4;
vector<DeviceDataHistory> *hist;
hist = dev->command_history(“MyCommand”,hist_depth);
for (int i = 0;i < hist_depth;i++)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 187

{
cout << (*hist)[i] << endl;

}
delete hist;

6.4 Tango::DeviceAttribute
This is the fundamental type for sending and receiving data to and from device attributes. The values can be
inserted and extracted using the operators << and >> respectively and insert() for mixed data types. There
are two ways to check if the extraction operator succeed :

1. By testing the extractor operators return value. All the extractors operator returns a boolean value set
to false in case of problem.

2. By asking the DeviceAttribute object to throw exception in case of problem. By default, DeviceAt-
tribute throws exception :

(a) when the user try to extract data and the server reported an error when the attribute was read.

(b) When the user try to extract data from an empty DeviceAttribute

6.4.1 Constructors
Many constructors have been written for this class. The following constructors exist :

1. The C++ basic constructors

(a) DeviceAttribute();

(b) DeviceAttribute(const DeviceAttribute&);

2. Constructors for scalar type with name as C++ string or "const char *"

(a) DeviceAttribute(string &, bool);

(b) DeviceAttribute(string &, short);
(c) DeviceAttribute(string &, DevLong);

(d) DeviceAttribute(string &, DevLong64);

(e) DeviceAttribute(string &, float);

(f) DeviceAttribute(string &, double);

(g) DeviceAttribute(string &, unsigned char);

(h) DeviceAttribute(string &, unsigned short);

(i) DeviceAttribute(string &, DevULong);

(j) DeviceAttribute(string &, DevULong64);

(k) DeviceAttribute(string &, string &);

(l) DeviceAttribute(string &, DevState);

(m) DeviceAttribute(string &, DevEncoded &);

(n) DeviceAttribute(const char *, bool);

(o) DeviceAttribute(const char *, short);
(p) DeviceAttribute(const char *, DevLong);

(q) DeviceAttribute(const char *, DevLong64);

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 188

(r) DeviceAttribute(const char *, float);
(s) DeviceAttribute(const char *, double);

(t) DeviceAttribute(const char *, unsigned char);
(u) DeviceAttribute(const char *, unsigned short);

(v) DeviceAttribute(const char *, DevULong);

(w) DeviceAttribute(const char *, DevULong64);

(x) DeviceAttribute(const char *, string &);

(y) DeviceAttribute(const char *, DevState);

(z) DeviceAttribute(const char *,DevEncoded &);

3. Constructors for C++ vector types (for spectrum attribute) with name as C++ string or "const char *"

(a) DeviceAttribute(string &, vector<bool> &);

(b) DeviceAttribute(string &, vector<short> &);
(c) DeviceAttribute(string &, vector<DevLong> &);

(d) DeviceAttribute(string &, vector<DevLong64> &);

(e) DeviceAttribute(string &, vector<float> &);

(f) DeviceAttribute(string &, vector<double> &);

(g) DeviceAttribute(string &, vector<unsigned char> &);

(h) DeviceAttribute(string &, vector<unsigned short> &);

(i) DeviceAttribute(string &, vector<DevULong> &);

(j) DeviceAttribute(string &, vector<DevULong64> &);

(k) DeviceAttribute(string &, vector<string> &);

(l) DeviceAttribute(string &, vector<DevState> &);

(m) DeviceAttribute(const char *, vector<bool> &);

(n) DeviceAttribute(const char *, vector<short> &);
(o) DeviceAttribute(const char *, vector<DevLong> &);

(p) DeviceAttribute(const char *, vector<DevLong64> &);

(q) DeviceAttribute(const char *, vector<float> &);
(r) DeviceAttribute(const char *, vector<double> &);

(s) DeviceAttribute(const char *, vector<unsigned char> &);
(t) DeviceAttribute(const char *, vector<unsigned short> &);

(u) DeviceAttribute(const char *, vector<DevULong> &);

(v) DeviceAttribute(const char *, vector<DevULong64> &);

(w) DeviceAttribute(const char *, vector<string> &);

(x) DeviceAttribute(const char *, vector<DevState> &);

4. Constructors for C++ vector types (for image attribute) with name as C++ string or "const char
*". These constructors have two more parameters allowing the user to define the x and y image
dimensions.

(a) DeviceAttribute(string &, vector<bool> &, int, int);

(b) DeviceAttribute(string &, vector<short> &, int, int);
(c) DeviceAttribute(string &, vector<DevLong> &, int, int);

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 189

(d) DeviceAttribute(string &, vector<DevLong64> &, int, int);

(e) DeviceAttribute(string &, vector<float> &, int, int);

(f) DeviceAttribute(string &, vector<double> &, int, int);

(g) DeviceAttribute(string &, vector<unsigned char> &, int, int);

(h) DeviceAttribute(string &, vector<unsigned short> &, int, int);

(i) DeviceAttribute(string &, vector<DevULong> &, int, int);

(j) DeviceAttribute(string &, vector<DevULong64> &, int, int);

(k) DeviceAttribute(string &, vector<string> &, int, int);

(l) DeviceAttribute(string &, vector<DevState> &, int, int);

(m) DeviceAttribute(const char *, vector<bool> &, int, int);

(n) DeviceAttribute(const char *, vector<short> &, int, int);
(o) DeviceAttribute(const char *, vector<DevLong> &, int, int);

(p) DeviceAttribute(const char *, vector<DevLong64> &, int, int);

(q) DeviceAttribute(const char *, vector<float> &, int, int);
(r) DeviceAttribute(const char *, vector<double> &, int, int);

(s) DeviceAttribute(const char *, vector<unsigned char> &, int, int);
(t) DeviceAttribute(const char *, vector<unsigned short> &, int, int);

(u) DeviceAttribute(const char *, vector<DevULong> &, int, int);

(v) DeviceAttribute(const char *, vector<DevULong64> &, int, int);

(w) DeviceAttribute(const char *, vector<string> & , int, int);

(x) DeviceAttribute(const char *, vector<DevState) &, int, int);

6.4.2 Data Extraction and Insertion : Operators and Methods
Special care has been taken to avoid memory copy between the network layer and the user application.
Nevertheless, C++ vector types are not the CORBA native type and one copy is unavoidable when using
vectors. Using the native TANGO CORBA sequence types in most cases avoid any copy but needs some
more care about memory usage.

• For insertion into DeviceAttribute instance from TANGO CORBA sequence pointers, the De-
viceAttribute object takes ownership of the pointed to memory. This means that the pointed
to memory will be freed when the DeviceAttribute object is destroyed or when another data is
inserted into it.

• The insertion into DeviceAttribute instance from TANGO CORBA sequence reference copy
the data into the DeviceAttribute object.

• For extraction into TANGO CORBA sequence types, the extraction method consumes the
memory allocated to store the data and it is the caller responsibility to delete this memory.

As it has been done for constructors, a lot of insertors operator for classical C++ data types have been
defined :

1. Insert operators for the following scalar C++ types :

(a) bool

(b) short

(c) DevLong

(d) DevLong64

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 190

(e) float

(f) double

(g) unsigned char

(h) unsigned short

(i) DevULong

(j) DevULong64

(k) string

(l) DevState

(m) DevEncoded

(n) DevString

(o) const char *

2. Insert operators for the following C++ vector types for spectrum attributes :

(a) vector<bool>

(b) vector<short>

(c) vector<DevLong>

(d) vector<DevLong64>

(e) vector<float>

(f) vector<double>

(g) vector<unsigned char>

(h) vector<unsigned short>

(i) vector<DevULong>

(j) vector<DevULong64>

(k) vector<string>

(l) vector<DevState>

3. Insert methods for the DevEncoded data type

(a) insert(char *&, unsigned char *&, unsigned int)
The last argument is the size of the buffer passed to the method as its second argument

(b) insert(string &, vector<unsigned char &>)

4. Insert methods for the following C++ vector types for image attributes allowing the specification of
the x and y image dimensions :

(a) insert(vector<bool> &,int, int)

(b) insert(vector<short> &,int, int)

(c) insert(vector<DevLong> &,int, int)

(d) insert(vector<DevLong64> &,int, int)

(e) insert(vector<float> &,int, int)

(f) insert(vector<double> &,int, int)

(g) insert(vector<unsigned char> &,int, int)

(h) insert(vector<unsigned short> &,int, int)

(i) insert(vector<DevULong> &,int, int)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 191

(j) insert(vector<DevULong64> &,int, int)

(k) insert(vector<string> &,int, int)

(l) insert(vector<DevState> &,int, int)

Extractor operators are specified for the following C++ basic types

1. Extract operators for the following scalar C++ types :

(a) bool

(b) short

(c) DevLong

(d) DevLong64

(e) float

(f) double

(g) unsigned char

(h) unsigned short

(i) DevULong

(j) DevULong64

(k) string

(l) Tango::DevState

(m) Tango::DevEncoded

2. Extract operators for the following C++ vector types for spectrum and image attributes :

(a) vector<bool>

(b) vector<short>

(c) vector<DevLong>

(d) vector<DevLong64>

(e) vector<float>

(f) vector<double>

(g) vector<unsigned char>

(h) vector<unsigned short>

(i) vector<DevULong>

(j) vector<DevULong64>

(k) vector<string>

(l) vector<DevState>

3. Extract methods to extract only the read value of an attribute into a C++ vector. The dimension of
the read value can be read by using the methods get_dim_x() and get_dim_y() or get_r_dimension().
The methods use the same return values as the extraction operators with exceptions triggered by the
exception flags:

(a) bool DeviceAttribute::extract_read (vector<bool>&);

(b) bool DeviceAttribute::extract_read (vector<short>&);

(c) bool DeviceAttribute::extract_read (vector<DevLong>&);

(d) bool DeviceAttribute::extract_read (vector<DevLong64>&);

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 192

(e) bool DeviceAttribute::extract_read (vector<float>&);

(f) bool DeviceAttribute::extract_read (vector<double>&);

(g) bool DeviceAttribute::extract_read (vector<unsigned char>&);

(h) bool DeviceAttribute::extract_read (vector<unsigned short>&);

(i) bool DeviceAttribute::extract_read (vector<DevULong>&);

(j) bool DeviceAttribute::extract_read (vector<DevULong64>&);

(k) bool DeviceAttribute::extract_read (vector<string>&);

(l) bool DeviceAttribute::extract_read (vector<DevState>&);

(m) bool DeviceAttribute::extract_read(string &, vector<unsigned char> &);

4. Extract methods to extract only the set value of an attribute into a C++ vector. The dimension
of the set value can be read by using the methods get_written_dim_x() and get_written_dim_y()
or get_w_dimension(). The methods use the same return values as the extraction operators with
exceptions triggered by the exception flags:

(a) bool DeviceAttribute::extract_set (vector<bool>&);

(b) bool DeviceAttribute::extract_set (vector<short>&);

(c) bool DeviceAttribute::extract_set (vector<DevLong>&);

(d) bool DeviceAttribute::extract_set (vector<DevLong64>&);

(e) bool DeviceAttribute::extract_set (vector<float>&);

(f) bool DeviceAttribute::extract_set (vector<double>&);

(g) bool DeviceAttribute::extract_set (vector<unsigned char>&);

(h) bool DeviceAttribute::extract_set (vector<unsigned short>&);

(i) bool DeviceAttribute::extract_set (vector<DevULong>&);

(j) bool DeviceAttribute::extract_set (vector<DevULong64>&);

(k) bool DeviceAttribute::extract_set (vector<string>&);

(l) bool DeviceAttribute::extract_set (vector<DevState>&);

(m) bool DeviceAttribute::extract_set(string &, vector<unsigned char> &);

5. Special extract method for the Tango::DevEncoded data type

(a) bool DeviceAttribute::extract(const char *&, unsigned char *&, unsigned int &);
The last argument is the size of the buffer passed to the method as its second argument

(b) bool DeviceAttribute::extract(string &, vector<unsigned char> &);

Operators also exist for extracting some native TANGO CORBA sequence types. These can be useful for
programmers who want to use the TANGO api internally in their device servers and do not want to convert
from CORBA to C++ types.

1. Insert operators for spectrum attribute and for the following types by pointer :

(a) DevVarBooleanArray *

(b) DevVarShortArray *

(c) DevVarLongArray *

(d) DevVarLong64Array *

(e) DevVarFloatArray *

(f) DevVarDoubleArray *

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 193

(g) DevVarUCharArray *

(h) DevVarUShortArray *

(i) DevVarULongArray *

(j) DevVarULong64Array *

(k) DevVarStringArray *

(l) DevVarStateArray *

2. Insert operators for spectrum attribute and for the following types by reference :

(a) const DevVarBooleanArray &

(b) const DevVarShortArray &

(c) const DevVarLongArray &

(d) const DevVarLong64Array &

(e) const DevVarFloatArray &

(f) const DevVarDoubleArray &

(g) const DevVarUCharArray &

(h) const DevVarUShortArray &

(i) const DevVarULongArray &

(j) const DevVarULong64Array &

(k) const DevVarStringArray &

(l) const DevVarStateArray &

3. Insert methods for image attribute and pointers. These method allow the programmer to define the x
and y image dimensions. The following methods are defined :

(a) insert(DevVarBooleanArray *, int , int)

(b) insert(DevVarShortArray *, int , int)

(c) insert(DevVarLongArray *, int , int)

(d) insert(DevVarLong64Array *, int, int)

(e) insert(DevVarFloatArray *, int , int)

(f) insert(DevVarDoubleArray *, int , int)

(g) insert(DevVarUCharArray *, int , int)

(h) insert(DevVarUShortArray *, int , int)

(i) insert(DevVarULongArray *, int , int)

(j) insert(DevVarULong64Array *, int, int)

(k) insert(DevVarStringArray *, int , int)

(l) insert(DevVarStateArray *, int, int)

4. Insert methods for image attribute and reference. These method allow the programmer to define the
x and y image dimensions. The following methods are defined :

(a) insert(const DevVarBooleanArray &, int , int)

(b) insert(const DevVarShortArray &, int , int)

(c) insert(const DevVarLongArray &, int , int)

(d) insert(const DevVarLong64Array &, int, int)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 194

(e) insert(const DevVarFloatArray &, int , int)

(f) insert(const DevVarDoubleArray &, int , int)

(g) insert(const DevVarUCharArray &, int , int)

(h) insert(const DevVarUShortArray &, int , int)

(i) insert(const DevVarULongArray &, int , int)

(j) insert(const DevVarULong64Array &, int, int)

(k) insert(const DevVarStringArray &, int , int)

(l) insert(const DevVarStateArray &, int, int)

5. Extract operators for the following types :

(a) DevVarBooleanArray *

(b) DevVarShortArray *

(c) DevVarLongArray *

(d) DevVarLong64Array *

(e) DevVarFloatArray *

(f) DevVarDoubleArray *

(g) DevVarUCharArray *

(h) DevVarUShortArray *

(i) DevVarULongArray *

(j) DevVarULong64Array *

(k) DevVarStringArray *

(l) DevVarStateArray *

(m) DevVarEncodedArray *

Here is an example of creating, inserting and extracting some DeviceAttribute types :

DeviceAttribute my_short, my_long, my_string;
DeviceAttribute my_float_vector, my_double_vector;
string a_string;
short a_short;
DevLong a_long;
vector<float> a_float_vector;
vector<double> a_double_vector;
my_short << 100; // insert a short
my_short >> a_short; // extract a short
my_long << 1000; // insert a long
my_long >> a_long; // extract a DevLong
my_string << string("estas lista a bailar el tango ?"); // insert a string
my_string >> a_string; // extract a string
my_float_vector << a_float_vector // insert a vector of floats
my_float_vector >> a_float_vector; // extract a vector of floats
my_double_vector << a_double_vector; // insert a vector of doubles
my_double_vector >> a_double_vector; // extract a vector of doubles
//
// Extract read and set value of an attribute separately
// and get their dimensions

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 195

//
vector<float> r_float_vector, w_float_vector;
my_float_vector.extract_read (r_float_vector) // extract read values
int dim_x = my_float_vector.get_dim_x(); // get x dimension
int dim_y = my_float_vector.get_dim_y(); // get y dimension
my_float_vector.extract_set (w_float_vector) // extract set values
int w_dim_x = my_float_vector.get_written_dim_x(); // get x dimension
int W_dim_y = my_float_vector.get_written_dim_y(); // get y dimension
//
// Example of memory management with TANGO sequence types without memory leaks
//
for (int i = 0;i < 10;i++)
{

DeviceAttribute da;
DevVarLongArray *out;
try
{

da = device->read_attribute("Attr");
da >> out;

}
catch(DevFailed &e)
{

....
}
cout << "Received value = " << (*out)[0];
delete out;

}

Exception: WrongData if requested

6.4.3 bool DeviceAttribute::is_empty()
is_empty() is a boolean method which returns true or false depending on whether the DeviceAttribute
object contains data or not. It can be used to test whether the DeviceAttribute has been initialized or not
e.g.

string parity;
DeviceAttribute sl_parity = my_device->read_attribute("parity");
if (! sl_read.is_empty())
{

sl_parity >> parity;
}
else
{

cout << " no parity attribute defined for serial line !" << endl;
}

Exception: WrongData if requested

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 196

6.4.4 void DeviceAttribute::exceptions(bitset<DeviceAttribute::numFlags>)
Is a method which allows the user to switch on/off exception throwing when trying to extract data from an
empty DeviceAttribute object or with a wrong data type. The following flags are supported :

1. isempty_flag - throw a WrongData exception (reason= API_EmptyDeviceAttribute) if user tries to
extract data from an empty DeviceAttribute object. By default, this flag is set.

2. wrongtype_flag - throw a WrongData exception (reason = API_IncompatibleAttrArgumentType) if
user tries to extract data with a type different than the type used for insertion. By default, this flag is
not set.

3. failed_flag - throw an exception when the user try to extract data from the DeviceAttribute object and
an error was reported by the server when the user try to read the attribute. The type of the exception
thrown is the type of the error reported by the server. By default, this flag is set.

4. unknown_format_flag - throw an exception when the user try to get the attribute data format from
the DeviceAttribute object when this information is not yet available. This information is available
only after the read_attribute call has been sucessfully executed. The type of the exception thrown is
WrongData exception (reason = API_EmptyDeviceAttribute). By default, this flag is not set.

6.4.5 bitset<DeviceAttribute::numFlags> exceptions()
Return the whole exception flags.

6.4.6 void DeviceAttribute::reset_exceptions(DeviceAttribute::except_flags fl)
Reset one exception flag

6.4.7 void DeviceAttribute::set_exceptions(DeviceAttribute::except_flags fl)
Set one exception flag

The following is an example of how to use these exceptions related methods

1 DeviceAttribute da;
2
3 bitset<DeviceAttribute::numFlags> bs = da.exceptions();
4 cout << "bs = " << bs << endl;
5
6 da.set_exceptions(DeviceAttribute::wrongtype_flag);
7 bs = da.exceptions();
8
9 cout << "bs = " << bs << endl;

6.4.8 bool DeviceAttribute::has_failed()
Returns a boolean set to true if the server report an error when the attribute was read.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 197

6.4.9 const DevErrorList &DeviceAttribute::get_err_stack()
Returns the error stack reported by the server when the attribute was read.

The following is an example of the three available ways to get data out of a DeviceAttribute object.

1 DeviceAttribute da;
2 vector<short> attr_data;
3
4 try
5 {
6 da = device->read_attribute("Attr");
7 da >> attr_data;
8 }
9 catch (DevFailed &e)
10 {
11
12 }
13
14
15 --
16
17 DeviceAttribute da;
18 vector<short> attr_data;
19
20 da.reset_exceptions(DeviceAttribute::failed_flag);
21
22 try
23 {
24 da = device->read_attribute("Attr");
25 }
26 catch (DevFailed &e)
27 {
28
29 }
30
31 if (!(da >> attr_data))
32 {
33 DevErrorList &err = da.get_err_stack();
34
35 }
36 else
37 {
38
39 }
40
41 --
42
43 DeviceAttribute da;
44 vector<short> attr_data;
45
46 try
47 {
48 da = device->read_attribute("Attr");

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 198

49 }
50 catch (DevFailed &e)
51 {
52
53 }
54
55 if (da.has_failed())
56 {
57 DevErrorList &err = da.get_err_stack();
58
59 }
60 else
61 {
62 da >> attr_data;
63 }

The first way is coded between lines 1 and 13. It uses the default behaviour of the DeviceAttribute
object which is to throw an exception when the user try to extract data when the server reports an error
when the attribute was read. The second way is coded between line 17 and 40. The DeviceAttribute object
now does not throw "failed" exception any more and the return value of the extractor operator is checked.
The third way is coded between line 43 and 63. In this case, the attribute data validity is checked before
trying to extract them.

6.4.10 string &DeviceAttribute::get_name()
Returns the name of the attribute

6.4.11 void DeviceAttribute::set_name(string &)
Sets attribute name

6.4.12 void DeviceAttribute::set_name(const char *)
Sets attribute name

6.4.13 AttrQuality &DeviceAttribute::get_quality()
Returns the quality of the attribute: an enumerate type which can be one of {ATTR_VALID, ATTR_INVALID,
ATTR_ALARM, ATTR_CHANGING or ATTR_WARNING}.

6.4.14 int DeviceAttribute::get_dim_x()
Returns the attribute read x dimension

6.4.15 int DeviceAttribute::get_dim_y()
Returns the attribute read y dimension

6.4.16 int DeviceAttribute::get_written_dim_x()
Returns the attribute write x dimension

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 199

6.4.17 int DeviceAttribute::get_written_dim_y()
Returns the attribute write y dimension

6.4.18 AttributeDimension DeviceAttribute::get_r_dimension()
Returns the attribute read dimension

6.4.19 AttributeDimension DeviceAttribute::get_w_dimension()
Returns the attribute write dimension

6.4.20 long DeviceAttribute::get_nb_read()
Returns the number of read values

6.4.21 long DeviceAttribute::get_nb_written()
Returns the number of written values. Here is an example of these last methods usage.

1 DeviceAttribute da;
2 vector<short> attr_data;
3
4 try
5 {
6 da = device->read_attribute("Attr");
7 da >> attr_data;
8 }
9 catch (DevFailed &e)
10 {
11
12 }
13
14 long read = da.get_nb_read();
15 long written = da.get_nb_written();
16
17 for (long i = 0;i < read;i++)
18 cout << "Read value " << i+1 << " = " << attr_data[i] << endl;
19
20 for (long j = 0; j < written;j++)
21 cout << "Last written value " << j+1 << " = " << attr_data[j + read] << endl;

6.4.22 TimeVal &DeviceAttribute::get_date()
Returns a reference to the time when the attribute was read in server

6.4.23 int DeviceAttribute::get_type()
Returns the type of the attribute data.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 200

6.4.24 AttrDataFormat DeviceAttribute::get_data_format()
Returns the attribute data format. Note that this information is valid only after the call to the device has
been executed. Otherwise the FMT_UNKNOWN value of the AttrDataFormat enumeration is returned or
an exception is thrown according to the object exception flags.

6.4.25 ostream &operator<<(ostream &, DeviceAttribute &)
Is an utility function to easily print the contents of a DeviceAttribute object. This function knows all types
which could be inserted in a DeviceAttribute object and print them accordingly if the data are valid. It also
prints the date returned within the attribute, the attribute name, the dim_x and dim_y attribute parameter
and its quality factor.

DeviceProxy *dev = new DeviceProxy("...");
DeviceAttribute attr;
attr = dev->read_attribute("MyAttribute");
cout << "Attribute returned: " << attr << endl;

6.5 Tango::DeviceAttributeHistory
This is the fundamental type for receiving data from device attribute polling buffers. This class inherits
from the Tango::DeviceAttribute class. One instance of this class is created for each attribute result history.
Within this class, you find the attribute result data or the exception parameters and a flag indicating if the
attribute has failed when it was invoked by the device server polling thread. For history calls, it is not
possible to returns attribute error as exception. See chapter on Advanced Features for all details regarding
device polling. On top of the methods inherited from the DeviceAttribute class, it offers the following
methods

6.5.1 ostream &operator<<(ostream &, DeviceAttributeHistory &)
Is an utility function to easily print the contents of a DeviceAttributeHistory object. This function knows
all types which could be inserted in a DeviceAttributeHistory object and print them accordingly. It also
prints date, attribute name, attribute dim_x and dim_y parameters, attribute quality factor and error stack
in case the attribute returned an error.

DeviceProxy *dev = new DeviceProxy(“...”);
int hist_depth = 4;
vector<DeviceAttributeHistory> *hist;
hist = dev->attribute_history(“MyAttribute”,hist_depth);
for (int i = 0;i < hist_depth;i++)
{

cout << (*hist)[i] << endl;
}
delete hist;

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 201

6.6 Tango::AttributeProxy()
The high level object which provides the client with an easy-to-use interface to TANGO device attributes.
AttributeProxy is a handle to the real Attribute (hence the name Proxy) and is not the real Attribute (of
course). The AttributeProxy manages timeouts, stateless connections (new AttributeProxy() nearly always
works), and reconnection if the device server is restarted.

6.6.1 Constructors
6.6.1.1 AttributeProxy::AttributeProxy(string &name)

Create an AttributeProxy to an attribute of the specified name. The constructor will connect to the TANGO
database, query for the device to which the attribute belongs to network address and build a connection
to this device. If the device to which the attribute belongs to is defined in the TANGO database but the
device server is not running, AttributeProxy will try to build a connection every time the client tries to
access the attribute. If an alias name is defined for the attribute, this alias name can be used to create
the AttributeProxy instance. If a device name alias is defined for the device, it can be used instead of the
three fields device name. If the device to which the attribute belongs to is not defined in the database, an
exception is thrown. Examples :

AttributeProxy *my_attr = new AttributeProxy("my/own/device/attr");
AttributeProxy *my_attr_bis = new AttributeProxy("attr_alias");
AttributeProxy *my_attr_ter = new AttributeProxy("dev_alias/attr");

See appendix on device/attribute naming for all details about Tango device or attribute naming syntax.
Exception: WrongNameSyntax, ConnectionFailed

6.6.1.2 AttributeProxy::AttributeProxy(const char *name)

Idem previous call

6.6.2 Miscellaneous methods
6.6.2.1 DevState AttributeProxy::state()

A method which returns the state of the device to which the attribute belongs to. This state is returned as a
Tango::DevState type. Example :

dev_state = my_attr->state() << endl;

Exception: ConnectionFailed, CommunicationFailed

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 202

6.6.2.2 string AttributeProxy::status()

A method which return the status of the device to which the attribute belongs to. The status is returned as
a string. Example :

cout << "device status" << my_attr->status() << endl;

Exception: ConnectionFailed, CommunicationFailed

6.6.2.3 int AttributeProxy::ping()

A method which sends a ping to the device to which the attribute belongs and returns the time elapsed in
microseconds. Example :

cout << "device ping took " << my_device->ping() << “ microseconds” << endl;

Exception: ConnectionFailed, CommunicationFailed

6.6.2.4 string AttributeProxy::name()

Returns the attribute name

6.6.2.5 DeviceProxy *get_device_proxy()

Returns the DeviceProxy instance used to communicate with the device to which the attributes belongs.

6.6.3 Synchronous related methods
6.6.3.1 AttributeInfo AttributeProxy::get_config()

Return the attribute configuration. AttributeInfo is a struct defined as follows :

typedef struct _AttributeInfo {
string name;
AttrWriteType writable;
AttrDataFormat data_format;
int data_type;
int max_dim_x;
int max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 203

string min_value;
string max_value;
string min_alarm;
string max_alarm;
string writable_attr_name;
vector<string> extensions;
Tango::DispLevel disp_level;

} AttributeInfo;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.6.3.2 void AttributeProxy::set_config(AttributeInfo &)

Change the attribute configuration.
Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.6.3.3 DeviceAttribute AttributeProxy::read()

Read the attribute. To extract the value you have to use the operator of the class DeviceAttribute which
corresponds to the data type of the attribute. NOTE: There is no automatic type conversion from the
attribute native type to user type e.g. if an attribute returns a short you cannot extract it as a double (this
will return 0) you have to extract it as a short.

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.6.3.4 void AttributeProxy::write(DeviceAttribute&)

Write the attribute. To insert the value to write you have to use the operator of the class DeviceAttribute
which corresponds to the data type of the attribute. NOTE: There is no automatic type conversion from the
user type to the attribute native type e.g. if an attribute expects a short you cannot insert it as a double (this
will throw an exception) you have to insert it as a short.

Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.6.3.5 DeviceAttribute AttributeProxy::write_read(DeviceAttribute&)

Write then read a single attribute in a single network call. By default (serialisation by device), the execution
of this call in the server can’t be interrupted by other clients. To insert/extract the value to write/read you
have to use the operator of the class DeviceAttribute which corresponds to the data type of the attribute.
NOTE: There is no automatic type conversion from the user type to the attribute native type e.g. if an
attribute expects a short you cannot insert it as a double (this will throw an exception) you have to insert it
as a short.

Exception: ConnectionFailed, CommunicationFailed, DeviceUnlocked, DevFailed from device

6.6.3.6 vector<DeviceAttributeHistory> *AttributeProxy::history(int)

Retrieve attribute history from the attribute polling buffer. The argument is the wanted history depth. This
method returns a vector of DeviceAttributeHistory types. This method allocates memory for the vector of
DeviceAttributeHistory returned to the caller. It is the caller responsibility to delete this memory. Class
DeviceAttributeHistory is detailed on chapter 6.5See chapter on Advanced Feature for all details regarding
polling.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 204

AttributeProxy attr = new AttributeProxy("my/own/device/Current");
vector<DeviceAttributeHistory> *hist;
hist = attr->history(5);
for (int i = 0;i < 5;i++)
{

bool fail = (*hist)[i].has_failed();
if (fail == false)
{

cout << "Attribute name = " << (*hist)[i].get_name() << endl;
cout << "Attribute quality factor = " << (*hist)[i].get_quality() << endl;
long value;
(*hist)[i] >> value;
cout << "Current = " << value << endl;

}
else
{

cout << "Attribute failed !" << endl;
cout << "Error level 0 desc = " << ((*hist)[i].get_err_stack())[0].desc << endl;

}
cout << "Date = " << (*hist)[i].get_date().tv_sec << endl;

}
delete hist;

Exception: NonSupportedFeature, ConnectionFailed, CommunicationFailed, DevFailed from device

6.6.4 Asynchronous methods
6.6.4.1 long AttributeProxy::read_asynch()

Read the attribute asynchronously (polling model). This call returns an asynchronous call identifier which
is needed to get the attribute value.

Exception: ConnectionFailed

6.6.4.2 DeviceAttribute *AttributeProxy::read_reply(long id)

Check if the answer of an asynchronous read is arrived (polling model). id is the asynchronous call identi-
fier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceAttribute object. If
the reply is an exception, it is re-thrown by this call. An exception is also thrown in case of the reply is not
yet arrived. To extract attribute value, you have to use the operator of the class DeviceAttribute which cor-
responds to the data type of the attribute. NOTE: There is no automatic type conversion from the attribute
native type to user type e.g. if an attribute returns a short you cannot extract it as a double, you have to
extract it as a short. Memory has been allocated for the DeviceAttribute object returned to the caller. This
is the caller responsibility to delete this memory.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.6.4.3 DeviceAttribute *AttributeProxy::read_reply(long id, long timeout)

Check if the answer of an asynchronous read is arrived (polling model). id is the asynchronous call iden-
tifier. If the reply is arrived and if it is a valid reply, it is returned to the caller in a DeviceAttribute object.
If the reply is an exception, it is re-thrown by this call. If the reply is not yet arrived, the call will wait

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 205

(blocking the process) for the time specified in timeout. If after timeout milliseconds, the reply is still not
there, an exception is thrown. If timeout is set to 0, the call waits until the reply arrived. To extract attribute
value, you have to use the operator of the class DeviceAttribute which corresponds to the data type of the
attribute. NOTE: There is no automatic type conversion from the attribute native type to user type e.g. if an
attribute returns a short you cannot extract it as a double, you have to extract it as a short. Memory has been
allocated for the DeviceAttribute object returned to the caller. This is the caller responsibility to delete this
memory.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.6.4.4 long AttributeProxy::write_asynch(DeviceAttribute &argin)

Write the attribute asynchronously (polling model). To insert the value to write you have to use the oper-
ator of the class DeviceAttribute which corresponds to the data type of the attribute. NOTE: There is no
automatic type conversion from the user type to the attribute native type e.g. if an attribute expects a short
you cannot insert it as a double (this will throw an exception) you have to insert it as a short. This call
returns an asynchronous call identifier which is needed to get the server reply.

Exception: ConnectionFailed

6.6.4.5 void AttributeProxy::write_reply(long id)

Check if the answer of an asynchronous write is arrived (polling model). id is the asynchronous call
identifier. If the reply is arrived and if it is a valid reply, the call returned. If the reply is an exception, it is
re-thrown by this call. An exception is also thrown in case of the reply is not yet arrived.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.6.4.6 void AttributeProxy::write_reply(long id, long timeout)

Check if the answer of an asynchronous write is arrived (polling model). id is the asynchronous call
identifier. If the reply is arrived and if it is a valid reply, the call returned. If the reply is an exception, it is
re-thrown by this call. If the reply is not yet arrived, the call will wait (blocking the process) for the time
specified in timeout. If after timeout milliseconds, the reply is still not there, an exception is thrown. If
timeout is set to 0, the call waits until the reply arrived.

Exception: AsynCall, AsynReplyNotArrived, CommunicationFailed, DevFailed from device

6.6.4.7 void AttributeProxy::read_asynch(CallBack &cb)

Read the attribute asynchronously using the callback model. The argument is a reference to a callback
object. This callback object should be an instance of a user class inheriting from the Tango::CallBack class
with the attr_read() method overloaded.

Exception: ConnectionFailed

6.6.4.8 void AttributeProxy::write_asynch(DeviceAttribute &argin, CallBack &cb)

Write the attribute asynchronously using the callback model. The argument is a reference to a callback
object. This callback object should be an instance of a user class inheriting from the Tango::CallBack class
with the attr_written() method overloaded.

Exception: ConnectionFailed

6.6.5 Polling related methods
6.6.5.1 bool AttributeProxy::is_polled()

Returns true if the attribute is polled. Otherwise, returns false.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 206

6.6.5.2 int AttributeProxy::get_poll_period()

Returns the attribute polling period in mS. If the attribute is not polled, it returns 0.

6.6.5.3 void AttributeProxy::poll(int period)

Add the attribute to the list of polled attributes. The polling period is specified by "period" (in mS). If the
attribute is already polled, this method will update the polling period according to "period".

6.6.5.4 void AttributeProxy::stop_poll()

Remove attribute from the list of polled attributes.

6.6.6 Event related methods
6.6.6.1 int AttributeProxy::subscribe_event(EventType event, CallBack *cb, const vector<string>

&filters)

The client call to subscribe for event reception in the push model. The client implements a callback method
which is triggered when the event is received either by polling or a dedicated thread. Filtering is done based
on the reason specified and the event type. For example when reading the state and the reason specified is
"change" the event will be fired only when the state changes. Events consist of an attribute name and the
event reason. A standard set of reasons are implemented by the system, additional device specific reasons
can be implemented by device servers programmers.

The event parameter is the event reason and must be on the enumerated values:

• Tango::CHANGE_EVENT

• Tango::PERIODIC_EVENT

• Tango::ARCHIVE_EVENT

• Tango::ATTR_CONF_EVENT

cb is a pointer to a class inheriting from the Tango CallBack class and implementing a push_event() method,
filters is a variable list of name,value pairs which define additional filters for events. The subscribe_event()
call returns an event id which has to be specified when unsubscribing from this event.

Exception: EventSystemFailed

6.6.6.2 int AttributeProxy::subscribe_event(EventType event, CallBack *cb, const vector<string>
&filters, bool stateless)

This subscribe event method has the same functionality as described in the last section. It adds an additional
flag called stateless. When the stateless flag is set to false, an exception will be thrown when the event
subscription encounters a problem.

With the stateless flag set to true, the event subscription will always succeed, even if the corresponding
device server is not running. The keep alive thread will try every 10 seconds to subscribe for the specified
event. At every subscription retry, a callback is executed which contains the corresponding exception.

Exception: EventSystemFailed

6.6.6.3 int AttributeProxy::subscribe_event(EventType event, int event_queue_size, const vector<string>
&filters, bool stateless)

The client call to subscribe for event reception in the pull model. Instead of a callback method the client
has to specify the size of the event reception buffer.

The event reception buffer is implemented as a round robin buffer. This way the client can set-up
different ways to receive events.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 207

Event reception buffer size = 1 : The client is interested only in the value of the last event received. All
other events that have been received since the last reading are discarded.

Event reception buffer size > 1 : The client has chosen to keep an event history of a given size. When
more events arrive since the last reading, older events will be discarded.

Event reception buffer size = ALL_EVENTS : The client buffers all received events. The buffer size is
unlimited and only restricted by the available memory for the client.

All other parameters are similar to the descriptions given in the last two sections.
Exception: EventSystemFailed

6.6.6.4 void AttributeProxy::unsubscribe_event(int event_id)

Unsubscribe a client from receiving the event specified by event_id. event_id is the event identifier returned
by the AttributeProxy::subscribe_event() method.

Exception: EventSystemFailed

6.6.6.5 void AttributeProxy::get_events(int event_id, CallBack *cb)

The method extracts all waiting events from the event reception buffer and executes the callback method
cb for every event. During event subscription the client must have chosen the pull model for this event.
event_id is the event identifier returned by the AttributeProxy::subscribe_event() method.

Exception: EventSystemFailed

6.6.6.6 void AttributeProxy::get_events(int event_id, EventDataList &event_list)

The method extracts all waiting events from the event reception buffer. The returned event_list is a vector
of EventData pointers. The EventData object contains the event information as for the callback methods.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the AttributeProxy::subscribe_event() method.

Exception: EventSystemFailed

6.6.6.7 void AttributeProxy::get_events(int event_id, AttrConfEventDataList &event_list)

The method extracts all waiting attribute configuration events from the event reception buffer. The returned
event_list is a vector of AttrConfEventData pointers. The AttrConfEventData object contains the event
information as for the callback methods.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the AttributeProxy::subscribe_event() method.

Exception: EventSystemFailed

6.6.6.8 int AttributeProxy::event_queue_size(int event_id)

Returns the number of stored events in the event reception buffer. After every call to DeviceProxy:get_events(),
the event queue size is 0.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the AttributeProxy::subscribe_event() method.

Exception: EventSystemFailed

6.6.6.9 TimeVal AttributeProxy::get_last_event_date(int event_id)

Returns the arrival time of the last event stored in the event reception buffer. After every call to Device-
Proxy:get_events(), the event reception buffer is empty. In this case an exception will be returned.

During event subscription the client must have chosen the pull model for this event. event_id is the
event identifier returned by the AttributeProxy::subscribe_event() method.

Exception: EventSystemFailed

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 208

6.6.6.10 bool AttributeProxy::is_event_queue_empty(int event_id)

Returns true when the event reception buffer is empty.
During event subscription the client must have chosen the pull model for this event. event_id is the

event identifier returned by the AttributeProxy::subscribe_event() method.
Exception: EventSystemFailed

6.6.7 Property related methods
6.6.7.1 void AttributeProxy::get_property (string&, DbData&)

Get a single property for the attribute. The property to get is specified as a string. Refer to DbDe-
vice::get_property() and DbData sections below for details on the DbData type.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.6.7.2 void AttributeProxy::get_property (vector<string>&, DbData&)

Get a list of properties for the attribute. The properties to get are specified as a vector of strings. Refer to
DbDevice::get_property() and DbData sections below for details on the DbData type.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.6.7.3 void AttributeProxy::get_property(DbData&)

Get property(ies) for the attribute. Properties to get are specified using the DbData type. Refer to DbDe-
vice::get_property() and DbData sections below for details.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.6.7.4 void AttributeProxy::put_property(DbData&)

Put property(ies) for an attribute. Properties to put are specified using the DbData type. Refer to DbDe-
vice::put_property() and DbData sections below for details.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.6.7.5 void AttributeProxy::delete_property (string&, DbData&)

Delete a single property for an attribute. The property to delete is specified as a string. Refer to DbDe-
vice::delete_property() and DbData sections below for details on the DbData type.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.6.7.6 void AttributeProxy::delete_property (vector<string>&, DbData&)

Delete a list of properties for an attribute. The properties to delete are specified as a vector of strings. Refer
to DbDevice::get_property() and DbData sections below for details on the DbData type.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 209

6.6.7.7 void AttributeProxy::delete_property(DbData&)

Delete property(ies) for an attribute. Properties to delete are specified using the DbData type. Refer to
DbDevice::get_property() and DbData sections below for details.

Exception: NonDbDevice, ConnectionFailed (with database), CommunicationFailed (with database),
DevFailed from database device

6.7 Tango::ApiUtil
This class is a singleton. Therefore, it is not necessary to create it. It will be automatically done. A static
method allows a user to retrieve the instance

6.7.1 static ApiUtil *ApiUtil::instance()
Return the ApiUtil singleton instance.

6.7.2 static void ApiUtil::cleanup()
Destroy the ApiUtil singleton instance.

6.7.3 long ApiUtil::pending_asynch_call(asyn_req_type req)
Return number of asynchronous pending requests (any device). The input parameter is an enumeration
with three values which are:

POLLING : Return only polling model asynchronous request number

CALL_BACK : Return only callback model asynchronous request number

ALL_ASYNCH : Return all asynchronous request number

Exception: None

6.7.4 void ApiUtil::get_asynch_replies()
Fire callback methods for all (any device) asynchronous requests (command and attribute) with already
arrived replied. Returns immediately if there is no replies already arrived or if there is no asynchronous
requests.

Exception: None, all errors are reported using the err and errors fields of the parameter passed to the
callback method. See chapter 6.8 for details.

6.7.5 void ApiUtil::get_asynch_replies(long timeout)
Fire callback methods for all (any device) asynchronous requests (command and attributes) with already
arrived replied. Wait and block the caller for timeout milliseconds if they are some device asynchronous
requests which are not yet arrived. Returns immediately if there is no asynchronous request. If timeout is
set to 0, the call waits until all the asynchronous requests sent has received a reply.

Exception: AsynReplyNotArrived. All other errors are reported using the err and errors fields of the
object passed to the callback methods. See chapter 6.8 for details.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 210

6.7.6 void ApiUtil::set_asynch_cb_sub_model(cb_sub_model model)
Set the asynchronous callback sub-model between the pull and push sub-model. See chapter 4.5 to read
the definition of these sub-model. The cb_sub_model data type is an enumeration with two values which
are :

PUSH_CALLBACK : The push sub-model

PULL_CALLBACK : The pull sub-model

By default, all Tango client using asynchronous callback model are in pull sub-model. This call must be
used to switch to the push sub-model. NOTE that in push sub-model, a separate thread is spawned to deal
with server replies.

Exception: None

6.7.7 cb_sub_model ApiUtil::get_asynch_cb_sub_model()
Get the asynchronous callback sub-model.

Exception: None

6.7.8 static int ApiUtil::get_env_var(const char *name,string &value);
Get environment variable. On Unixes OS, this call tries to get the variable in the caller environment then
in a file .tangorc in the user home directory and finally in a file /etc/tangorc. On Windows, this call looks
in the user environment then in a file stored in %TANGO_HOME%/tangorc. This method returns 0 of the
environment variable is found. Otherwise, it returns -1.

Exception: None

6.8 Asynchronous callback related classes

6.8.1 Tango::CallBack
6.8.1.1 void CallBack::cmd_ended(CmdDoneEvent *event)

This method is defined as being empty and must be overloaded by the user when the asynchronous callback
model is used. This is the method which will be executed when the server reply from a command_inout is
received in both push and pull sub-mode.

6.8.1.2 void CallBack::attr_read(AttrReadEvent *event)

This method is defined as being empty and must be overloaded by the user when the asynchronous callback
model is used. This is the method which will be executed when the server reply from a read_attribute(s) is
received in both push and pull sub-mode.

6.8.1.3 void CallBack::attr_written(AttrWrittenEvent *event)

This method is defined as being empty and must be overloaded by the user when the asynchronous callback
model is used. This is the method which will be executed when the server reply from a write_attribute(s)
is received in both push and pull sub-mode.

6.8.1.4 void CallBack::push_event(EventData *event)

This method is defined as being empty and must be overloaded by the user when events are used. This is
the method which will be executed when the server send event(s) to the client.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 211

6.8.1.5 void CallBack::push_event(AttrConfEventData *event)

This method is defined as being empty and must be overloaded by the user when events are used. This
is the method which will be executed when the server send attribute configuration change event(s) to the
client.

6.8.1.6 void CallBack::push_event(DataReadyEventData *event)

This method is defined as being empty and must be overloaded by the user when events are used. This is
the method which will be executed when the server send attribute data ready event(s) to the client.

6.8.2 Tango::CmdDoneEvent
This class is used to pass data to the callback method in asynchronous callback model for command exe-
cution. It contains the following public field

device : The DeviceProxy object on which the call was executed (Tango::DeviceProxy *)

cmd_name : The command name (string &)

argout : The command argout (DeviceData &)

err : A boolean flag set to true if the command failed. False otherwise (bool)

errors : The error stack (DevErrorList &)

6.8.3 Tango::AttrReadEvent
This class is used to pass data to the callback method in asynchronous callback model for read_attribute(s)
execution. It contains the following public field

device : The DeviceProxy object on which the call was executed (Tango::DeviceProxy *)

attr_names : The attribute name list (vector<string> &)

argout : The attribute data (vector<DeviceAttribute> *)

err : A boolean flag set to true if the request failed. False otherwise (bool)

errors : The error stack (DevErrorList &)

To extract attribute value(s), you have to use the operator of the class DeviceAttribute which corresponds
to the data type of the attribute. NOTE: There is no automatic type conversion from the attribute native
type to user type e.g. if an attribute returns a short you cannot extract it as a double, you have to extract it
as a short. Memory has been allocated for the vector of DeviceAttribute objects passed to the caller. This
is the caller responsibility to delete this memory.

6.8.4 Tango::AttrWrittenEvent
This class is used to pass data to the callback method in asynchronous callback model for write_attribute(s)
execution. It contains the following public field

device : The DeviceProxy object on which the call was executed (Tango::DeviceProxy *)

attr_names : The attribute name list (vector<string> &)

err : A boolean flag set to true if the request failed. False otherwise (bool)

errors : The error stack (DevErrorList &)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 212

6.8.5 Tango::EventData
This class is used to pass data to the callback method when an event is sent to the client. It contains the
following public field

device : The DeviceProxy object on which the call was executed (Tango::DeviceProxy *)

attr_name : The attribute name (std::string &)

event : The event name (std::string &)

attr_value : The attribute data (DeviceAttribute *)

err : A boolean flag set to true if the request failed. False otherwise (bool)

errors : The error stack (DevErrorList &)

To extract attribute value(s), you have to use the operator of the class DeviceAttribute which corresponds
to the data type of the attribute. NOTE: There is no automatic type conversion from the attribute native
type to user type e.g. if an attribute returns a short you cannot extract it as a double, you have to extract it
as a short. Memory has been allocated for the vector of DeviceAttribute objects passed to the caller. This
is the caller responsibility to delete this memory.

6.8.6 Tango::AttrConfEventData
This class is used to pass data to the callback method when an attribute configuration event is sent to the
client. It contains the following public field

device : The DeviceProxy object on which the call was executed (Tango::DeviceProxy *)

attr_name : The attribute name (std::string &)

event : The event name (std::string &)

attr_conf : The attribute configuration (AttributeInfoEx *)

err : A boolean flag set to true if the request failed. False otherwise (bool)

errors : The error stack (DevErrorList &)

6.8.7 Tango::DataReadyEventData
This class is used to pass data to the callback method when an attribute data ready event is sent to the client.
It contains the following public field

device : The DeviceProxy object on which the call was executed (Tango::DeviceProxy *)

attr_name : The attribute name (std::string &)

event : The event name (std::string &)

attr_data_type :The attribute data type (int)

ctr : The user counter. Set to 0 if not defined when sent by the server (int)

err : A boolean flag set to true if the request failed. False otherwise (bool)

errors : The error stack (DevErrorList &)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 213

6.9 Tango::Group

6.9.1 Constructor and Destructor
6.9.1.1 Group::Group (const std::string& name)

Instanciate an empty group. The group name allows retrieving a sub-group in the hierarchy.
See also: Group::~Group(), Group::get_group().

6.9.1.2 Group::~Group ()

Delete a group and all its elements.
Be aware that a group always gets the ownership of its children and deletes them when it is itself deleted.

Therefore, never try to delete a Group (respectively a DeviceProxy) returned by a call to Tango::Group::get_group()
(respectively to Tango::Group::get_device()). Use the Tango::Group::remove() method instead.

See also: Group::Group(), Group::remove(), Group::remove_all().

6.9.2 Group Management Related Methods
6.9.2.1 void Group::add (Group* group, int timeout_ms = -1)

Attaches a (sub)group.
Be aware that a group always gets the ownership of its children and deletes them when it is itself

deleted. Therefore, never try to delete a Group attached to a Group. Use the Group::remove() method
instead.

If timeout_ms parameter is different from -1, the client side timeout associated to each device compos-
ing the group added is set to timeout_ms milliseconds. If timeout_ms is -1, timeouts are not changed.

This method does nothing if the specified group is already attached (i.e. it is silently ignored) and
timeout_ms = -1.

If the specified group is already attached and timeout_ms is different from -1, the client side timeout of
each device composing the group given in parameter is set to timeout_ms milliseconds.

See also: all other forms of Group::add() and Group::set_timeout_millis().

6.9.2.2 void Group::add (const std::string& pattern, int timeout_ms = -1)

Attaches any device which name matches the specified pattern.
The pattern parameter can be a simple device name or a device name pattern (e.g. domain_*/ fam-

ily/member_*).
This method first asks to the Tango database the list of device names matching the pattern. Devices are

then attached to the group in the order in which they are returned by the database.
Any device already present in the hierarchy (i.e. a device belonging to the group or to one of its

subgroups) is silently ignored but its client side timeout is set to timeout_ms milliseconds if timeout_ms is
different from -1.

Set the client side timeout of each device matching the specified pattern to timeout_ms milliseconds if
timeout_ms is different from -1.

See also: all other forms of Group::add() and Group::set_timeout_millis().

6.9.2.3 void Group::add (const std::vector<std::string>& patterns, int timeout_ms = -1)

Attaches any device which name matches one of the specified patterns.
The patterns parameter can be an array of device names and/or device name patterns.
This method first asks to the Tango database the list of device names matching one the patterns. Devices

are then attached to the group in the order in which they are returned by the database.
Any device already present in the hierarchy (i.e. a device belonging to the group or to one of its

subgroups), is silently ignored but its client side timeout is set to timeout_ms milliseconds if timeout_ms is
different from -1.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 214

If timeout_ms is different from -1, the client side timeouts of all devices matching the specified patterns
are set to timeout_ms milliseconds.

See also: all other forms of Group::add() and Group::set_timeout_millis().

6.9.2.4 void Group::remove (const std::string& pattern, bool fwd = true)

Removes any group or device which name matches the specified pattern.
The pattern parameter can be a group name, a device name or a device name pattern (e.g domain_*/family/member_*).
Since we can have groups with the same name in the hierarchy, a group name can be fully qualified to

specify which group should be removed. Considering the following group:

-> gauges
| -> cell-01
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
| -> cell-02
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
| -> cell-03
| |-> ...
|
| -> ...

A call to gauges->remove("penning") will remove any group named "penning" in the hierarchy while
gauges->remove("gauges.cell-02.penning") will only remove the specified group.

If fwd is set to true (the default), the remove request is also forwarded to subgroups. Otherwise, it is
only applied to the local set of elements. For instance, the following code remove any stepper motor in the
hierarchy:

root_group->remove("*/stepper_motor/*");

See also: all other forms of Group::remove().

6.9.2.5 void Group::remove (const std::vector<std::string>& patterns, bool fwd = true)

Removes any group or device which name matches the specified patterns.
The patterns parameter can be an array of group names and/or device names and/or device name pat-

terns.
Since we can have groups with the same name in the hierarchy, a group name can be fully qualified to

specify which group should be removed. See previous method for details.
If fwd is set to true (the default), the remove request is also forwarded to subgroups. Otherwise, it is

only applied to the local set of elements.
See also: all other forms of Group::remove().

6.9.2.6 void Group::remove_all (void)

Removes all elements in the group. After such a call, the group is empty.
See also: all forms of Group::remove().

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 215

6.9.2.7 bool Group::contains (const std::string& pattern, bool fwd = true)

Returns true if the hierarchy contains groups and/or devices which name matches the specified pattern.
Returns false otherwise.

The pattern can be a fully qualified or simple group name, a device name or a device name pattern.
If fwd is set to true (the default), the request is also forwarded to subgroups. Otherwise, it is only

applied to the local set of elements.
See also: Group::get_device(), Group::get_group().

6.9.2.8 DeviceProxy* Group::get_device (const std::string& device_name)

Returns a reference to the specified device or NULL if there is no device by that name in the group. This
method may throw an exception in case the specified device belongs to the group but can’t be reached (not
registered, down...). See example below. See also the Tango::DeviceProxy class documentation for details.

try
{
Tango::DeviceProxy *dp = g->get_device("my/device/01");
if (dp == 0)
{

// my/device/01 doe snot belongs to the group
{

}
catch (const Tango::DevFailed &df)
{
// my/device/01 belongs to the group but can’t be reached
}

The request is systematically forwarded to subgroups (i.e. if no device named device_name could be
found in the local set of devices, the request is forwarded to subgroups).

Be aware that a group always gets the ownership of its children and deletes them when it is itself
deleted. Therefore, never try to delete a DeviceProxy returned by the Group::get_device() method. Use the
Tango::Group::remove() method instead.

See also: other form of Group::get_device(), Group::get_size(), Group::get_group(), Group::contains().

6.9.2.9 DeviceProxy* Group::get_device (long idx)

Returns a reference to the "idx-th" device in the hierarchy or NULL if the hierarchy contains less than
"idx" devices. This method may throw an exception in case the specified device belongs to the group but
can’t be reached (not registered, down...). See previous example. See also the Tango::DeviceProxy class
documentation for details.

The request is systematically forwarded to subgroups (i.e. if the local set of devices contains less than
"idx" devices, the request is forwarded to subgroups).

Be aware that a group always gets the ownership of its children and deletes them when it is itself
deleted. Therefore, never try to delete a DeviceProxy returned by the Group::get_device() method. Use the
Tango::Group::remove() method instead.

See also: other form of Group::get_device(), Group::get_size(), Group::get_group, Group::contains().

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 216

6.9.2.10 DeviceProxy* Group::operator[] (long i)

Returns a reference to the "idx-th" device in the hierarchy or NULL if the hierarchy contains less than "idx"
devices. See the Tango::DeviceProxy class documentation for details.

The request is systematically forwarded to subgroups (i.e. if the local set of devices contains less than
"idx" devices, the request is forwarded to subgroups).

Be aware that a group always gets the ownership of its children and deletes them when it is itself
deleted. Therefore, never try to delete a DeviceProxy returned by the Group::get_device() method. Use the
Tango::Group::remove() method instead.

See also: other form of Group::get_device(), Group::get_size(), Group::get_group(), Group::contains().

6.9.2.11 Group* Group::get_group (const std::string& group_name)

Returns a reference to the specified group or NULL if there is no group by that name. The group_name
can be a fully qualified name.

Considering the following group:

-> gauges
|-> cell-01
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
|-> cell-02
| |-> penning
| | |-> ...
| |-> pirani
| |-> ...
| -> cell-03
| |-> ...
|
| -> ...

A call to gauges->get_group("penning") returns the first group named "penning" in the hierarchy (i.e.
gauges.cell-01.penning) while gauges->get_group("gauges.cell-02.penning”) returns the specified group.

The request is systematically forwarded to subgroups (i.e. if no group named group_name could be
found in the local set of elements, the request is forwarded to subgroups).

Be aware that a group always gets the ownership of its children and deletes them when it is itself
deleted. Therefore, never try to delete a Group returned by the Group::get_group() method. Use the
Tango::Group::remove() method instead.

See also: Group::get_device(), Group::contains().

6.9.2.12 long Group::get_size (bool fwd = true)

Return the number of devices in the hierarchy (respectively the number of device in the group) if the
forward option is set to true (respectively set to false).

6.9.2.13 std::vector<std::string> Group::get_device_list (bool fwd = true)

Returns the list of devices currently in the hierarchy.
If fwd is set to true (the default) the request is forwarded to subgroups. Otherwise, it is only applied to

the local set of devices.
Considering the following hierarchy:

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 217

g2->add("my/device/04"); g2->add("my/device/05");

g4->add("my/device/08"); g4->add("my/device/09");

g3->add("my/device/06");
g3->addg(g4);
g3->add("my/device/07");

g1->add("my/device/01");
g1->add(g2);
g1->add("my/device/03");
g1->add(g3);
g1->add("my/device/02");

The returned vector content depends on the value of the forward option. If set to true, the results will be
organized as follows:

std::vector<std::string> dl = g1->get_device_list(true);

dl[0] contains "my/device/01" which belongs to g1
dl[1] contains "my/device/04" which belongs to g1.g2
dl[2] contains "my/device/05" which belongs to g1.g2
dl[3] contains "my/device/03" which belongs to g1
dl[4] contains "my/device/06" which belongs to g1.g3
dl[5] contains "my/device/08" which belongs to g1.g3.g4
dl[6] contains "my/device/09" which belongs to g1.g3.g4
dl[7] contains "my/device/07" which belongs to g1.g3
dl[8] contains "my/device/02" which belongs to g1

If the forward option is set to false, the results are:

std::vector<std::string> dl = g1->get_device_list(false);

dl[0] contains "my/device/01" which belongs to g1
dl[1] contains "my/device/03" which belongs to g1
dl[2] contains "my/device/02" which belongs to g1

6.9.3 "A la" DeviceProxy Methods
6.9.3.1 bool Group::ping (bool fwd = true)

Ping all devices in a group. This method returns true if all devices in the group are alive, false otherwise.
If fwd is set to true (the default), the request is also forwarded to subgroups. Otherwise, it is only

applied to the local set of devices.

6.9.3.2 void Group::set_timeout_millis(int timeout_ms)

Set client side timeout for all devices composing the group in milliseconds. Any method which takes longer
than this time to execute will throw an exception.

Exception: none (errors are ignored).

6.9.3.3 GroupCmdReplyList Group::command_inout (const std::string& c, bool fwd = true)

Executes a Tango command on a group. This method is synchronous and does not return until replies are
obtained or timeouts occurred.

The parameter c is the name of the command.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 218

If fwd is set to true (the default), the request is also forwarded to subgroups. Otherwise, it is only
applied to the local set of devices.

Command results are returned in a GroupCmdReplyList. See Obtaining command result for details
(4.7.3.1). See also Case 1 of executing a command (4.7.3.2) for an example.

6.9.3.4 GroupCmdReplyList Group::command_inout (const std::string& c, const DeviceData& d,
bool fwd = true)

Executes a Tango command on each device in the group. This method is synchronous and does not return
until replies are obtained or timeouts occurred.

The parameter c is the name of the command.
The second parameter d is a Tango generic container for command carrying the command argument.

See the Tango::DeviceData documentation.
If fwd is set to true (the default), the request is also forwarded to subgroups. Otherwise, it is only

applied to the local set of devices.
Command results are returned in a GroupCmdReplyList. See Obtaining command results (4.7.3.1) for

details. See also Case 2 of executing a command (4.7.3.4) for an example.

6.9.3.5 template<typename T> GroupCmdReplyList Group::command_inout (const std::string&
c, const std::vector<T>& d, bool fwd = true)

Executes a Tango command on each device in the group. This method is synchronous and does not return
until replies are obtained or timeouts occurred.

This implementation of command_inout allows passing a specific input argument to each device in
the group. In order to use this form of command_inout, the user must have an "a priori" and "perfect"
knowledge of the devices order in the group.

The parameter c is the name of the command.
The std::vector d contains a specific argument value for each device in the group. Since this method is a

template, d is able to contain any Tango command argument type. Its size must equal Group::get_size(fwd).
Otherwise, an exception is thrown. The order of the argument values must follows the order of the devices
in the group (d[0] => 1st device, d[1] => 2nd device and so on).

If fwd is set to true (the default), the request is also forwarded to subgroups. Otherwise, it is only
applied to the local set of devices.

Command results are returned in a GroupCmdReplyList. See Obtaining command results (4.7.3.1)
for details. See also Case 3 of executing a command (4.7.3.5) for an example of this special form of
command_inout.

6.9.3.6 long Group::command_inout_asynch (const std::string& c, bool fgt = false, bool fwd = true,
long rsv = -1)

Executes a Tango command on each device in the group asynchronously. The method sends the request
to all devices and returns immediately. Pass the returned request id to Group::command_inout_reply() to
obtain the results.

The parameter c is the name of the command.
The parameter fgt is a fire and forget flag. If set to true, it means that no reply is expected (i.e. the caller

does not care about it and will not even try to get it). A false default value is provided.
If the parameter fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only

applied to the local set of devices.
Finally, rsv is reserved for internal purpose and should not be modify. This parameter may disappear

in a near future.
See Case 1 of Executing a command (4.7.3.2) for an example.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 219

6.9.3.7 long Group::command_inout_asynch (const std::string& c, const DeviceData& d, bool fgt
= false, bool fwd = true, long rsv = -1)

Executes a Tango command on each device in the group asynchronously. The method sends the request
to all devices and returns immediately. Pass the returned request id to Group::command_inout_reply() to
obtain the results.

The parameter c is the name of the command.
The second parameter d is a Tango generic container for command carrying the command argument.

See the Tango::DeviceData documentation for details.
The parameter fgt is a fire and forget flag. If set to true, it means that no reply is expected (i.e. the caller

does not care about it and will not even try to get it). A false default value is provided.
If the parameter fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only

applied to the local set of devices.
Finally, rsv is reserved for internal purpose and should not be modify. This parameter may disappear

in a near future.
See Case 2 of Executing a command (4.7.3.4) for an example.

6.9.3.8 long Group::command_inout_asynch (const std::string& c, const std::vector<T>& d, fgt =
false, bool fwd = true)

Executes a Tango command on each device in the group asynchronously. The method send the request to
all devices and return immediately. Pass the returned request id to Group::command_inout_reply to obtain
the results.

This implementation of command_inout allows passing a specific input argument to each device in the
group. In order to use this form of command_inout_asynch, the user must have an "a priori" and "perfect"
knowledge of the devices order in the group.

The parameter c is the name of the command.
The std::vector d contains a specific argument value for each device in the group. d is able to contain

any Tango command argument type. Its size must equal Group::get_size(fwd). Otherwise, an exception is
thrown. The order of the argument values must follows the order of the devices in the group (d[0] => 1st
device, d[1] => 2nd device and so on).

The parameter fgt is a fire and forget flag. If set to true, it means that no reply is expected (i.e. the caller
does not care about it and will not even try to get it). A false default value is provided.

If fwd is set to true (the default), the request is also forwarded to subgroups. Otherwise, it is only
applied to the local set of devices.

See Case 3 of Executing a command (4.7.3.5) for an example of this special form of command_inout.

6.9.3.9 GroupCmdReplyList Group::command_inout_reply (long req_id, long timeout_ms = 0)

Returns the results of an asynchronous command.
The first parameter req_id is a request identifier previously returned by one of the command_inout_asynch

methods.
For each device in the hierarchy, if the command result is not yet available, command_inout_reply wait

timeout_ms milliseconds before throwing an exception. This exception will be part of the global reply. If
timeout_ms is set to 0, command_inout_reply waits "indefinitely".

Command results are returned in a GroupCmdReplyList. See Obtaining command results (4.7.3.1) for
details.

6.9.3.10 GroupAttrReplyList Group::read_attribute (const std::string& a, bool fwd = true)

Reads an attribute on each device in the group. This method is synchronous and does not return until replies
are obtained or timeouts occurred.

The parameter a is the name of the attribute to read.
If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the

local set of devices.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 220

Attribute values are returned in a GroupAttrReplyList. See Obtaining attribute values (4.7.4.1) for
details. See also Reading an attribute (4.7.4) for an example.

6.9.3.11 long Group::read_attribute_asynch (const std::string& a, bool fwd = true, long rsv = -1)

Reads an attribute on each device in the group asynchronously. The method sends the request to all devices
and returns immediately. Pass the returned request id to Group::read_attribute_reply() to obtain the results.

The parameter a is the name of the attribute to read.
If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the

local set of devices.
The last parameter (rsv) is reserved for internal purpose and should not be modify. It may disappear in

a near future.
See Reading an attribute (4.7.4) for an example.

6.9.3.12 GroupAttrReplyList Group::read_attribute_reply (long req_id, long timeout_ms = 0)

Returns the results of an asynchronous attribute reading.
The first parameter req_id is a request identifier previously returned by read_attribute_asynch.
For each device in the hierarchy, if the attribute value is not yet available, read_attribute_reply wait

timeout_ms milliseconds before throwing an exception. This exception will be part of the global reply. If
timeout_ms is set to 0, read_attribute_reply waits "indefinitely".

Replies are returned in a GroupAttrReplyList. See Obtaining attribute values (4.7.4.1) for details.

6.9.3.13 GroupReplyList Group::write_attribute (const DeviceAttribute& d, bool fwd = true)

Writes an attribute on each device in the group. This method is synchronous and does not return until
acknowledgements are obtained or timeouts occurred.

The first parameter d is a Tango generic container for attribute carrying both the attribute name and the
value. See the Tango::DeviceAttribute documentation for details.

If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the
local set of devices.

Acknowledgements are returned in a GroupReplyList. See Obtaining acknowledgements (4.7.5.1) for
details. See also Case 1 of Writing an attribute (4.7.5.2) for an example.

6.9.3.14 GroupReplyList Group::write_attribute (const std::string& a, const std::vector<T>& d,
bool fwd = true)

Writes an attribute on each device in the group. This method is synchronous and does not return until
replies are obtained or timeouts occurred.

This implementation of write_attribute allows writing a specific value to each device in the group. In
order to use this form of write_attribute, the user must have an "a priori" and "perfect" knowledge of the
devices order in the group.

The parameter a is the name of the attribute.
The std::vector d contains a specific value for each device in the group. Since this method is a template,

d is able to contain any Tango attribute type. Its size must equal Group::get_size(fwd). Otherwise, an
exception is thrown. The order of the attribute values must follows the order of the devices in the group
(d[0] => 1st device, d[1] => 2nd device and so on).

If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the
local set of devices.

Acknowledgements are returned in a GroupReplyList. See Obtaining acknowledgements (4.7.5.1) for
details. See also Case 2 of Writing an attribute (4.7.5.3) for an example.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 221

6.9.3.15 long Group::write_attribute_asynch (const DeviceAttribute& d, bool fwd = true, long rsv
= -1)

Writes an attribute on each device in the group asynchronously. The method sends the request to all
devices and returns immediately. Pass the returned request id to Group::write_attribute_reply() to obtain
the acknowledgements.

The first parameter d is a Tango generic container for attribute carrying both the attribute name and the
value. See the Tango::DeviceAttribute documentation for details.

If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the
local set of devices.

The last parameter rsv is reserved for internal purpose and should not be modify. It may disappear in a
near future.

See Case 1 of Writing an attribute (4.7.5.2) for an example.

6.9.3.16 long Group::write_attribute_asynch (const std::string& a, const std::vector<T>& d, bool
fwd = true)

Writes an attribute on each device in the group asynchronously. The method sends the request to all
devices and returns immediately. Pass the returned request id to Group::write_attribute_reply() to obtain
the acknowledgements.

This implementation of write_attribute_asynch allows writing a specific value to each device in the
group. In order to use this form of write_attribute_asynch, the user must have an "a priori" and "perfect"
knowledge of the devices order in the group.

The parameter a is the name of the attribute.
The std::vector d contains a specific value for each device in the group. Since this method is a template,

d is able to contain any Tango attribute type. Its size must equal Group::get_size(fwd). Otherwise, an
exception is thrown. The order of the attribute values must follows the order of the devices in the group
(d[0] => 1st device, d[1] => 2nd device and so on).

If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the
local set of devices.

See Case2 of Writing an attribute (4.7.5.3) for an example.

6.9.3.17 GroupReplyList Group::write_attribute_reply (long req_id, long timeout_ms = 0)

Returns the acknowledgements of an asynchronous attribute writing.
The first parameter req_id is a request identifier previously returned by one of the write_attribute_asynch

implementation.
For each device in the hierarchy, if the acknowledgement is not yet available, write_attribute_reply wait

timeout_ms milliseconds before throwing an exception. This exception will be part of the global reply. If
timeout_ms is set to 0, write_attribute_reply waits "indefinitely".

Acknowledgements are returned in a GroupReplyList. See Obtaining acknowledgements 4.7.5.1 for
details.

6.9.3.18 GroupAttrReplyList Group::read_attributes (const std::vector<std::string>& al, bool fwd
= true)

Reads several attributes on each device in the group. This method is synchronous and does not return until
replies are obtained or timeouts occurred.

The parameter al is a vector containing the name of the attributes to be read.
If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the

local set of devices.
Attribute values are returned in a GroupAttrReplyList. See Obtaining attribute values (4.7.4.1) for

details. See also Reading an attribute (4.7.4) for an example. The order of attribute value returned in the
GroupAttrReplyList is all attributes for first element in the group followed by all attributes for the second
group element and so on.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 222

6.9.3.19 long Group::read_attributes_asynch (const std::vector<std::string>& al, bool fwd = true,
long rsv = -1)

Reads several attributes on each device in the group asynchronously. The method sends the request to all
devices and returns immediately. Pass the returned request id to Group::read_attributes_reply() to obtain
the results.

The parameter al is a vector containing the name of the attributes to be read.
If fwd is set to true (the default) request is forwarded to subgroups. Otherwise, it is only applied to the

local set of devices.
The last parameter (rsv) is reserved for internal purpose and should not be modify. It may disappear in

a near future.
See Reading an attribute (4.7.4) for an example.

6.9.3.20 GroupAttrReplyList Group::read_attributes_reply (long req_id, long timeout_ms = 0)

Returns the results of an asynchronous attribute reading.
The first parameter req_id is a request identifier previously returned by read_attributes_asynch.
For each device in the hierarchy, if the attribute value is not yet available, read_attributes_reply wait

timeout_ms milliseconds before throwing an exception. This exception will be part of the global reply. If
timeout_ms is set to 0, read_attributes_reply waits "indefinitely".

Replies are returned in a GroupAttrReplyList. See Obtaining attribute values (4.7.4.1) for details. The
order of attribute value returned in the GroupAttrReplyList is all attributes for first element in the group
followed by all attributes for the second group element and so on.

6.10 Tango::Database
A high level object which contains the link to the database. It has methods for all database commands e.g.
get_device_property(), device_list(), info(), etc.

6.10.1 Database::Database()
Create a TANGO Database object. The constructor uses the environment variable “TANGO_HOST” to
determine which instance of the TANGO database to connect to. Example :

using namespace Tango;
Database *db = new Database();

6.10.2 string Database::get_info()
Query the database for some general info about the tables in the database. Result is returned as a string.
Example :

cout << db->get_info() << endl;

will return information like this :

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 223

Running since 2000-11-06 14:10:46

Devices defined = 115
Devices exported = 41
Device servers defined = 47
Device servers exported = 17

Class properties defined = 5
Device properties defined = 130
Class attribute properties defined = 20
Device attribute properties defined = 92

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.3 void Database::add_device(DbDevInfo&)
Add a device to the database. The device name, server and class are specified in the DbDevInfo structure.
Example :

DbDevInfo my_device_info;
my_device_info.name = “my/own/device”;
my_device_info._class = “MyDevice”;
my_device_info.server = “MyServer/test”;
db->add_device(my_device_info);

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.4 void Database::delete_device(string)
Delete the device of the specified name from the database. Example

db->delete_device(“my/own/device”);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError, DB_DeviceNotDefined)

6.10.5 DbDevImportInfo Database::import_device(string &)
Query the database for the export info of the specified device. The command returns the information in a
DbDevImportInfo structure. Example :

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 224

DbDevImportInfo my_device_import;
my_device_import = db->import_device(“my/own/device”);
cout << “ device ” << my_device_import.name;
cout << “exported ” << my_device_import.exported;
cout << “ior ” << my_device_import.ior;
cout << “version ” << my_device_import.version;
cout << endl;

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError, DB_DeviceNotDefined)

6.10.6 void Database::export_device(DbDevExportInfo&)
Update the export info for this device in the database. Device name, server, class, pid and version are
specified in the DbDevExportInfo structure. Example :

DbDevExportInfo my_device_export;
my_device_export.name = “my/own/device”;
my_device_export.ior = “the real ior”;
my_device_export.host = “dumela”;
my_device_export.version = “1.0”;
my_device_export.pid = get_pid();
db->export_device(my_device_export);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError, DB_DeviceNotDefined)

6.10.7 void Database::unexport_device(string)
Mark the specified device as un-exported in the database. Example :

db->unexport_device(“my/own/device”);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.8 void Database::add_server(string &, DbDevInfos&)
Add a group of devices to the database. The device names, server names and classes are specified in the
vector of DbDevInfo structures.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.9 void Database::delete_server(string &)
Delete the device server and its associated devices from the database.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 225

6.10.10 void Database::export_server(DbDevExportInfos &)
Export a group of devices to the database. The device names, IOR, class, server name, pid etc. are specified
in the vector of DbDevExportInfo structures.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.11 void Database::unexport_server(string &)
Mark all devices exported for this server as unexported.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.12 DbDatum Database::get_services(string &servicename,string &instname)
Query database for specified services.The instname parameter can be a wildcard character ("*").

string servicename("HdbManager");
string instname("ctrm");
DbDatum db_datum = db->get_services(servicename,instname);
vector<string> service_list;
db_datum >> service_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.13 void Database::register_service(string &servicename,string &instname,string
&devname)

Register the specified service wihtin the database.

string servicename("HdbManager");
string instname("ctrm");
string devname("sys/hdb/1");
db->register_service(servicename,instname,devname);

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.14 void Database::unregister_service(string &servicename,string &instname)
Unregister the specified service from the database.

string servicename("HdbManager");
string instname("ctrm");
db->unregister_service(servicename,instname);

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 226

6.10.15 DbDatum Database::get_host_list()
Returns the list of all host names registered in the database.

DbDatum db_datum = db->get_host_list();
vector<string> host_list;
db_datum >> host_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.16 DbDatum Database::get_host_list(string &wildcard)
Returns the list of all host names registered in the database which match the specified wildcard (eg: "l-
c0*").

string wildcard("l-c0*");
DbDatum db_datum = db->get_host_list(wildcard);
vector<string> host_list;
db_datum >> host_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.17 DbDatum Database::get_server_class_list(string &server)
Query the database for a list of classes instancied by the specified server. The DServer class exists in all
TANGO servers and for this reason this class is removed from the returned list.

string server("Serial/1");
DbDatum db_datum = db->get_server_class_list(server);
vector<string> class_list;
db_datum >> class_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.18 DbDatum Database::get_server_name_list()
Return the list of all server names registered in the database.

DbDatum db_datum = db->get_server_name_list();
vector<string> server_list;
db_datum >> server_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 227

6.10.19 DbDatum Database::get_instance_name_list(string &servername)
Return the list of all instance names existing in the database for the specifed server.

string servername("Serial");
DbDatum db_datum = db->get_instance_name_list(servername);
vector<string> instance_list;
db_datum >> instance_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.20 DbDatum Database::get_server_list()
Return the list of all servers registered in the database.

DbDatum db_datum = db->get_server_list();
vector<string> server_list;
db_datum >> server_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.21 DbDatum Database::get_server_list(string &wildcard)
Return the list of all servers registered in the database which match the specified wildcard (eg: "Serial/*").

string wildcard("Serial/*");
DbDatum db_datum = db->get_server_list(wildcard);
vector<string> server_list;
db_datum >> server_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.22 DbDatum Database::get_host_server_list(string &hostname)
Query the database for a list of servers registred on the specified host.

string host("kidiboo");
DbDatum db_datum = db->get_host_server_list(wildcard);
vector<string> server_list;
db_datum >> server_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 228

6.10.23 DbServerInfo Database::get_server_info(string &server)
Query the database for server information.

string server("Serial/1");
DbServerInfo info = db->get_server_info(server);

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.24 void Database::put_server_info(DbServerInfo &info)
Add/update server information in the database.

DbServerInfo info;
info.name = "Serial/1"; // Server (name/instance)
info.host = "kidiboo"; // Register on host kidiboo
info.mode = 1; // Controlled by Astor flag (0 or 1)
info.level = 3; // Startup level (Used by Astor)
db->put_server_info(info);

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.25 void Database::delete_server_info(string &server)
Delete server information of the specifed server from the database.

string server("Serial/1");
db->delete_server_info(server);

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.26 DbDatum Database::get_device_name(string &, string &)
Query the database for a list of devices served by the specified server (1st parameter) and of the specified
class (2nd parameter). The method returns a DbDatum type. The device names are stored as an array of
strings. Here is two code example of how to extract the names from the DbDatum type :

vector<string> device_names;
device_names << db_datum;

or :

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 229

for (int i=0; i< db_datum.size(); i++)
{
device_name[i] = db_datum.value_string[i];
}

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.27 DbDatum Database::get_device_exported(string &)
Query the database for a list of exported devices whose names satisfy the supplied filter (* is wildcard
for any character(s)). This method returns a DbDatum type. See the method get_device_name() for an
example of how to extract the list of aliases from the DbDatum type.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.28 DbDatum Database::get_device_domain(string &)
Query the database for a list of device domain names which match the wildcard provided. Wildcard char-
acter is * and matches any number of characters. Domain names are case insensitive. This method returns
a DbDatum type. See the method get_device_name() for an example of how to extract the list of aliases
from the DbDatum type.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.29 DbDatum Database::get_device_family(string &)
Query the database for a list of device family names which match the wildcard provided. Wildcard character
is * and matches any number of characters. Family names are case insensitive. This method returns a
DbDatum type. See the method get_device_name() for an example of how to extract the list of aliases from
the DbDatum type.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.30 DbDatum Database::get_device_member(string &)
Query the database for a list of device member names which match the wildcard provided. Wildcard
characters is * and matches any number of characters. Member names are case insensitive. This method
returns a DbDatum type. See the method get_device_name() for an example of how to extract the list of
aliases from the DbDatum type.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.31 DbDatum Database::get_device_class_list(string &server)
Query the database for a list of devices and classes served by the specified server. Return a list with the
following structure: {device name,class name,device name,class name,...}

string server("Serial/1");
DbDatum db_datum = db->get_device_class_list(server);
vector<string> dev_list;
db_datum >> dev_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 230

6.10.32 string Database::get_class_for_device(string &devname)
Return the class of the specified device.

string devname("sr/rf-cavity/1");
string classname = db->get_class_for_device(devname);

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.33 DbDatum Database::get_class_inheritance_for_device(string &devname)
Return the class inheritance scheme of the specified device.

string devname("sr/rf-cavity/1");
DbDatum db_datum = db->get_class_inheritance_for_device(devname);
vector<string> class_list;
db_datum >> class_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.34 DbDatum Database::get_device_exported_for_class(string &classname)
Query database for list of exported devices for the specified class.

string classname("MyClass");
DbDatum db_datum = db->get_device_exported_for_class(classname);
vector<string> dev_list;
db_datum >> dev_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.35 DbDatum Database::get_object_list(string &wildcard)
Query the database for a list of object (free properties) for which properties are defined and which match
the specified wildcard.

string wildcard("Optic*");
DbDatum db_datum = db->get_object_list(wildcard);
vector<string> obj_list;
db_datum >> obj_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 231

6.10.36 DbDatum Database::get_object_property_list(string &objectname,string
&wildcard)

Query the database for a list of properties defined for the specified object and which match the specified
wildcard.

string objname("OpticID9");
string wildcard("Delta*");
DbDatum db_datum = db->get_object_property_list(objname,wildcard);
vector<string> prop_list;
db_datum >> prop_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.37 void Database::get_property(string, DbData&)
Query the database for a list of object (i.e. non-device) properties for the specified object. The property
names are specified by the vector of DbDatum structures. The method returns the properties in the same
DbDatum structures. To retrieve the properties use the extract operator >>. Here is an example of how to
use the DbData type to specify and extract properties :

DbData db_data;
db_data.push_back(DbDatum(“velocity”));
db_data.push_back(DbDatum(“acceleration”));
db->get_property(“mymotor”, db_data);
float velocity, acceleration;
db_data[0] >> velocity;
db_data[1] >> acceleration;

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.38 void Database::put_property(string, DbData&)
Insert or update a list of properties for the specified object. The property names and their values are
specified by the vector of DbDatum structures. Use the insert operator >> to insert the properties into the
DbDatum structures. Here is an example of how to insert properties into the database using this method :

DbDatum velocity(“velocity”), acceleration(“acceleration”);
DbData db_data;
velocity << 100000.0;
acceleration << 500000.0;
db_data.push_back(velocity);
db_data.push_back(acceleration);
db->put_property(“mymotor”, db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 232

6.10.39 void Database::delete_property(string, DbData&)
Delete a list of properties for the specified object. The property names are specified by the vector of
DbDatum structures. Here is an example of how to delete properties from the database using this method :

DbData db_data;
db_data.push_back(DbDatum(“velocity”));
db_data.push_back(DbDatum(“acceleration”));
db->delete_property(“mymotor”, db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.40 vector<DbHistory> Database::get_property_history(string &objname, string
&propname)

Get the list of the last 10 modifications of the specifed object property. Note that propname can contain a
wildcard character (eg: "prop*").

vector<DbHistory> hist;
DbDatum result;
string objname("jlptest");
string propname("test_prop");
hist = db->get_property_history(objname,propname);
// Print the modification history of the specified property
for(int i=0;i<hist.size();i++) {
cout << "Name:" << hist[i].get_name() << endl;
cout << "Date:" << hist[i].get_date() << endl;
if(hist[i].is_deleted()) {

cout << "Deleted !" << endl;
} else {

hist[i].get_value() >> result;
for (int j=0; j<result.size(); j++)
cout << "Value:" << result[j] << endl;

}
}

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.41 void Database::get_device_property(string, DbData&)
Query the database for a list of device properties for the specified object. The property names are specified
by the vector of DbDatum structures. The method returns the properties in the same DbDatum structures.
To retrieve the properties use the extract operator >>. Here is an example of how to use the DbData type to
specify and extract properties :

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 233

DbData db_data;
db_data.push_back(DbDatum(“velocity”));
db_data.push_back(DbDatum(“acceleration”));
db->get_device_property(“id11/motor/1”, db_data);
float velocity, acceleration;
db_data[0] >> velocity;
db_data[1] >> acceleration;

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.42 void Database::put_device_property(string, DbData&)
Insert or update a list of properties for the specified device. The property names and their values are
specified by the vector of DbDatum structures. Use the insert operator >> to insert the properties into the
DbDatum structures. Here is an example of how to insert properties into the database using this method :

DbDatum velocity(“velocity”), acceleration(“acceleration”);
DbData db_data;
velocity << 100000.0;
acceleration << 500000.0;
db_data.push_back(velocity);
db_data.push_back(acceleration);
db->put_device_property(“id11/motor/1”, db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.43 void Database::delete_device_property(string, DbData&)
Delete a list of properties for the specified device. The property names are specified by the vector of
DbDatum structures. Here is an example of how to delete properties from the database using this method :

DbData db_data;
db_data.push_back(DbDatum(“velocity”));
db_data.push_back(DbDatum(“acceleration”));
db->delete_device_property(“id11/motor/1”, db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.44 vector<DbHistory> Database::get_device_property_history(string &dev-
name, string &propname)

Get the list of the last 10 modifications of the specifed device property. Note that propname can con-
tain a wildcard character (eg: "prop*"). An example of usage of a similar function can be found in the
documentation of the get_property_history() function.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 234

6.10.45 void Database::get_device_attribute_property(string, DbData&)
Query the database for a list of device attribute properties for the specified object. The attribute names
are specified by the vector of DbDatum structures. The method returns all the properties for the specified
attributes. The attribute names are returned with the number of properties specified as their value. The
first DbDatum element of the returned DbData vector contains the first attribute name and the first attribute
property number. The following DbDatum element contains the first attribute property name and property
values. To retrieve the properties use the extract operator >>. Here is an example of how to use the DbData
type to specify and extract attribute properties :

DbData db_data;
db_data.push_back(DbDatum("velocity"));
db_data.push_back(DbDatum("acceleration"));

db->get_device_attribute_property("id11/motor/1", db_data);

float vel_max, vel_min, acc_max, acc_min;

for (int i=0;i < db_data.size();i++)
{

long nb_prop;
string &att_name = db_data[i].name;
db_data[i] >> nb_prop;
i++;
for (int k=0;k < nb_prop;k++)
{

string &prop_name = db_data[i].name;
if (att_name == "velocity")
{

if (prop_name == "min")
db_data[i] >> vel_min;

else if (att_name == "max")
db_data[i] >> vel_max;

}
else
{

if (prop_name == "min")
db_data[i] >> acc_min;

else
db_data[i] >> acc_max;

}
i++;

}
}

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.46 void Database::put_device_attribute_property(string, DbData&)
Insert or update a list of attribute properties for the specified device. The attribute property names and their
values are specified by the vector of DbDatum structures. Use the insert operator >> to insert the properties

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 235

into the DbDatum structures. Here is an example of how to insert/update properties min, max for attribute
velocity and properties min, max for attribute acceleration of device id11/motor/1 into the database using
this method :

DbDatum velocity("velocity"), vel_min("min"), vel_max("max");
DbDatum acceleration("acceleration"), acc_min("min"), acc_max("max");
DbData db_data;
velocity << 2;
vel_min << 0.0;
vel_max << 1000000.0;
db_data.push_back(velocity);
db_data.push_back(vel_min);
db_data.push_back(vel_max);
acceleration << 2;
acc_min << 0.0;
acc_max << 8000000;
db_data.push_back(acceleration);
db_data.push_back(acc_min);
db_data.push_back(acc_max);
db->put_device_attribute_property(“id11/motor/1”, db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.47 void Database::delete_device_attribute_property(string, DbData&)
Delete a list of attribute properties for the specified device. The attribute names are specified by the vector
of DbDatum structures. Here is an example of how to delete the unit property of the velocity attribute of
the id11/motor/1 device using this method :

DbData db_data;
db_data.push_back(DbDatum("velocity"));
db_data.push_back(DbDatum("unit"));
db->delete_device_attribute_property("id11/motor/1", db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.48 vector<DbHistory> Database::get_device_attribute_property_history(string
&devname, string &attname, string &propname)

Get the list of the last 10 modifications of the specifed device attribute property. Note that propname and
attname can contain a wildcard character (eg: "prop*"). An example of usage of a similar function can be
found in the documentation of the get_property_history() function.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 236

6.10.49 DbDatum Database::get_class_list(string &wildcard)
Query the database for a list of classes which match the specified wildcard.

string wildcard("Motor*");
DbDatum db_datum = db->get_class_list(wildcard);
vector<string> class_list;
db_datum >> class_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.50 DbDatum Database::get_class_property_list(string &classname)
Query the database for a list of properties defined for the specified class.

string classname("MyClass");
DbDatum db_datum = db->get_class_property_list(classname);
vector<string> prop_list;
db_datum >> prop_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.51 void Database::get_class_property(string, DbData&)
Query the database for a list of class properties. The property names are specified by the vector of DbDatum
structures. The method returns the properties in the same DbDatum structures. To retrieve the properties
use the extract operator >>. Here is an example of how to use the DbData type to specify and extract
properties :

DbData db_data;
db_data.push_back(DbDatum("velocity"));
db_data.push_back(DbDatum("acceleration"));
db->get_class_property("StepperMotor", db_data);
float velocity, acceleration;
db_data[0] >> velocity;
db_data[1] >> acceleration;

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 237

6.10.52 void Database::put_class_property(string, DbData&)
Insert or update a list of properties for the specified class. The property names and their values are specified
by the vector of DbDatum structures. Use the insert operator >> to insert the properties into the DbDatum
structures. Here is an example of how to insert properties into the database using this method :

DbDatum velocity("velocity"), acceleration("acceleration");
DbData db_data;
velocity << 100000.0;
acceleration << 500000.0;
db_data.push_back(velocity);
db_data.push_back(acceleration);
db->put_class_property("StepperMotor", db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.53 void Database::delete_class_property(string, DbData&)
Delete a list of properties for the specified class. The property names are specified by the vector of Db-
Datum structures. Here is an example of how to delete properties from the database using this method
:

DbData db_data;
db_data.push_back(DbDatum("velocity"));
db_data.push_back(DbDatum("acceleration"));
db->delete_class_property("StepperMotor", db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.54 vector<DbHistory> Database::get_class_property_history(string &classname,
string &propname)

Get the list of the last 10 modifications of the specifed class property. Note that propname can contain a
wildcard character (eg: "prop*"). An example of usage of a similar function can be found in the documen-
tation of the get_property_history() function.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.55 DbDatum Database::get_class_attribute_list(string &classname,string &wild-
card)

Query the database for a list of attributes defined for the specified class which match the specified wildcard.

string classname("MyClass");
string wildcard("*");
DbDatum db_datum = db->get_class_attribute_list(classname,wildcard);
vector<string> att_list;
db_datum >> att_list;

Exception: ConnectionFailed, CommunicationFailed, DevFailed from device

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 238

6.10.56 void Database::get_class_attribute_property(string, DbData&)
Query the database for a list of class attribute properties for the specified object. The attribute names are
specified by the vector of DbDatum structures. The method returns all the properties for the specified
attributes. The attribute names are returned with the number of properties specified as their value. The
first DbDatum element of the returned DbData vector contains the first attribute name and the first attribute
property number. The following DbDatum element contains the first attribute property name and property
values. To retrieve the properties use the extract operator >>. Here is an example of how to use the DbData
type to specify and extract attribute properties :

DbData db_data;
db_data.push_back(DbDatum("velocity"));
db_data.push_back(DbDatum("acceleration"));

db->get_class_attribute_property("StepperMotor", db_data);

float vel_max, vel_min, acc_max, acc_min;

for (int i=0; i< db_data.size(); i++)
{

long nb_prop;
string &att_name = db_data[i].name;
db_data[i] >> nb_prop;
i++;
for (int k=0;k < nb_prop;k++)
{

string &prop_name = db_data[i].name;
if (att_name == "velocity")
{

if (prop_name == "min")
db_data[i] >> vel_min;

else if (att_name == "max")
db_data[i] >> vel_max;

}
else
{

if (prop_name == "min")
db_data[i] >> acc_min;

else
db_data[i] >> acc_max;

}
i++;

}
}

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.57 void Database::put_class_attribute_property(string, DbData&)
Insert or update a list of attribute properties for the specified class. The attribute property names and their
values are specified by the vector of DbDatum structures. Use the insert operator >> to insert the properties

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 239

into the DbDatum structures. Here is an example of how to insert/update min, max properties for attribute
velocity and min, max properties for attribute acceleration properties belonging to class StepperMotor into
the database using this method :

DbDatum velocity("velocity"), vel_min("min"), vel_max("max");
DbDatum acceleration("acceleration"), acc_min("min"), acc_max("max");
DbData db_data;
velocity << 2;
vel_min << 0.0;
vel_max << 1000000.0;
db_data.push_back(velocity);
db_data.push_back(vel_min);
db_data.push_back(vel_max);
acceleration << 2;
acc_min << 0.0;
acc_max << 8000000;
db_data.push_back(acceleration);
db_data.push_back(acc_min);
db_data.push_back(acc_max);
db->put_class_attribute_property("StepperMotor", db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.58 void Database::delete_class_attribute_property(string, DbData&)
Delete a list of attribute properties for the specified class. The attribute names are specified by the vector
of DbDatum structures. All properties belonging to the listed attributes are deleted. Here is an example of
how to delete the unit property of the velocity attribute of the StepperMotor class from the database using
this method :

DbData db_data;
db_data.push_back(DbDatum("velocity"));
db_data.push_back(DbDatum("unit"));
db->delete_class_attribute_property("StepperMotor", db_data);

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.59 vector<DbHistory> Database::get_class_attribute_property_history(string
&devname, string &attname, string &propname)

Get the list of the last 10 modifications of the specifed class attribute property. Note that propname and
attname can contain a wildcard character (eg: "prop*"). An example of usage of a similar function can be
found in the documentation of the get_property_history() function.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device

6.10.60 void Database::get_alias(string dev_name, string &dev_alias)
Get the device alias name from its name. The device name is specified by dev_name and the device alias
name is returned in dev_alias. If there is no alias defined for the device, a DevFailed exception is thrown.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_AliasNotDefined)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 240

6.10.61 void Database::get_device_alias(string dev_alias, string &dev_name)
Get the device name from an alias. The device alias is specified by dev_alias and the device name is
returned in dev_name. If there is no device with the given alias, a DevFailed exception is thrown.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_DeviceNotDefined)

6.10.62 void Database::get_attribute_alias(string attr_alias, string &attr_name)
Get the full attribute name from an alias. The attribute alias is specified by attr_alias and the full attribute
name is returned in attr_name. If there is no attribute with the given alias, a DevFailed exception is thrown.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.63 void Database::put_attribute_alias(string &att_name, string &alias_name)
Set an alias for an attribute name. The attribute alias is specified by alias_name and the attribute name is
specifed by att_name. If the given alias already exists, a DevFailed exception is thrown.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.64 void Database::delete_attribute_alias(string &alias_name)
Remove the alias associated to an attribute name.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.65 DbDatum Database::get_device_alias_list(string &filter)
Get device alias list. The parameter alias is a string to filter the alias list returned. Wildcard (*) is supported.
For instance, if the string alias passed as the method parameter is initialised with only the * character, all
the defined device alias will be returned. The DbDatum returned by this method is initialised with an array
of strings and must be extracted into a vector<string>. If there is no alias with the given filter, the returned
array will have a 0 size.

DbData db_data;
string filter("*");
db_data = db->get_device_alias_list(filter);
vector<string> al_list;
db_data >> al_list;
cout << al_list.size() << " device alias defined in db" << endl;
for (int i=0;i < al_list.size();i++)

cout << "alias = " << al_list[i] << endl;

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.66 DbDatum Database::get_attribute_alias_list(string &filter)
Get attribute alias list. The parameter alias is a string to filter the alias list returned. Wildcard (*) is
supported. For instance, if the string alias passed as the method parameter is initialised with only the
* character, all the defined attribute alias will be returned. The DbDatum returned by this method is
initialised with an array of strings and must be extracted into a vector<string>. If there is no alias with the
given filter, the returned array will have a 0 size.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 241

6.10.67 void Database::put_device_alias(string &dev_name,string &alias_name)
Create a device alias. Alias name has to be uniq within a Tango control system and you will receive an
exception if the alias is already defined.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.10.68 void Database::delete_device_alias(string &alias_name)
Delete a device alias.
Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11 Tango::DbDevice
A database object for a device which can be used to query or modify properties, import and export infor-
mation for a device. This class provides an easy to use interface for device objects in the database. It uses
the methods of the Database class therefore the reader is referred to these for the exact calling syntax and
examples. The following methods are defined for the DbDevice class :

6.11.1 DbDevice::DbDevice(string &)
A constructor for a DbDevice object for a device in the TANGO database specified by the TANGO_HOST
environment variable.

6.11.2 DbDevice::DbDevice(string &, Database *)
A constructor for a DbDevice object for the device in the specified database. This method reuses the
Database supplied by the programmer.

6.11.3 DbDevImportInfo DbDevice::import_device()
Query the database for the import info of this device. Returns a DbDevImportInfo structure.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.4 void DbDevice::export_device(DbDevExportInfo&)
Update the export info for this device in the database.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.5 void DbDevice::add_device(DbDevInfo&)
Add/Update this device to the database.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.6 void DbDevice::delete_device()
Delete this device from the database.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.7 void DbDevice::get_property(DbData&)
Query the database for the list of properties of this device. See Database::get_device_property() for an
example of how to specify and retrieve the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 242

6.11.8 void DbDevice::put_property(DbData&)
Update the list of properties for this device in the database. See Database::put_device_property() for an
example of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.9 void DbDevice::delete_property(DbData&)
Delete the list of specified properties for this device in the database. See Database::delete_property() for
an example of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.10 void DbDevice::get_attribute_property(DbData&)
Query the database for the list of attribute properties of this device. See Database::get_device_attribute_property()
for an example of how to specify and retrieve the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.11 void DbDevice::put_attribute_property(DbData&)
Update the list of attribute properties for this device in the database. See Database::put_device_attribute_property()
for an example of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.11.12 void DbDevice::delete_attribute_property(DbData&)
Delete all properties for the list of specified attributes for this device in the database. See Database::delete_device_attribute_property()
for an example of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.12 Tango::DbClass
A database object for a class which can be used to query or modify class properties.

6.12.1 DbClass::DbClass(string)
A constructor for a DbClass object for a class in the TANGO database specified by the TANGO_HOST
environment variable.

6.12.2 DbClass::DbClass(string, Database *)
A constructor for a DbClass object for the class in the specified database. This method reuses the Database
supplied by the programmer.

6.12.3 void DbClass::get_property(DbData&)
Query the database for the list of properties of this class. See Database::get_class_property() for an example
of how to specify and retrieve the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 243

6.12.4 void DbClass::put_property(DbData&)
Update the list of properties for this class in the database. See Database::put_class_property() for an exam-
ple of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.12.5 void DbClass::delete_property(DbData&)
Delete the list of specified properties for this class in the database. See Database::delete_property() for an
example of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.12.6 void DbClass::get_attribute_property(DbData&)
Query the database for the list of attribute properties of this class. See Database::get_class_attribute_property()
for an example of how to specify and retrieve the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.12.7 void DbClass::put_attribute_property(DbData&)
Update the list of attribute properties for this class in the database. See Database::put_class_attribute_property()
for an example of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.12.8 void DbClass::delete_attribute_property(DbData&)
Delete all properties for the list of specified attributes for this class in the database. See Database::delete_class_attribute_property()
for an example of how to specify the properties.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.13 Tango::DbServer
A database object for a device server which can be used to query or modify server database information.

6.13.1 DbServer::DbServer(string)
A constructor for a DbServer object for a server in the TANGO database specified by the TANGO_HOST
environment variable.

6.13.2 DbServer::DbServer(string, Database *)
A constructor for a DbServer object for the server in the specified database. This method reuses the
Database supplied by the programmer.

6.13.3 void DbServer::add_server(DbDevInfos &)
Add a group of devices to the database. The device names, server names and classes are specified in the
vector of DbDevInfo structures.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.13.4 void DbServer::delete_server()
Delete the device server and its associated devices from the database.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 244

6.13.5 void DbServer::export_server(DbDevExportInfos &)
Export a group of device to the database. The device names, IOR, class, server name, pid etc. are specified
in the vector of DbDevExportInfo structures.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.13.6 void DbServer::unexport_server()
Mark all the devices exported by the server as un exported.

Exceptions: ConnectionFailed, CommunicationFailed, DevFailed from device (DB_SQLError)

6.14 Tango::DbDatum
A single database value which has a name, type, address and value and methods for inserting and extracting
C++ native types. This is the fundamental type for specifying database properties. Every property has a
name and has one or more values associated with it. The values can be inserted and extracted using the
operators << and >> respectively. A status flag indicates if there is data in the DbDatum object or not. An
additional flag allows the user to activate exceptions.

6.14.1 Operators
The insert and extract operators are specified for the following C++ types :

1. boolean

2. unsigned char

3. short

4. unsigned short

5. DevLong

6. DevULong

7. DevLong64

8. DevULong64

9. float

10. double

11. string

12. char* (insert only)

13. const char *

14. vector<string>

15. vector<short>

16. vector<unsigned short>

17. vector<DevLong>

18. vector<DevULong>

19. vector<DevLong64>

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 245

20. vector<DevULong64>

21. vector<float>

22. vector<double>

Here is an example of creating, inserting and extracting some DbDatum types :

DbDatum my_short("my_short"), my_long(“my_long”), my_string("my_string");
DbDatum my_float_vector("my_float_vector"), my_double_vector("my_double_vector");
string a_string;
short a_short;
DevLong a_long;
vector<float> a_float_vector;
vector<double> a_double_vector;
my_short << 100; // insert a short
my_short >> a_short; // extract a short
my_long << 1000; // insert a DevLong
my_long >> a_long; // extract a long
my_string << string("estas lista a bailar el tango ?"); // insert a string
my_string >> a_string; // extract a string
my_float_vector << a_float_vector // insert a vector of floats
my_float_vector >> a_float_vector; // extract a vector of floats
my_double_vector << a_double_vector; // insert a vector of doubles
my_double_vector >> a_double_vector; // extract a vector of doubles

Exception: WrongData if requested

6.14.2 bool DbDatum::is_empty()
is_empty() is a boolean method which trues true or false depending on whether the DbDatum object con-
tains data or not. It can be used to test whether a property is defined in the database or not e.g.

sl_props.push_back(parity_prop);
dbase->get_device_property(device_name, sl_props);
if (! parity_prop.is_empty())
{

parity_prop >> parity;
}
else
{

cout << device_name << " has no parity defined in database !" << endl;
}

Exception: WrongData if requested

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 246

6.14.3 void DbDatum::exceptions(bitset<DbDatum::numFlags>)
Is a method which allows the user to switch on/off exception throwing for trying to extract data from an
empty DbDatum object. The default is to not throw exception. The following flags are supported :

1. isempty_flag - throw a WrongData exception (reason = API_EmptyDbDatum) if user tries to extract
data from an empty DbDatum object

2. wrongtype_flag - throw a WrongData exception (reason = API_IncompatibleArgumentType) if user
tries to extract data with a type different than the type used for insertion

6.14.4 bitset<DbDatum::numFlags> exceptions()
Returns the whole exception flags.

6.14.5 void DbDatum::reset_exceptions(DbDatum::except_flags fl)
Resets one exception flag

6.14.6 void DbDatum::set_exceptions(DbDatum::except_flags fl)
Sets one exception flag

The following is an example of how to use these exceptions related methods

1 DbDatum da;
2
3 bitset<DbDatum::numFlags> bs = da.exceptions();
4 cout << "bs = " << bs << endl;
5
6 da.set_exceptions(DbDatum::wrongtype_flag);
7 bs = da.exceptions();
8
9 cout << "bs = " << bs << endl;

6.15 Tango::DbData
A vector of Tango::DbDatum structures. DbData is used to send or return one or more database properties
or information. It is the standard input and output type for all methods which query and/or update properties
in the database.

6.16 Exception
All the exception thrown by this API are Tango::DevFailed exception. This exception is a variable length
array of Tango::DevError type. The Tango::DevError type is a four fields structure. These fields are :

1. A string describing the error type. This string replaces an error code and allows a more easy man-
agement of include files. This field is called reason

2. A string describing in plain text the reason of the error. This field is called desc

3. A string giving the name of the method which thrown the exception. This field is named origin

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 247

4. The error severity. This is an enumeration with three values which are WARN, ERR or PANIC. Its
name is severity

This is a variable length array in order to transmit to the client what is the primary error reason. The
sequence element 0 describes the primary error. An exception class hierarchy has been implemented within
the API to ease API programmers task. All the exception classes inherits from the Tango::DevFailed class.
Except for the NamedDevFaildeList exception class, they don’t add any new fields to the exception, they
just allow easy "catching". Exception classes thrown only by the API layer are :

• ConnectionFailed

• CommunicationFailed

• WrongNameSyntax

• NonDbDevice

• WrongData

• NonSupportedFeature

• AsynCall

• AsynReplyNotArrived

• EventSystemFailed

• NamedDevFailedList

• DeviceUnlocked

On top of these classes, exception thrown by the device (Tango::DevFailed exception) are directly passed
to the client.

6.16.1 The ConnectionFailed exception
This exception is thrown when a problem occurs during the connection establishment between the appli-
cation and the device. The API is stateless. This means that DeviceProxy constructors filter most of the
exception except for cases described in the following table.

Method name device type error type Level reason
TANGO_HOST not set 0 API_TangoHostNotSet

with Device not defined in db 0 DB_DeviceNotDefined
database or 1 API_CommandFailed

DeviceProxy Alias not defined in db 2 API_DeviceNotDefined
constructor with database Database server 0 API_CorbaException

specified in dev name not running 1 API_CantConnectToDatabase
without Server running but device 0 API_CorbaException
database not defined in server 1 API_DeviceNotExported

TANGO_HOST not set 0 API_TangoHostNotSet
0 DB_DeviceNotDefined

Device not defined in db 1 API_CommandFailed
AttributeProxy with 2 API_DeviceNotDefined

constructor database 0 DB_SQLError
Alias not defined in db 1 API_CommandFailed

2 API_AliasNotDefined
with database Database server 0 API_CorbaException

specified in dev name not running 1 API_CantConnectToDatabase

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 248

DeviceProxy without Server not 0 API_CorbaException
or database running 1 API_ServerNotRunning

AttributeProxy Server not running 0 API_DeviceNotExported
method call with Dead 0 API_CorbaException

(except database server 1 API_CantConnectToDevice
cmd_inout Dead database server 0 API_CorbaException

read_attribute) when reconnection needed 1 API_CantConnectToDatabase
without Server 0 API_CorbaException

DeviceProxy database not 1 API_ServerNotRunning
cmd_inout running 2 API_CommandFailed

and Server 0 API_DeviceNotExported
read_attribute not running 1 API_CommandFailed

0 API_CorbaException
or with Dead 1 API_CantConnectToDevice

AttributeProxy database server 2 API_CommandFailed
read or API_AttributeFailed
and Dead database 0 API_CorbaException

write server when reconnection 1 API_CantConnectToDatabase
needed 2 API_CommandFailed

The desc DevError structure field allows a user to get more precise information. These informations
are :

DB_DeviceNotDefined The name of the device not defined in the database

API_CommandFailed The device and command name

API_CantConnectToDevice The device name

API_CorbaException The name of the CORBA exception, its reason, its locality, its completed flag and
its minor code

API_CantConnectToDatabase The database server host and its port number

API_DeviceNotExported The device name

6.16.2 The CommunicationFailed exception
This exception is thrown when a communication problem is detected during the communication between
the client application and the device server. It is a two levels Tango::DevError structure. In case of time-out,
the DevError structures fields are:

Level Reason Desc Severity
0 API_CorbaException CORBA exception fields translated into a string ERR
1 API_DeviceTimedOut String with time-out value and device name ERR

For all other communication errors, the DevError structures fields are:

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 249

Level Reason Desc Severity

0 API_CorbaException
CORBA exception fields translated into a
string ERR

1 API_CommunicationFailed
String with device, method, com-
mand/attribute name ERR

6.16.3 The WrongNameSyntax exception
This exception has only one level of Tango::DevError structure. The possible value for the reason field are
:

API_UnsupportedProtocol This error occurs when trying to build a DeviceProxy or an AttributeProxy
instance for a device with an unsupported protocol. Refer to the appendix on device naming syntax
to get the list of supported database modifier

API_UnsupportedDBaseModifier This error occurs when trying to build a DeviceProxy or an AttributeProxy
instance for a device/attribute with a database modifier unsupported. Refer to the appendix on device
naming syntax to get the list of supported database modifier

API_WrongDeviceNameSyntax This error occurs for all the other error in device name syntax. It is
thrown by the DeviceProxy class constructor.

API_WrongAttributeNameSyntax This error occurs for all the other error in attribute name syntax. It is
thrown by the AttributeProxy class constructor.

API_WrongWildcardUsage This error occurs if there is a bad usage of the wildcard character

6.16.4 The NonDbDevice exception
This exception has only one level of Tango::DevError structure. The reason field is set to API_NonDatabaseDevice.
This exception is thrown by the API when using the DeviceProxy or AttributeProxy class database access
for non-database device.

6.16.5 The WrongData exception
This exception has only one level of Tango::DevError structure. The possible value for the reason field are
:

API_EmptyDbDatum This error occurs when trying to extract data from an empty DbDatum object

API_IncompatibleArgumentType This error occurs when trying to extract data with a type different than
the type used to send the data

API_EmptyDeviceAttribute This error occurs when trying to extract data from an empty DeviceAttribute
object

API_IncompatibleAttrArgumentType This error occurs when trying to extract attribute data with a type
different than the type used to send the data

API_EmptyDeviceData This error occurs when trying to extract data from an empty DeviceData object

API_IncompatibleCmdArgumentType This error occurs when trying to extract command data with a
type different than the type used to send the data

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 250

6.16.6 The NonSupportedFeature exception
This exception is thrown by the API layer when a request to a feature implemented in Tango device interface
release n is requested for a device implementing Tango device interface n-x. There is one possible value
for the reason field which is API_UnsupportedFeature.

6.16.7 The AsynCall exception
This exception is thrown by the API layer when a the asynchronous model id badly used. This exception
has only one level of Tango::DevError structure. The possible value for the reason field are :

API_BadAsynPollId This error occurs when using an asynchronous request identifier which is not valid
any more.

API_BadAsyn This error occurs when trying to fire callback when no callback has been previously regis-
tered

API_BadAsynReqType This error occurs when trying to get result of an asynchronous request with
an asynchronous request identifier returned by a non-coherent asynchronous request (For instance,
using the asynchronous request identifier returned by a command_inout_asynch() method with a
read_attribute_reply() attribute).

6.16.8 The AsynReplyNotArrived exception
This exception is thrown by the API layer when:

• a request to get asynchronous reply is made and the reply is not yet arrived

• a blocking wait with timeout for asynchronous reply is made and the timeout expired.

There is one possible value for the reason field which is API_AsynReplyNotArrived.

6.16.9 The EventSystemFailed exception
This exception is thrown by the API layer when subscribing or unsubscribing from an event failed. This
exception has only one level of Tango::DevError structure. The possible value for the reason field are :

API_NotificationServiceFailed This error occurs when the subscribe_event() method failed trying to ac-
cess the CORBA notification service

API_EventNotFound This error occurs when you are using an incorrect event_id in the unsubscribe_event()
method

API_InvalidArgs This error occurs when NULL pointers are passed to the subscribe or unsubscribe event
methods

API_MethodArgument This error occurs when trying to subscribe to an event which has already been
subsribed to

API_DSFailedRegisteringEvent This error means that the device server to which the device belongs to
failed when it tries to register the event. Most likely, it means that there is no event property defined

API_EventNotFound Occurs when using a wrong event identifier in the unsubscribe_event method

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 251

6.16.10 The NamedDevFailedList exception
This exception is only thrown by the DeviceProxy::write_attributes() method. In this case, it is necessary
to have a new class of exception to transfer the error stack for several attribute(s) which failed during the
writing. Therefore, this exception class contains for each attributes which failed :

• The name of the attribute

• Its index in the vector passed as argumen tof the write_attributes() method

• The error stack as described in 6.16

6.16.10.1 long NamedDevFailedList::get_faulty_attr_nb()

Returns the number of attributes which failed during the write_attribute call.

6.16.10.2 vector<NamedDevFailed> NamedDevErrorList::err_list

Public data member of the NamedDevFailedList. There is one element in this vector for each attribute
which failed during its writing.

6.16.10.3 string NamedDevFailed::name

Public data member of the NamedDevFailed class. It contains the name of the attribute which failed.

6.16.10.4 long NamedDevFailed::idx_in_call

Public data member of the NamedDevFailed class. It contains the index in the write_attributes method
parameter vector of the attribute which failed.

6.16.10.5 DevErrorList NamedDevFailed::err_stack

Public data member of the NamedDevFailed class. This is the error stack.
The following piece of code is an example of how to use this class exception

catch (Tango::NamedDevFailed &e)
{

long nb_faulty = e.get_faulty_attr_nb();
for (long i = 0;i < nb_faulty;i++)
{

cout << "Attribute " << e.err_list[i].name << " failed!" << endl;
for (long j = 0;j < e.err_list[i].err_stack.length();j++)
{

cout << "Reason [" << j << "] = " << e.err_list[i].err_stack[j].reason;
cout << "Desc [" << j << "] = " << e.err_list[i].err_stack[j].desc;

}
}

}

This exception inherits from Tango::DevFailed. It is possible to catch it with a "catch DevFailed" catch
block. In this case, like any other DevFailed exception, there is only one error stack. This stack is initialised
with the name of all the attributes which failed in its "reason" field.

CHAPTER 6. THE TANGO C++ APPLICATION PROGRAMMER INTERFACE 252

6.16.11 The DeviceUnlocked exception
This exception is thrown by the API layer when a device locked by the process has been unlocked by an
admin client. This exception has two levels of Tango::DevError structure. There is only possible value for
the reason field which is

API_DeviceUnlocked The device has been unlocked by another client (administration client)

The first level is the message reported by the Tango kernel from the server side. The second layer is added
by the client API layer with informations on which API call generates the exception and device name.

6.17 Reconnection and exception
The Tango API automatically manages re-connection between client and server in case of communication
error during a network access between a client and a server. The transparency reconnection mode allows
a user to be (or not be) informed that automatic reconnection took place. If the transparency reconnection
mode is not set, when a communication error occurs, an exception is returned to the caller and the con-
nection is internally marked as bad. On the next try to contact the device, the API will try to re-build the
network connection. If the transparency reconnection mode is set, the API will try to re-build the network
connection has soon as the communication error occurs and the caller is not informed. Several cases are
possible. They are summarized in the following table:

Case Server state call nb
exception (transparency
false)

exception (transparency
true)

Server killed before call n n CommunicationFailed ConnectionFailed

Server killed down n+1
ConnectionFailed(2 lev-
els) idem

and re-started down n + 2 idem idem
Running n + x No exception No exception
Server died before call n n CommunicationFailed ConnectionFailed

Server died died n + 1
ConnectionFailed (3 lev-
els) idem

and re-started died n + 2 idem idem
Running n + x No exception No exception

Server killed
Server killed and re-started be-
fore call n n CommunicationFailed No exception

and re-started Running n+x No exception No exception

Server died
Server died and re-started be-
fore call n n CommunicationFailed No exception

and re-started Running n + x No exception No exception

Please note that the timeout case is managed differently because it will not enter the re-connection
system. The transparency reconnection mode is set by default to true for Tango version 5.5!

Chapter 7

TangoATK Programmer’s Guide

This chapter is only a brief Tango ATK (Application ToolKit) programmer’s guide. You can find a reference
guide with a full description of TangoATK classes and methods in the ATK JavaDoc [17].

A tutorial document [22] is also provided and includes the detailed description of the ATK architecture
and the ATK components. In the ATK Tutorial [22] you can find some code examples and also Flash
Demos which explain how to start using Tango ATK.

7.1 Introduction
This document describes how to develop applications using the Tango Application Toolkit, TangoATK for
short. It will start with a brief description of the main concepts behind the toolkit, and then continue with
more practical, real-life examples to explain key parts.

7.1.1 Assumptions
The author assumes that the reader has a good knowledge of the Java programming language, and a thor-
ough understanding of object-oriented programming. Also, it is expected that the reader is fluent in all
aspects regarding Tango devices, attributes, and commands.

7.2 The key concepts of TangoATK
TangoATK was developed with these goals in mind

• TangoATK should help minimize development time

• TangoATK should help minimize bugs in applications

• TangoATK should support applications that contain attributes and commands from several different
devices.

• TangoATK should help avoid code duplication.

Since most Tango-applications were foreseen to be displayed on some sort of graphic terminal, TangoATK
needed to provide support for some sort of graphic building blocks. To enable this, and since the toolkit
was to be written in Java, we looked to Swing to figure out how to do this.

Swing is developed using a variant over a design-pattern the Model-View-Controller (MVC) pattern
called model-delegate, where the view and the controller of the MVC-pattern are merged into one object.

253

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 254

Core Widget

State
viewer

Attribute
viewer

Command
Viewer

Error
viewer

Command
listAttribute

list

Device

This pattern made the choice of labor division quite easy: all non-graphic parts of TangoATK reside in
the packages beneath fr.esrf.tangoatk.core, and anything remotely graphic are located beneath
fr.esrf.tangoatk.widget. More on the content and organization of this will follow.

The communication between the non-graphic and graphic objects are done by having the graphic object
registering itself as a listener to the non-graphic object, and the non-graphic object emmiting events telling
the listeners that its state has changed.

7.2.1 Minimize development time
For TangoATK to help minimize the development time of graphic applications, the toolkit has been devel-
oped along two lines of thought

• Things that are needed in most applications are included, eg Splash, a splash window which gives
a graphical way for the application to show the progress of a long operation. The splash window is
moslty used in the startup phase of the application.

• Building blocks provided by TangoATK should be easy to use and follow certain patterns, eg every
graphic widget has a setModel method which is used to connect the widget with its non-graphic
model.

In addition to this, TangoATK provides a framework for error handling, something that is often a time
consuming task.

7.2.2 Minimize bugs in applications
Together with the Tango API, TangoATK takes care of most of the hard things related to programming
with Tango. Using TangoATK the developer can focus on developing her application, not on understanding
Tango.

7.2.3 Attributes and commands from different devices
To be able to create applications with attributes and commands from different devices, it was decided that
the central objects of TangoATK were not to be the device, but rather the attributes and the commands.
This will certainly feel a bit awkward at first, but trust me, the design holds.

For this design to be feasible, a structure was needed to keep track of the commands and attributes,
so the command-list and the attribute-list was introduced. These two objects can hold commands and
attributes from any number of devices.

7.2.4 Avoid code duplication
When writing applications for a control-system without a framework much code is duplicated. Anything
from simple widgets for showing numeric values to error handling has to be implemented each time. Tan-
goATK supplies a number of frequently used widgets along with a framework for connecting these widgets
with their non-graphic counterparts. Because of this, the developer only needs to write the glue - the code
which connects these objects in a manner that suits the specified application.

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 255

7.3 The real getting started
Generally there are two kinds of end-user applications: Applications that only know how to treat one
device, and applications that treat many devices.

7.3.1 Single device applications
Single device applications are quite easy to write, even with a gui. The following steps are required

1. Instantiate an AttributeList and fill it with the attributes you want.

2. Instantiate a CommandList and fill it with the commands you want.

3. Connect the whole AttributeList with a list viewer and / or each individual attribute with an attribute
viewer.

4. Connect the whole CommandList to a command list viewer and / or connect each individual command
in the command list with a command viewer.

Refresher

Attribute

Error...

5.98

modify

3.14159

Events

Panel Attribute
list

The following program (FirstApplication) shows an implementation of the list mentioned above. It
should be rather self-explanatory with the comments.

package examples;

import javax.swing.JFrame;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;
import javax.swing.JMenu;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderLayout;

import fr.esrf.tangoatk.core.AttributeList;
import fr.esrf.tangoatk.core.ConnectionException;

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 256

import fr.esrf.tangoatk.core.CommandList;
import fr.esrf.tangoatk.widget.util.ErrorHistory;
import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
import fr.esrf.tangoatk.widget.attribute.ScalarListViewer;
import fr.esrf.tangoatk.widget.command.CommandComboViewer;

public class FirstApplication extends JFrame
{
JMenuBar menu; // So that our application looks

// halfway decent.
AttributeList attributes; // The list that will contain our

// attributes
CommandList commands; // The list that will contain our

// commands
ErrorHistory errorHistory; // A window that displays errors
ScalarListViewer sListViewer; // A viewer which knows how to

// display a list of scalar attributes.
// If you want to display other types
// than scalars, you’ll have to wait
// for the next example.

CommandComboViewer commandViewer; // A viewer which knows how to display
// a combobox of commands and execute
// them.

String device; // The name of our device.

public FirstApplication()
{

// The swing stuff to create the menu bar and its pulldown menus
menu = new JMenuBar();
JMenu fileMenu = new JMenu();
fileMenu.setText("File");
JMenu viewMenu = new JMenu();
viewMenu.setText("View");
JMenuItem quitItem = new JMenuItem();
quitItem.setText("Quit");
quitItem.addActionListener(new

java.awt.event.ActionListener()
{
public void
actionPerformed(ActionEvent evt)
{quitItemActionPerformed(evt);}

});
fileMenu.add(quitItem);
JMenuItem errorHistItem = new JMenuItem();
errorHistItem.setText("Error History");
errorHistItem.addActionListener(new

java.awt.event.ActionListener()
{
public void
actionPerformed(ActionEvent evt)
{errHistItemActionPerformed(evt);}

});
viewMenu.add(errorHistItem);

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 257

menu.add(fileMenu);
menu.add(viewMenu);
//
// Here we create ATK objects to handle attributes, commands and errors.
//
attributes = new AttributeList();
commands = new CommandList();
errorHistory = new ErrorHistory();
device = "id14/eh3_mirror/1";
sListViewer = new ScalarListViewer();
commandViewer = new CommandComboViewer();

//
// A feature of the command and attribute list is that if you
// supply an errorlistener to these lists, they’ll add that
// errorlistener to all subsequently created attributes or
// commands. So it is important to do this _before_ you
// start adding attributes or commands.
//

attributes.addErrorListener(errorHistory);
commands.addErrorListener(errorHistory);

//
// Sometimes we’re out of luck and the device or the attributes
// are not available. In that case a ConnectionException is thrown.
// This is why we add the attributes in a try/catch
//

try
{

//
// Another feature of the attribute and command list is that they
// can add wildcard names, currently only ‘*’ is supported.
// When using a wildcard, the lists will add all commands or
// attributes available on the device.
//

attributes.add(device + "/*");
}
catch (ConnectionException ce)
{

System.out.println("Error fetching " +
"attributes from " +
device + " " + ce);

}

//
// See the comments for attributelist
//

try
{

commands.add(device + "/*");
}

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 258

catch (ConnectionException ce)
{

System.out.println("Error fetching " +
"commands from " +
device + " " + ce);

}

//
// Here we tell the scalarViewer what it’s to show. The
// ScalarListViewer loops through the attribute-list and picks out
// the ones which are scalars and show them.
//

sListViewer.setModel(attributes);

//
// This is where the CommandComboViewer is told what it’s to
// show. It knows how to show and execute most commands.
//

commandViewer.setModel(commands);

//
// add the menubar to the frame
//

setJMenuBar(menu);

//
// Make the layout nice.
//

getContentPane().setLayout(new BorderLayout());
getContentPane().add(commandViewer, BorderLayout.NORTH);
getContentPane().add(sListViewer, BorderLayout.SOUTH);

//
// A third feature of the attributelist is that it knows how
// to refresh its attributes.
//

attributes.startRefresher();

//
// JFrame stuff to make the thing show.
//

pack();
ATKGraphicsUtils.centerFrameOnScreen(this); //ATK utility to center window
setVisible(true);
}

public static void main(String [] args)
{

new FirstApplication();

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 259

}
public void quitItemActionPerformed(ActionEvent evt)
{

System.exit(0);
}
public void errHistItemActionPerformed(ActionEvent evt)
{

errorHistory.setVisible(true);
}

}

The program should look something like this (depending on your platform and your device)

7.3.2 Multi device applications
Multi device applications are quite similar to the single device applications, the only difference is that it
does not suffice to add the attributes by wildcard, you need to add them explicitly, like this:

try
{

// a StringScalar attribute from the device one
attributes.add("jlp/test/1/att_cinq");
// a NumberSpectrum attribute from the device one
attributes.add("jlp/test/1/att_spectrum");
// a NumberImage attribute from the device two
attributes.add("sr/d-ipc/id25-1n/Image");

}
catch (ConnectionException ce)
{

System.out.println("Error fetching " +
"attributes" + ce);

}

The same goes for commands.

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 260

7.3.3 More on displaying attributes
So far, we’ve only considered scalar attributes, and not only that, we’ve also cheated quite a bit since we just
passed the attribute list to the fr.esrf.tangoatk.widget.attribute.ScalarListViewer
and let it do all the magic. The attribute list viewers are only available for scalar attributes (Number-
ScalarListViewer and ScalarListViewer). If you have one or several spectrum or image attributes you must
connect each spectrum or image attribute to it’s corresponding attribute viewer individually. So let’s take a
look at how you can connect individual attributes (and not a whole attribute list) to an individual attribute
viewer (and not to an attribute list viewer).

7.3.3.1 Connecting an attribute to a viewer

Generally it is done in the following way:

1. You retrieve the attribute from the attribute list

2. You instantiate the viewer

3. Your call the setModel method on the viewer with the attribute as argument.

4. You add your viewer to some panel

The following example (SecondApplication), is a Multi-device application. Since this application uses
individual attribute viewers and not an attribute list viewer, it shows an implementation of the list mentioned
above.

package examples;

import javax.swing.JFrame;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;
import javax.swing.JMenu;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderLayout;
import java.awt.Color;

import fr.esrf.tangoatk.core.AttributeList;
import fr.esrf.tangoatk.core.ConnectionException;

import fr.esrf.tangoatk.core.IStringScalar;
import fr.esrf.tangoatk.core.INumberSpectrum;
import fr.esrf.tangoatk.core.INumberImage;
import fr.esrf.tangoatk.widget.util.ErrorHistory;
import fr.esrf.tangoatk.widget.util.Gradient;
import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
import fr.esrf.tangoatk.widget.attribute.NumberImageViewer;
import fr.esrf.tangoatk.widget.attribute.NumberSpectrumViewer;
import fr.esrf.tangoatk.widget.attribute.SimpleScalarViewer;
public class SecondApplication extends JFrame
{

JMenuBar menu;
AttributeList attributes; // The list that will contain our attributes
ErrorHistory errorHistory; // A window that displays errors

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 261

IStringScalar ssAtt;
INumberSpectrum nsAtt;
INumberImage niAtt;
public SecondApplication()
{

// Swing stuff to create the menu bar and its pulldown menus
menu = new JMenuBar();
JMenu fileMenu = new JMenu();
fileMenu.setText("File");
JMenu viewMenu = new JMenu();
viewMenu.setText("View");
JMenuItem quitItem = new JMenuItem();
quitItem.setText("Quit");
quitItem.addActionListener(new java.awt.event.ActionListener()

{
public void actionPerformed(ActionEvent evt)
{quitItemActionPerformed(evt);}

});
fileMenu.add(quitItem);
JMenuItem errorHistItem = new JMenuItem();
errorHistItem.setText("Error History");
errorHistItem.addActionListener(new java.awt.event.ActionListener()

{
public void actionPerformed(ActionEvent evt)
{errHistItemActionPerformed(evt);}

});
viewMenu.add(errorHistItem);
menu.add(fileMenu);
menu.add(viewMenu);

//
// Here we create TangoATK objects to view attributes and errors.
//

attributes = new AttributeList();
errorHistory = new ErrorHistory();

//
// We create a SimpleScalarViewer, a NumberSpectrumViewer and
// a NumberImageViewer, since we already knew that we were
// playing with a scalar attribute, a number spectrum attribute
// and a number image attribute this time.
//
SimpleScalarViewer ssViewer = new SimpleScalarViewer();

NumberSpectrumViewer nSpectViewer = new NumberSpectrumViewer();
NumberImageViewer nImageViewer = new NumberImageViewer();
attributes.addErrorListener(errorHistory);

//
// The attribute (and command) list has the feature of returning the last
// attribute that was added to it. Just remember that it is returned as an
// IEntity object, so you need to cast it into a more specific object, like
// IStringScalar, which is the interface which defines a string scalar
//

try
{

ssAtt = (IStringScalar) attributes.add("jlp/test/1/att_cinq");
nsAtt = (INumberSpectrum) attributes.add("jlp/test/1/att_spectrum");

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 262

niAtt = (INumberImage) attributes.add("sr/d-ipc/id25-1n/Image");
}
catch (ConnectionException ce)
{

System.out.println("Error fetching one of the attributes "+" " + ce);
System.out.println("Application Aborted.");
System.exit(0);

}
//
// Pay close attention to the following three lines!! This is how it’s done!
// This is how it’s always done! The setModel method of any viewer takes care

// of connecting the viewer to the attribute (model) it’s in charge of displaying.
// This is the way to tell each viewer what (which attribute) it has to show.
// Note that we use a viewer adapted to each type of attribute
//
ssViewer.setModel(ssAtt);
nSpectViewer.setModel(nsAtt);
nImageViewer.setModel(niAtt);

//
nSpectViewer.setPreferredSize(new java.awt.Dimension(400, 300));
nImageViewer.setPreferredSize(new java.awt.Dimension(500, 300));
Gradient g = new Gradient();
g.buidColorGradient();
g.setColorAt(0,Color.black);
nImageViewer.setGradient(g);
nImageViewer.setBestFit(true);
//
// Add the viewers into the frame to show them
//
getContentPane().setLayout(new BorderLayout());
getContentPane().add(ssViewer, BorderLayout.SOUTH);
getContentPane().add(nSpectViewer, BorderLayout.CENTER);
getContentPane().add(nImageViewer, BorderLayout.EAST);
//
// To have the attributes values refreshed we should start the
// attribute list’s refresher.
//
attributes.startRefresher();
//
// add the menubar to the frame
//
setJMenuBar(menu);
//
// JFrame stuff to make the thing show.
//
pack();
ATKGraphicsUtils.centerFrameOnScreen(this); //ATK utility to center window
setVisible(true);

}
public static void main(String [] args)
{

new SecondApplication();
}
public void quitItemActionPerformed(ActionEvent evt)

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 263

{
System.exit(0);

}
public void errHistItemActionPerformed(ActionEvent evt)
{

errorHistory.setVisible(true);
}

}

This program (SeondApplication) should look something like this (depending on your platform and
your device attributes)

7.3.3.2 Synoptic viewer

TangoATK provides a generic class to view and to animate the synoptics. The name of this class is
fr.esrf.tangoatk.widget.jdraw.SynopticFileViewer. This class is based on a “home-made” graphical layer
called jdraw. The jdraw package is also included inside TangoATK distribution.

SynopticFileViewer is a sub-class of the class TangoSynopticHandler. All the work for connection to
tango devices and run time animation is done inside the TangoSynopticHandler.

The recipe for using the TangoATK synoptic viewer is the following

1. You use Jdraw graphical editor to draw your synoptic

2. During drawing phase don’t forget to associate parts of the drawing to tango attributes or commands.
Use the “name” in the property window to do this

3. During drawing phase you can also aasociate a class (frequently a “specific panel” class) which
will be displayed when the user clicks on some part of the drawing. Use the “extension” tab in the
property window to do this.

4. Test the run-time behaviour of your synoptic. Use “Tango Synoptic view” command in the “views”
pulldown menu to do this.

5. Save the drawing file.

6. There is a simple synoptic application (SynopticAppli) which is provided ready to use. If this generic
application is enough for you, you can forget about the step 7.

7. You can now develop a specific TangoATK based application which instantiates the SynopticFile-
Viewer. To load the synoptic file in the SynopticFileViewer you have the choice : either you load it
by giving the absolute path name of the synoptic file or you load the synoptic file using Java input
streams. The second solution is used when the synoptic file is included inside the application jarfile.

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 264

The SynopticFilerViewer will browse the objects in the synoptic file at run time. It discovers if some parts
of the drawing is associated with an attribute or a command. In this case it will automatically connect to the
corresponding attribute or command. Once the connection is successfull SynopticFileViewer will animate
the synoptic according to the default behaviour described below :

• For tango state attributes : the colour of the drawing object reflects the value of the state. A mouse
click on the drawing object associated with the tango state attribute will instantiate and display the
class specified during the drawing phase. If no class is specified the atkpanel generic device panel is
displayed.

• For tango attributes : the current value of the attribute is displayed through the drawing object

• For tango commands : the mouse click on the drawing object associated with the command will
launch the device command.

• If the tooltip property is set to “name” when the mouse enters any tango object (attribute or com-
mand), inside the synoptic drawing the name of the tango object is displayed in a tooltip.

The following example (ThirdApplication), is a Synoptic application. We assume that the synoptic has
already been drawn using Jdraw graphical editor.

package examples;
import java.io.*;
import java.util.*;
import javax.swing.JFrame;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;
import javax.swing.JMenu;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderLayout;
import fr.esrf.tangoatk.widget.util.ErrorHistory;
import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
import fr.esrf.tangoatk.widget.jdraw.SynopticFileViewer;
import fr.esrf.tangoatk.widget.jdraw.TangoSynopticHandler;
public class ThirdApplication extends JFrame
{

JMenuBar menu;
ErrorHistory errorHistory; // A window that displays errors
SynopticFileViewer sfv; // TangoATK generic synoptic viewer

public ThirdApplication()
{

// Swing stuff to create the menu bar and its pulldown menus
menu = new JMenuBar();
JMenu fileMenu = new JMenu();
fileMenu.setText("File");
JMenu viewMenu = new JMenu();
viewMenu.setText("View");
JMenuItem quitItem = new JMenuItem();
quitItem.setText("Quit");
quitItem.addActionListener(new java.awt.event.ActionListener()

{

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 265

public void actionPerformed(ActionEvent evt)
{quitItemActionPerformed(evt);}

});
fileMenu.add(quitItem);
JMenuItem errorHistItem = new JMenuItem();
errorHistItem.setText("Error History");
errorHistItem.addActionListener(new java.awt.event.ActionListener()

{
public void actionPerformed(ActionEvent evt)
{errHistItemActionPerformed(evt);}

});
viewMenu.add(errorHistItem);
menu.add(fileMenu);
menu.add(viewMenu);
//
// Here we create TangoATK synoptic viewer and error window.
//
errorHistory = new ErrorHistory();
sfv = new SynopticFileViewer();
try
{

sfv.setErrorWindow(errorHistory);
}
catch (Exception setErrwExcept)
{

System.out.println("Cannot set Error History Window");
}
//
// Here we define the name of the synoptic file to show and the tooltip mode to use
//
try
{
sfv.setJdrawFileName("/users/poncet/ATK_OLD/jdraw_files/id14.jdw");
sfv.setToolTipMode (TangoSynopticHandler.TOOL_TIP_NAME);

}
catch (FileNotFoundException fnfEx)
{

javax.swing.JOptionPane.showMessageDialog(
null, "Cannot find the synoptic file : id14.jdw.\n"

+ "Check the file name you entered;"
+ " Application will abort ...\n"
+ fnfEx,
"No such file",
javax.swing.JOptionPane.ERROR_MESSAGE);

System.exit(-1);
}
catch (IllegalArgumentException illEx)
{

javax.swing.JOptionPane.showMessageDialog(
null, "Cannot parse the synoptic file : id14.jdw.\n"

+ "Check if the file is a Jdraw file."
+ " Application will abort ...\n"
+ illEx,
"Cannot parse the file",

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 266

javax.swing.JOptionPane.ERROR_MESSAGE);
System.exit(-1);

}
catch (MissingResourceException mrEx)
{

javax.swing.JOptionPane.showMessageDialog(
null, "Cannot parse the synoptic file : id14.jdw.\n"

+ " Application will abort ...\n"
+ mrEx,
"Cannot parse the file",
javax.swing.JOptionPane.ERROR_MESSAGE);

System.exit(-1);
}
//
// Add the viewers into the frame to show them
//
getContentPane().setLayout(new BorderLayout());
getContentPane().add(sfv, BorderLayout.CENTER);
//
// add the menubar to the frame
//
setJMenuBar(menu);
//
// JFrame stuff to make the thing show.
//
pack();
ATKGraphicsUtils.centerFrameOnScreen(this); //TangoATK utility to center window
setVisible(true);

}
public static void main(String [] args)
{

new ThirdApplication();
}
public void quitItemActionPerformed(ActionEvent evt)
{

System.exit(0);
}
public void errHistItemActionPerformed(ActionEvent evt)
{

errorHistory.setVisible(true);
}

}

The synoptic application (ThirdApplication) should look something like this (depending on your synoptic
drawing file)

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 267

7.3.4 A short note on the relationship between models and viewers
As seen in the examples above, the connection between a model and its viewer is generally done by calling
setModel(model) on the viewer, it is never explained what happens behind the scenes when this is
done.

7.3.4.1 Listeners

Most of the viewers implement some sort of listener interface, eg INumberScalarListener. An object
implementing such a listener interface has the capability of receiving and treating events from a model
which emits events.

// this is the setModel of a SimpleScalarViewer
public void setModel(INumberScalar scalar) {

clearModel();
if (scalar != null) {
format = scalar.getProperty("format").getPresentation();
numberModel = scalar;

// this is where the viewer connects itself to the
// model. After this the viewer will (hopefully) receive
// events through its numberScalarChange() method
numberModel.addNumberScalarListener(this);

numberModel.getProperty("format").addPresentationListener(this);
numberModel.getProperty("unit").addPresentationListener(this);

}
}

// Each time the model of this viewer (the numberscalar attribute) decides it is time, it
// calls the numberScalarChange method of all its registered listeners
// with a NumberScalarEvent object which contains the
// the new value of the numberscalar attribute.
//

public void numberScalarChange(NumberScalarEvent evt) {
String val;
val = getDisplayString(evt);
if (unitVisible) {
setText(val + " " + numberModel.getUnit());

} else {

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 268

setText(val);
}

}

All listeners in TangoATK implement the IErrorListener interface which specifies the errorChange(ErrorEvent
e) method. This means that all listeners are forced to handle errors in some way or another.

7.4 The key objects of TangoATK
As seen from the examples above, the key objects of TangoATK are the CommandList and the AttributeList.
These two classes inherit from the abstract class AEntityList which implements all of the common
functionality between the two lists. These lists use the functionality of the CommandFactory, the
AttributeFactory, which both derive from AEntityFactory, and the DeviceFactory.

In addition to these factories and lists there is one (for the time being) other important functionality
lurking around, the refreshers.

7.4.1 The Refreshers
The refreshers, represented in TangoATK by the Refresher object, is simply a subclass of java.lang.Thread
which will sleep for a given amount of time and then call a method refresh on whatever kind of IRefreshee
it has been given as parameter, as shown below

// This is an example from DeviceFactory.
// We create a new Refresher with the name "device"
// We add ourself to it, and start the thread

Refresher refresher = new Refresher("device");
refresher.addRefreshee(this).start();

Both the AttributeList and the DeviceFactory implement the IRefreshee interface which
specify only one method, refresh(), and can thus be refreshed by the Refresher. Even if the new
release of TangoATK is based on the Tango Events, the refresher mecanisme will not be removed. As a
matter of fact, the method refresh() implemented in ATTRIBUTELIST skips all attributes (members of the
list) for which the subscribe to the tango event has succeeded and calls the old refresh() method for the
others (for which subscribe to tango events has failed).

In a first stage this will allow the TangoATK applications to mix the use of the old tango device servers
(which do not implement tango events) and the new ones in the same code. In other words, TangoATK
subscribes for tango events if possible otherwise TangoATK will refresh the attributes through the old
refresher mecanisme.

Another reason for keeping the refresher is that the subscribe event can fail even for the attributes of
the new Tango device servers. As soon as the specified attribute is not polled the Tango events cannot be
generated for that attribute. Therefore the event subscription will fail. In this case the attribute will be
refreshed thanks to the ATK attribute list refresher.

The AttributePolledList class allows the application programmer to force explicitly the use
of the refresher method for all attributes added in an AttributePolledList even if the corresponding de-
vice servers implement tango events. Some viewers (fr.esrf.tangoatk.widget.attribute.Trend) need an At-
tributePolledList in order to force the refresh of the attribute without using tango events.

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 269

7.4.1.1 What happens on a refresh

When refresh is called on the AttributeList and the DeviceFactory, they loop through their
objects, IAttributes and IDevices, respectively, and ask them to refresh themselves if they are not
event driven.

When ATTRIBUTEFACTORY, creates an IAttribute, TangoATK tries to subscribe for Tango Change
event for that attribute. If the subscription succeeds then the attribute is marked as event driven. If the
subscription for Tango Change event fails, TangoATK tries to subscribe for Tango Periodic event. If the
subscription succeeds then the attribute is marked as event driven. If the subscription fails then the attribute
is marked as to be “ without events”.

In the REFRESH() method of the ATTRIBUTELIST during the loop through the objects if the object
is marked event driven then the object is simply skipped. But if the object (attribute) is not marked as
event driven, the REFRESH() method of the ATTRIBUTELIST, asks the object to refresh itself by calling
the “REFRESH()” method of that object (attribute or device). The REFRESH() method of an attribute will
in turn call the “readAttribute” on the Tango device.

The result of this is that the IAttributes fire off events to their registered listeners containing
snapshots of their state. The events are fired either because the IATTRIBUTE has received a Tango Change
event, respectively a Tango Periodic event (event driven objects), or because the REFRESH() method of the
object has issued a readAttribute on the Tango device.

7.4.2 The DeviceFactory
The device factory is responsible for two things

1. Creating new devices (Tango device proxies) when needed

2. Refreshing the state and status of these devices

Regarding the first point, new devices are created when they are asked for and only if they have not already
been created. If a programmer asks for the same device twice, she is returned a reference to the same
device-object.

The DeviceFactory contains a Refresher as described above, which makes sure that the all Devices
in the DeviceFactory updates their state and status and fire events to its listeners.

7.4.3 The AttributeFactory and the CommandFactory
These factories are responsible for taking a name of an attribute or command and returning an object
representing the attribute or command. It is also responsible for making sure that the appropriate IDevice
is already available. Normally the programmer does not want to use these factory classes directly. They
are used by TangoATK classes indirectly when the application programmer calls the AttributeList’s (or
CommandList’s) ADD() method.

7.4.4 The AttributeList and the CommandList
These lists are containers for attributes and commands. They delegate the construction-work to the factories
mentioned above, and generally do not do much more, apart from containing refreshers, and thus being able
to make the objects they contain refresh their listeners.

7.4.5 The Attributes
The attributes come in several flavors. Tango supports the following types:

• Short

• Long

• Double

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 270

• String

• Unsigned Char

• Boolean

• Unsigned Short

• Float

• Unsigned Long

According to Tango specifications, all these types can be of the following formats:

• Scalar, a single value

• Spectrum, a single array

• Image, a two dimensional array

For the sake of simplicity, TangoATK has combined all the numeric types into one, presenting all of them
as doubles. So the TangoATK classes which handle the numeric attributes are : NumberScalar, Number-
Spectrum and NumberImage (Number can be short, long, double, float, ...).

7.4.5.1 The hierarchy

The numeric attribute hierarchy is expressed in the following interfaces:

INumberScalar extends INumber

INumberSpectrum extends INumber

INumberImage extends INumber

and INumber in turn extends IAttribute

Each of these types emit their proper events and have their proper listeners. Please consult the javadoc for
further information.

7.4.6 The Commands
The commands in Tango are rather ugly beasts. There exists the following kinds of commands

• Those which take input

• Those which do not take input

• Those which do output

• Those which do not do output

Now, for both input and output we have the following types:

• Double

• Float

• Unsigned Long

• Long

• Unsigned Short

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 271

• Short

• String

These types can appear in scalar or array formats. In addition to this, there are also four other types of
parameters:

1. Boolean

2. Unsigned Char Array

3. The StringLongArray

4. The StringDoubleArray

The last two types mentioned above are two-dimensional arrays containing a string array in the first dimen-
sion and a long or double array in the second dimension, respectively.

As for the attributes, all numeric types have been converted into doubles, but there has been made little
or no effort to create an hierarchy of types for the commands.

7.4.6.1 Events and listeners

The commands publish results to their IResultListeners, by the means of a ResultEvent. The
IResultListener extends IErrorListener, any viewer of command-results should also know
how to handle errors. So a viewer of command-results implements IResultListener interface and registers
itself as a resultListener for the command it has to show the results.

CHAPTER 7. TANGOATK PROGRAMMER’S GUIDE 272

Chapter 8

Writing a TANGO device server

8.1 The device server framework
This chapter will present the TANGO device server framework. It will introduce what is the device server
pattern and then it will describe a complete device server framework. A definition of classes used by the
device server framework is given in this chapter. This manual is not intended to give the complete and
detailed description of classes data member or methods, refer to [8] to get this full description. But first,
the naming convention used in this project is detailed.

The aim of the class definition given in this chapter is only to help the reader to understand how a
TANGO device server works. For a detailed description of these classes (and their methods), refer to
chapter 8.4 or to [8].

8.1.1 Naming convention and programming language
TANGO fully supports two different programming languages which are C++ and Java. When the Java
code differs from the C++ code, examples in both languages will be given. For C++, its standard library
has been used. Details about this library can be found in [9].

Every software project needs a naming convention. The naming convention adopted for the TDSOM is
very simple and only defines two guidelines which are:

• Class names start with uppercase and use capitalization for compound words (For instance MyClass-
Name).

• Method names are in lowercase and use underscores for compound words (For instance my_method_name).

These conventions will be use hereafter for both C++ and Java.

8.1.2 The device pattern
Device server are written using the Device pattern. The aim of this pattern is to provide the control pro-
grammer with a framework in which s/he can develop new control objects. The device pattern uses other
design patterns like the Singleton and Command patterns. These patterns are fully described in [10]. The
device pattern class diagram for stepper motor device is drawn in figure 8.1 . In this figure, only classes
surrounded with a dash line square are device specific. All the other classes are part of the TDSOM core
and are developed by the Tango system team. Different kind of classes are used by the device pattern.

• Three of them are root classes and it is only necessary to inherit from them. These classes are the
DeviceImpl, DeviceClass and Command classes.

• Classes necessary to implement commands. The TDSOM supports two ways to create command :
Using inheritance or using the template command model. It is possible to mix model within the same
device pattern

273

CHAPTER 8. WRITING A TANGO DEVICE SERVER 274

is_allowed()

execute()

DevReadPosition

is_allowed()

execute()

TemplCommand

����������

DeviceImpl

DeviceClass

init_device()=0
attribute_factory()

command_factory()

Command

is_allowed()=0

execute()=0

DevState DevStatus DevRestart

is_allowed()

execute()

is_allowed() is_allowed()

execute() execute()

StepperMotorClass

device_factory()

command_factory()

dev_state

StpperMotor

init_device()

CORBA classes

dev_read_position()

device_factory()=0

command_factory()=0

is_allowed()

execute()

is_allowed()

execute()

is_allowed()

execute()

TemplCommandIn TemplCommandOut TemplCommandInOut

1,..n

1,..n

MultiAttributeAttribute

WAttribute

11,..nset_value()
get_name()

get_write_value()

read_alarm()
check_alarm()

get_attr....()

DbClass

get_property()

put_prperty()

1

DbDevice

get_property()

put_property()

read()

read() read()

is_allowed()

is_allowed() is_allowed()

1

1,..n
Attr

PositionAttr SetPositionAttr

(a) Device pattern class diagram

Figure 8.1: Device pattern class diagram

CHAPTER 8. WRITING A TANGO DEVICE SERVER 275

1. Using inheritance. This model of creating command heavily used the polymorphism offered
by each modern object oriented programming language. In this schema, each command sup-
ported by a device via the command_inout or command_inout_async operation is implemented
by a separate class. The Command class is the root class for each of these classes. It is an
abstract class. A execute method must be defined in each sub-class. A is_allowed method may
also be re-defined in each class if the default one does not fulfill all the needs1. In our stepper
motor device server example, the DevReadPosition command follows this model.

2. Using the template command model. Using this model, it is not necessary to write one class
for each command. You create one instance of classes already defined in the TDSOM for each
command. The link between command name and method which need to be executed is done
through pointers to method for C++ and through method names for Java. To support different
kind of command, four classes are part of the TDSOM. These classes are :

(a) The TemplCommand class for command without input or output parameter
(b) The TemplCommandIn class for command with input parameter but without output pa-

rameter
(c) The TemplCommandOut class for command with output parameter but without input

parameter
(d) The TemplCommandInOut class for all the remaining commands

• Classes necessary to implement TANGO device attributes. All these classes are part of the TANGO
core classes. These classes are the MultiAttribute, Attribute, WAttribute, Attr, SpectrumAttr
and ImageAttr classes. The last three are used to create user attribute. Each attribute supported by
a device is implemented by a separate class. The Attr class is the root class for each of these classes.
According to the attribute data format, the user class implementing the attribute must inherit from
the Attr, SpectrumAttr or ImageAtttr class. SpectrumAttr class inherits from Attr class and Image
Attr class inherits from the SpectrumAttr class. The Attr base class defined three methods called
is_allowed, read and write. These methods may be redefined in sub-classes in order to implement
the attribute specific behaviour.

• The other are device specific. For stepper motor device, they are named StepperMotor, StepperMo-
torClass and DevReadPosition.

8.1.2.1 The DeviceImpl class

8.1.2.1.1 Description This class is the device root class and is the link between the Device pattern
and CORBA. It inherits from CORBA classes and implements all the methods needed to execute CORBA
operations and attributes. For instance, its method command_inout is executed when a client requests a
command_inout operation. The method name of the DeviceImpl class is executed when a client requests
the name CORBA attribute. This class also encapsulates some key device data like its name, its state, its
status, its black box.... This class is an abstract class and cannot be instantiated as is.

8.1.2.1.2 Contents The contents of this class can be summarize as :

• Different constructors and one destructor

• Methods to access instance data members outside the class or its derivate classes. These methods are
necessary because data members are declared as protected.

• Methods triggered by CORBA attribute request

• Methods triggered by CORBA operation request

• The init_device() method. This method makes the class abstract. It should be implemented by a
sub-class. It is used by the inherited classes constructors.

1The default is_allowed method behavior is to always allows the command

CHAPTER 8. WRITING A TANGO DEVICE SERVER 276

• Methods triggered by the automatically added State and Status commands. These methods are de-
clared virtual and therefore can be redefined in sub-classes. These two commands are automatically
added to the list of commands defined for a class of devices. They are discussed in chapter 8.1.5

• A method called always_executed_hook() always executed for each command before the device
state is tested for command execution. This method gives the programmer a hook where he(she) can
program some mandatory action which must be done before any command execution. An example
of the such action is an hardware access to the device to read its real hardware state.

• A method called read_attr_hardware() triggered by the read_attributes CORBA operation. This
method is called once for each read_attributes call. This method is virtual and may be redefined in
sub-classes.

• Methods for signal management (C++ specific)

• Data members like the device name, the device status, the device state

• Some private methods and data members

8.1.2.2 The DbDevice class

Each DeviceImpl instance is an aggregate with one instance of the DbDevice class. This DbDevice class
can be used to query or modify device properties. It provides an easy to use interface for device objects in
the database. The description of this class can be found in the Tango java or C++ API documentation.

8.1.2.3 The Command class

8.1.2.3.1 Description of the inheritance model Within the TDSOM, each command supported by a
device and implemented using the inheritance model is implemented by a separate class. The Command
class is the root class for each of these classes. It is an abstract class. It stores the command name,
the command argument types and description and mainly defines two methods which are the execute and
is_allowed methods. The execute method should be implemented in each sub-class. A default is_allowed
method exists for command always allowed. A command also stores a parameter which is the command
display type. It is also used to select if the command must be displayed according to the application mode
(every day operation or expert mode).

8.1.2.3.2 Description of the template model Using this method, it is not necessary to create a separate
class for each device command. In this method, each command is represented by an instance of one of the
template command classes. They are four template command classes. All these classes inherits from the
Command class. These four classes are :

1. The TemplCommand class. One object of this class must be created for each command without
input nor output parameters

2. The TemplCommandIn class. One object of this class must be created for each command without
output parameter but with input parameter

3. The TemplCommandOut class. One object of this class must be created for each command without
input parameter but with output parameter

4. The TemplCommandInOut class. One object of this class must be created for each command with
input and output parameters

These four classes redefine the execute and is_allowed method of the Command class. These classes
provides constructors which allow the user to :

• specify which method must be executed by these classes execute method

CHAPTER 8. WRITING A TANGO DEVICE SERVER 277

• optionally specify which method must be executed by these classes is_allowed method.

The method specification is done via pointer to method with C++ and simply with method name for java.
Remember that it is possible to mix command implementation method within the same device pattern.

8.1.2.3.3 Contents The content of this class can be summarizes as :

• Class constructors and destructor

• Declaration of the execute method

• Declaration of the is_allowed method

• Methods to read/set class data members

• Methods to extract data from the object used to transfer data on the network

• Methods to insert data into the object used to transfer data on the network

• Class data members like command name, command input data type, command input data descrip-
tion...

8.1.2.4 The DeviceClass class

8.1.2.4.1 Description This class implements all what is specific for a controlled object class. For in-
stance, every device of the same class supports the same list of commands and therefore, this list of avail-
able commands is stored in this DeviceClass. The structure returned by the info operation contains a
documentation URL2. This documentation URL is the same for every device of the same class. There-
fore, the documentation URL is a data member of this class. There should have only one instance of this
class per device pattern implementation. The device list is also stored in this class. It is an abstract class
because the two methods device_factory() and command_factory() are declared as pure virtual. The rule
of the device_factory() method is to create all the devices belonging to the device class. The rule of the
command_factory() method is to create one instance of all the classes needed to support device commands.
This class also stored the attribute_factory method. The rule of this method is to store in a vector of strings,
the name of all the device attributes. This method has a default implementation which is an empty body
for device without attribute.

8.1.2.4.2 Contents The contents of this class can be summarize as :

• The command_handler method

• Methods to access data members.

• Signal related method (C++ specific)

• Class constructor. It is protected to implements the Singleton pattern

• Class data members like the class command list, the device list...

8.1.2.5 The DbClass class

Each DeviceClass instance is an aggregate with one instance of the DbClass class. This DbClass class can
be used to query or modify class properties. It provides an easy to use interface for device objects in the
database. The description of this class can be found in the Tango java or C++ API documentation.

2URL stands for Uniform Resource Locator

CHAPTER 8. WRITING A TANGO DEVICE SERVER 278

8.1.2.6 The MultiAttribute class

8.1.2.6.1 Description This class is a container for all the TANGO attributes defined for the device.
There is one instance of this class for each device. This class is mainly an aggregate of Attribute object(s).
It has been developed to ease TANGO attribute management.

8.1.2.6.2 Contents The class contents could be summarizes as :

• Miscellaneous methods to retrieve one attribute object in the aggregate

• Method to retrieve a list of attribute with an alarm level defined

• Get attribute number method

• Miscellaneous methods to check if an attribute value is outside the authorized limits

• Method to add messages for all attribute with an alarm set

• Data members with the attribute list

8.1.2.7 The Attribute class

8.1.2.7.1 Description There is one object of this class for each device attribute. This class is used to
store all the attribute properties, the attribute value and all the alarm related data. Like commands, this
class also stores th attribute display type. It is foreseen to be used by future Tango graphical application
toolkit to select if the attribute must be displayed according to the application mode (every day operation
or expert mode).

8.1.2.7.2 Contents

• Miscellaneous method to get boolean attribute information

• Methods to access some data members

• Methods to get/set attribute properties

• Method to check if the attribute is in alarm condition

• Methods related to attribute data

• Friend function to print attribute properties

• Data members (properties value and attribute data)

8.1.2.8 The WAttribute class

8.1.2.8.1 Description This class inherits from the Attribute class. There is one instance of this class
for each writable device attribute. On top of all the data already managed by the Attribute class, this class
stores the attribute set value.

8.1.2.8.2 Contents Within this class, you will mainly find methods related to attribute set value storage
and some data members.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 279

8.1.2.9 The Attr class

Within the TDSOM, each attribute supported by a device is implemented by a separate class. The Attr class
is the root class for each of these classes. It is used in conjonction with the Attribute and Wattribute classes
to implement Tango attribute behaviour. It defines three methods which are the is_allowed, read and write
methods. A default is_allowed method exists for attribute always allowed. Default read and write empty
methods are defined. For readable attribute, it is necessary to overwrite the read method. For writable
attribute, it is necessary to overwrite the write method and for read and write attribute, both methods must
be overwritten.

8.1.2.10 The SpectrumAttr class

This class inherits from the Attr class. It is the base class for user spectrum attribute. It is used in conjonc-
tion with the Attribute and WAttribute class to implement Tango spectrum attribute behaviour. From the
Attr class, it inherits the Attr is_allowed, read and write methods.

8.1.2.11 The ImageAttr class

This class inherits from the SpectrumAttr class. It is the base class for user image attribute. It is used in
conjonction with the Attribute and WAttribute class to implement Tango image attribute behaviour. From
the Attr class, it inherits the Attr is_allowed, read and write methods.

8.1.2.12 The StepperMotor class

8.1.2.12.1 Description This class inherits from the DeviceImpl class and is the class implementing the
controlled object behavior. Each command will trigger a method in this class written by the device server
programmer and specific to the object to be controlled. This class also stores all the device specific data.

8.1.2.12.2 Definition

1 class StepperMotor: public Tango::DeviceImpl
2 {
3 public :
4 StepperMotor(Tango::DeviceClass *,string &);
5 StepperMotor(Tango::DeviceClass *,const char *);
6 StepperMotor(Tango::DeviceClass *,const char *,const char *);
7 ~StepperMotor() {};
8
9 DevLong dev_read_position(DevLong);
10 DevLong dev_read_direction(DevLong);
11 bool direct_cmd_allowed(const CORBA::Any &);
12
13 virtual Tango::DevState dev_state();
14 virtual Tango::ConstDevString dev_status();
15
16 virtual void always_executed_hook();
17
18 virtual void read_attr_hardware(vector<long> &attr_list);
19
20 void read_position(Tango::Attribute &);
21 bool is_Position_allowed(Tango::AttReqType req);
22 void write_SetPosition(Tango::WAttribute &);
23 void read_Direction(Tango::Attribute &);

CHAPTER 8. WRITING A TANGO DEVICE SERVER 280

24
25 virtual void init_device();
26 virtual void delete_device();
27
28 void get_device_properties();
29
30 protected :
31 long axis[AGSM_MAX_MOTORS];
32 DevLong position[AGSM_MAX_MOTORS];
33 DevLong direction[AGSM_MAX_MOTORS];
34 long state[AGSM_MAX_MOTORS];
35
36 Tango::DevLong *attr_Position_read;
37 Tango::DevLong *attr_Direction_read;
38 Tango::DevLong attr_SetPosition_write;
39
40 Tango::DevLong min;
41 Tango::DevLong max;
42
43 Tango::DevLong *ptr;
44 };
45
46 } /* End of StepperMotor namespace */

Line 1 : The StepperMotor class inherits from the DeviceImpl class
Line 4-7 : Class constructors and destructor
Line 9 : Method triggered by the DevReadPosition command
Line 10-11 : Methods triggered by the DevReadDirection command
Line 13 : Redefinition of the dev_state method of the DeviceImpl class. This method will be triggered

by the State command
Line 14 : Redefinition of the dev_status method of the DeviceImpl class. This method will be triggered

by the Status command
Line 16 : Redefinition of the always_executed_hook method.
Line 25 : Definition of the init_device method (declared as pure virtual by the DeviceImpl class)
Line 26 : Definition of the delete_device method
Line 30-44 : Device data

8.1.2.13 The StepperMotorClass class

8.1.2.13.1 Description This class inherits from the DeviceClass class. Like the DeviceClass class,
there should be only one instance of the StepperMotorClass. This is ensured because this class is written
following the Singleton pattern as defined in [10]. All controlled object class data which should be defined
only once per class must be stored in this object.

8.1.2.13.2 Definition

1 class StepperMotorClass : public DeviceClass
2 {
3 public:
4 static StepperMotorClass *init(const char *);
5 static StepperMotorClass *instance();

CHAPTER 8. WRITING A TANGO DEVICE SERVER 281

6 ~StepperMotorClass() {_instance = NULL;}
7
8 protected:
9 StepperMotorClass(string &);
10 static StepperMotorClass *_instance;
11 void command_factory();
12
13 private:
14 void device_factory(Tango_DevVarStringArray *);
15 };

Line 1 : This class is a sub-class of the DeviceClass class
Line 4-5 and 9-10: Methods and data member necessary for the Singleton pattern
Line 6 : Class destructor
Line 11 : Definition of the command_factory method declared as pure virtual in the DeviceClass call
Line 13-14 : Definition of the device_factory method declared as pure virtual in the DeviceClass class

8.1.2.14 The DevReadPosition class

8.1.2.14.1 Description This is the class for the DevReadPosition command. This class implements
the execute and is_allowed methods defined by the Command class. This class is necessary because this
command is implemented using the inheritance model.

8.1.2.14.2 Definition

1 class DevReadPositionCmd : public Command
2 {
3 public:
4 DevReadPositionCmd(const char *,Tango_CmdArgType, Tango_CmdArgType, const char *, const

char*);
5 ~DevReadPositionCmd() {};
6
7 virtual bool is_allowed (DeviceImpl *, const CORBA::Any &);
8 virtual CORBA::Any *execute (DeviceImpl *, const CORBA::Any &);
9 };

Line 1 : The class is a sub class of the Command class
Line 4-5 : Class constructor and destructor
Line 7-8 : Definition of the is_allowed and execute method declared as pure virtual in the Command

class.

8.1.2.15 The PositionAttr class

8.1.2.15.1 Description This is the class for the Position attribute. This attribute is a scalar attribute and
therefore inherits from the Attr base class. This class implements the read and is_allowed methods defined
by the Attr class.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 282

8.1.2.15.2 Definition

1 class PositionAttr: public Tango::Attr
2 {
3 public:
4 PositionAttr():Attr("Position",Tango::DEV_LONG,Tango::READ);
5 ~PositionAttr() {};
6
7 virtual void read(Tango::DeviceImpl *dev,Tango::Attribute &att)
8 {(static_cast<StepperMotor *>(dev))->read_Position(att);}
9 virtual bool is_allowed(Tango::DeviceImpl *dev,Tango::AttReqType ty)
10 {return (static_cast<StepperMotor *>(dev))->is_Position_allowed(ty);}
11 };

Line 1 : The class is a sub class of the Attr class
Line 4-5 : Class constructor and destructor
Line 7 : Re-definition of the read method defined in the Attr class. This is simply a "forward" to the

read_Position method of the StepperMotor class
Line 9 : Re-definition of the is_allowed method defined in the Attr class. This is also a "forward" to

the is_Position_allowed method of the StepperMotor class

8.1.3 Startup of a device pattern
To start the device pattern implementation for stepper motor device, four methods of the StepperMotorClass
class must be executed. These methods are :

1. The creation of the StepperMethodClass singleton via its init() method

2. The command_factory() method of the StepperMotorClass class

3. The attribute_factory() method of the StepperMotorClass class. This method has a default empty
body for device class without attributes.

4. The device_factory() method of the StepperMotorClass class

This startup procedure is described in figure 8.2 . The creation of the StepperMotorClass will automatically
create an instance of the DeviceClass class. The constructor of the DeviceClass class will create the Status,
State and Init command objects and store them in its command list.

The command_factory() method will simply create all the user defined commands and add them in the
command list.

The attribute_factory() method will simply build a list of device attribute names.
The device_factory() method will create each StepperMotor object and store them in the StepperMotor-

Class instance device list. The list of devices to be created and their names is passed to the device_factory
method in its input argument. StepperMotor is a sub-class of DeviceImpl class. Therefore, when a Step-
perMotor object is created, a DeviceImpl object is also created. The DeviceImpl constructor builds all the
device attribute object(s) from the attribute list built by the attribute_factory() method.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 283

init

command_factory

device_factory

StepperMotorClass DeviceClass

new
new

new

DevReadPosition Attribute(s)StepperMotor DeviceImpl

new

new

new
new

attribute_factory

Attribute listStatus State Init

Figure 8.2: Device pattern startup sequence

8.1.4 Command execution sequence
The figure 8.3

command_handler

StepperMotor object StepperMotorClass singleton DevReadPosition StepperMotor object

command_inout

execute

is_allowed

always_executed_hook

dev_read_position

Figure 8.3: Command execution timing

CHAPTER 8. WRITING A TANGO DEVICE SERVER 284

described how the method implementing a command is executed when a command_inout CORBA
operation is requested by a client. The command_inout method of the StepperMotor object (inherited
from the DeviceImpl class) is triggered by an instance of a class generated by the CORBA IDL compiler.
This method calls the command_handler() method of the StepperMotorClass object (inherited from the
DeviceClass class). The command_handler method searches in its command list for the wanted command
(using its name). If the command is found, the always_executed_hook method of the StepperMotor object
is called. Then, the is_allowed method of the wanted command is executed. If the is_allowed method
returns correctly, the execute method is executed. The execute method extracts the incoming data from the
CORBA object use to transmit data over the network and calls the user written method which implements
the command.

8.1.5 The automatically added commands
In order to increase the common behavior of every kind of devices in a TANGO control system, three
commands are automatically added to each class of devices. These commands are :

• State

• Status

• Init

The default behavior of the method called by the State command depends on the device state. If the device
state is ON or ALARM, the method will :

• read the attribute(s) with an alarm level defined

• check if the read value is above/below the alarm level and eventually change the device state to
ALARM.

• returns the device state.

For all the other device state, the method simply returns the device state stored in the DeviceImpl class.
Nevertheless, the method used to return this state (called dev_state) is defined as virtual and can be rede-
fined in DeviceImpl sub-class. The difference between the default State command and the state CORBA
attribute is the ability of the State command to signal an error to the caller by throwing an exception.

The default behavior of the method called by the Status command depends on the device state. If the
device state is ON or ALARM, the method returns the device status stored in the DeviceImpl class plus
additional message(s) for all the attributes which are in alarm condition. For all the other device state, the
method simply returns the device status as it is stored in the DeviceImpl class. Nevertheless, the method
used to return this status (called dev_status) is defined as virtual and can be redefined in DeviceImpl sub-
class. The difference between the default Status command and the status CORBA attribute is the ability of
the Status command to signal an error to the caller by throwing an exception.

The Init command is used to re-initialize a device without changing its network connection. This
command calls the device delete_device method and the device init_device method. The rule of the
delete_device method is to free memory allocated in the init_device method in order to avoid memory
leak.

8.1.6 Reading/Writing attributes
8.1.6.1 Reading attributes

A Tango client is able to read Tango attribute(s) with the CORBA read_attributes call. Inside the device
server, this call will trigger several methods of the device class (StepperMotor in our example) :

1. The always_executed_hook() method.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 285

2. A method call read_attr_hardware(). This method is called one time per read_attributes CORBA
call. The aim of this method is to read the device hardware and to store the result in a device class
data member.

3. For each attribute to be read

(a) A method called is_<att name>_allowed(). The rule of this method is to allow (or disallow)
the next method to be executed. It is usefull for device with some attributes which can be read
only in some precise conditions. It has one parameter which is the request type (read or write)

(b) A method called read_<att name>(). The aim of this method is to extract the real attribute
value from the hardware read-out and to store the attribute value into the attribute object. It has
one parameter which is a reference to the Attribute object to be read.

The figure 8.4 is a drawing of these method calls sequencing. For attribute always readable, a default
is_allowed method is provided. This method always returns true.

StepperMotor object

read_attribute

PositionAttr class

always_executed_hook

read_attr_hardware

is_allowed
is_Position_allowed

read
read_Position

StepperMotor object

Figure 8.4: Read attribute sequencing

8.1.6.2 Writing attributes

A Tango client is able to write Tango attribute(s) with the CORBA write_attributes call. Inside a device
server, this call will trigger several methods of the device class (StepperMotor in our example)

1. The always_executed_hook() method.

2. For each attribute to be written

(a) A method called is_<att name>_allowed(). The rule of this method is to allow (or disallow) the
next method to be executed. It is usefull for device with some attributes which can be written
only in some precise conditions. It has one parameter which is the request type (read or write)

(b) A method called write_<att name>(). It has one parameter which is a reference to the WAt-
tribute object to be written. The aim of this method is to get the data to be written from the
WAttribute object and to write this value into the corresponding hardware.

The figure 8.5 is a drawing of these method calls sequencing. For attribute always writeable, a default
is_allowed method is provided. This method always allways returns true.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 286

StepperMotor object PositionAttr class

always_executed_hook

is_allowed
is_Position_allowed

StepperMotor object

write
write_Position

write_attribute

Figure 8.5: Write attribute sequencing

8.1.7 The device server framework
8.1.7.1 Vocabulary

A device server pattern implementation is embedded in a process called a device server. Several instances
of the same device server process can be used in a TANGO control system. To identify instances, a device
server process is started with an instance name which is different for each instance. The device server
name is the couple device server executable name/device server instance name. For instance, a device
server started with the following command

Perkin id11

starts a device server process with an instance name id11, an executable name Perkin and a device server
name Perkin/id11.

8.1.7.2 The DServer class

In order to simplify device server process administration, a device of the DServer class is automatically
added to each device server process. Thus, every device server process supports the same set of adminis-
tration commands. The implementation of this DServer class follows the device pattern and therefore, its
device behaves like any other devices. The device name is

dserver/device server executable name/device server instance name

For instance, for the device server process described in chapter 8.1.7.1, the dserver device name is dserver/perkin/id11.
This name is returned by the adm_name CORBA attribute available for every device. On top of the three
automatically added commands, this device supports the following commands :

• DevRestart

• RestartServer

• QueryClass

• QueryDevice

• Kill

CHAPTER 8. WRITING A TANGO DEVICE SERVER 287

• SetTraceLevel (Java server only)

• GetTraceLevel (Java server only)

• SetTraceOutput (Java server only)

• GetTraceOutput (Java server only)

• AddLoggingTarget (C++ server only)

• RemoveLoggingTarget (C++ server only)

• GetLoggingTarget (C++ server only)

• GetLoggingLevel (C++ server only)

• SetLoggingLevel (C++ server only)

• StopLogging (C++ server only)

• StartLogging (C++ server only)

• PolledDevice

• DevPollStatus

• AddObjPolling

• RemObjPolling

• UpdObjPollingPeriod

• StartPolling

• StopPolling

• EventSubscriptionChange

• LockDevice

• UnLockDevice

• ReLockDevices

• DevLockStatus

These commands will be fully described later in this document.
Several controlled object classes can be embedded within the same device server process and it is the

rule of this device to create all these device server patterns and to call their command and device factories
as described in 8.1.3. The name and number of all the classes to be created is known to this device after
the execution of a method called class_factory. With C++, it is the user responsibility to write this method.
Using Java, this method is already written and automatically retrieves which classes must be created and
creates them.

8.1.7.3 The Tango::Util class

8.1.7.3.1 Description This class merges a complete set of utilities in the same class. It is implemented
as a singleton and there is only one instance of this class per device server process. It is mandatory to create
this instance in order to run a device server. The description of all the methods implemented in this class
can be found in [8].

CHAPTER 8. WRITING A TANGO DEVICE SERVER 288

AClass

DeviceImpl DeviceClass

Device server pattern implementing the DServer class Device server pattern(s) implementing device class(es)

Tango::Util

DServer

Database

server_init()

server_run()

1

Figure 8.6: A complete device server

8.1.7.3.2 Contents Within this class, you can find :

• Static method to create/retrieve the singleton object

• Miscellaneous utility methods like getting the server output trace level, getting the CORBA ORB
pointer, retrieving device server instance name, getting the server PID and more. Please, refer to [8]
to get a complete list of all these utility methods.

• Method to create the device pattern implementing the DServer class (server_init())

• Method to start the server (server_run())

• TANGO database related methods

8.1.7.4 A complete device server

Within a complete device server, at least two implementations of the device server pattern are created (one
for the dserver object and the other for the class of devices to control). On top of that, one instance of the
Tango::Util class must also be created. A drawing of a complete device server is in figure 8.6

8.1.7.5 Device server startup sequence

The device server startup sequence is the following :

1. Create an instance of the Tango::Util class. This will initialize the CORBA Object Request Broker

2. Called the server_init method of the Tango::Util instance The call to this method will :

(a) Create the DServerClass object of the device pattern implementing the DServer class. This will
create the dserver object which during its construction will :

CHAPTER 8. WRITING A TANGO DEVICE SERVER 289

i. Called the class_factory method of the DServer object. This method must create all the
xxxClass instance for all the device pattern implementation embedded in the device server
process.

ii. Call the command_factory and device_factory of all the classes previously created. The list
of devices passed to each call to the device_factory method is retrieved from the TANGO
database.

3. Wait for incoming request with the server_run() method of the Tango::Util class.

8.2 Exchanging data between client and server
Exchanging data between clients and server means most of the time passing data between processes running
on different computer using the network. Tango limits the type of data exchanged between client and server
and defines a way to exchange these data. This chapter details these features. Memory allocation and error
reporting are also discussed.

All the rules described in this chapter are valid only for data exchanged between client and server.
For device server internal data, classical C++ or Java types can be use.

8.2.1 Command / Attribute data types
Commands have a fixed calling syntax - consisting of one input argument and one output argument. Argu-
ments type must be chosen out of a fixed set of 19 data types. The following table details type name, code
and the corresponding CORBA IDL types.

The type name used in the type name column of this table is the C++ name. In the IDL file, all the
Tango definition are grouped in a IDL module named Tango. The IDL module maps to C++ namespace.
Therefore, all the data type are parts of a namespace called Tango. For Java, the IDL module maps to Java
package and name are not changed related to the IDL file.

Type name IDL type
Tango::DevBoolean boolean

Tango::DevShort short
Tango::DevLong long

Tango::DevLong64 long long
Tango::DevFloat float

Tango::DevDouble double
Tango::DevUShort unsigned short
Tango::DevULong unsigned long

Tango::DevULong64 unsigned long long
Tango::DevString string

Tango::DevVarCharArray sequence of unsigned char
Tango::DevVarShortArray sequence of short
Tango::DevVarLongArray sequence of long

Tango::DevVarLong64Array sequence of long long
Tango::DevVarFloatArray sequence of float

Tango::DevVarDoubleArray sequence of double
Tango::DevVarUShortArray sequence of unsigned short
Tango::DevVarULongArray sequence of unsigned long

Tango::DevVarULong64Array sequence of unsigned long long
Tango::DevVarStringArray sequence of string

Tango::DevVarLongStringArray structure with a sequence of long and a sequence of string
Tango::DevVarDoubleStringArray structure with a sequence of double and a sequence of string

CHAPTER 8. WRITING A TANGO DEVICE SERVER 290

Tango::DevState enumeration
Tango::DevEncoded structure with a string and a sequence of char

The CORBA Interface Definition Language uses a type called sequence for variable length array. This
sequence type is mapped differently according to the language used (C++ or Java). The Tango::DevUxxx
types are used for unsigned types. The Tango::DevVarxxxxArray must be used when the data to be trans-
ferred are variable length array. The Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray
are structures with two fields which are variable length array of Tango long (32 bits) and variable length
array of strings for the Tango::DevVarLongStringArray and variable length array of double and variable
length array of string for the Tango::DevVarDoubleStringArray. The Tango::State type is used by the State
command to return the device state.

8.2.1.1 Using command data types with C++

Unfortunately, the mapping between IDL and C++ was defined before the C++ class library had been
standardized. This explains why the standard C++ string class or vector classes are not used in the IDL to
C++ mapping.

TANGO commands argument types can be grouped on five groups depending on the IDL data type
used. These groups are :

1. Data type using basic types (Tango::DevBoolean, Tango::DevShort, Tango::DevLong, Tango::DevFloat,
Tango::DevDouble, Tango::DevUshort and Tango::DevULong)

2. Data type using strings (Tango::DevString type)

3. Data types using sequences (Tango::DevVarxxxArray types except Tango::DevVarLongStringArray
and Tango::DevVarDoubleStringArray)

4. Data types using structures (Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray
types)

5. Data type using enumeration (Tango::DevState type)

In the following sub chapters, only summaries of the IDL to C++ mapping are given. For a full description
of the C++ mapping, please refer to [2]

8.2.1.1.1 Basic types For these types, the mapping between IDL and C++ is obvious and defined in the
following table.

Tango type name IDL type C++ typedef
Tango::DevBoolean boolean CORBA::Boolean unsigned char

Tango::DevShort short CORBA::Short short
Tango::DevLong long CORBA::Long int

Tango::DevLong64 long long CORBA::LongLong long long or long (64 bits chip)
Tango::DevFloat float CORBA::Float float

Tango::DevDouble double CORBA::Double double
Tango::DevUShort unsigned short CORBA::UShort unsigned short
Tango::DevULong unsigned long CORBA::ULong unsigned long

Tango::DevULong64 unsigned long long CORBA:ULongLong unsigned long long or unsigned long (64 bits chip)

CHAPTER 8. WRITING A TANGO DEVICE SERVER 291

The types defined in the column named C++ should be used for a better portability. All these types are
defined in the CORBA namespace and therefore their qualified names is CORBA::xxx.

8.2.1.1.2 Strings Strings are mapped to char *. The use of new and delete for dynamic allocation
of strings is not portable. Instead, you must use helper functions defined by CORBA (in the CORBA
namespace). These functions are :

char *CORBA::string_alloc(unsigned long len);
char *CORBA::string_dup(const char *);
void CORBA::string_free(char *);

These functions handle dynamic memory for strings. The string_alloc function allocates one more byte
than requested by the len parameter (for the trailing 0). The function string_dup combines the allocation
and copy. Both string_alloc and string_dup return a null pointer if allocation fails. The string_free function
must be used to free memory allocated with string_alloc and string_dup. Calling string_free for a null
pointer is safe and does nothing. The following code fragment is an example of the Tango::DevString type
usage

1 Tango::DevString str = CORBA::string_alloc(5);
2 strcpy(str,"TANGO");
3
4 Tango::DevString str1 = CORBA::string_dup("Do you want to danse TANGO?");
5
6 CORBA::string_free(str);
7 CORBA::string_free(str1);

Line 1-2 : TANGO is a five letters string. The CORBA::string_alloc function parameter is 5 but the
function allocates 6 bytes

Line 4 : Example of the CORBA::string_dup function
Line 6-7 : Memory deallocation

8.2.1.1.3 Sequences IDL sequences are mapped to C++ classes that behave like vectors with a variable
number of elements. Each IDL sequence type results in a separate C++ class. Within each class repre-
senting a IDL sequence types, you find the following method (only the main methods are related here)
:

1. Four constructors.

(a) A default constructor which creates an empty sequence.

(b) The maximum constructor which creates a sequence with memory allocated for at least the
number of elements passed as argument. This does not limit the number of element in the
sequence but only the way how memory is allocated to store element

(c) A sophisticated constructor where it is possible to assign the memory used by the sequence
with a preallocated buffer.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 292

(d) A copy constructor which does a deep copy

2. An assignment operator which does a deep copy

3. A length accessor which simply returns the current number of elements in the sequence

4. A length modifier which changes the length of the sequence (which is different than the number of
elements in the sequence)

5. Overloading of the [] operator. The subscript operator [] provides access to the sequence element.
For a sequence containing elements of type T, the [] operator is overloaded twice to return value of
type T & and const T &. Insertion into a sequence using the [] operator for the const T & make a
deep copy. Sequence are numbered between 0 and length() -1.

Note that using the maximum constructor will not prevent you from setting the length of the sequence with a
call to the length modifier. The following code fragment is an example of how to use a Tango::DevVarLongArray
type

1 Tango::DevVarLongArray *mylongseq_ptr;
2 mylongseq_ptr = new Tango::DevVarLongArray();
3 mylongseq_ptr->length(4);
4
5 (*mylongseq_ptr)[0] = 1;
6 (*mylongseq_ptr)[1] = 2;
7 (*mylongseq_ptr)[2] = 3;
8 (*mylongseq_ptr)[3] = 4;
9
10 // (*mylongseq_ptr)[4] = 5;
11
12 CORBA::Long nb_elt = mylongseq_ptr->length();
13
14 mylongseq_ptr->length(5);
15 (*mylongseq_ptr)[4] = 5;
16
17 for (int i = 0;i < mylongseq_ptr->length();i++)
18 cout << "Sequence elt " << i + 1 << " = " << (*mylongseq_ptr)[i] << endl;

Line 1 : Declare a pointer to Tango::DevVarLongArray type which is a sequence of long
Line 2 : Create an empty sequence
Line 3 : Change the length of the sequence to 4
Line 5 - 8 : Initialize sequence elements
Line 10 ; Oups !!! The length of the sequence is 4. The behavior of this line is undefined and may be a

core can be dumped at run time
Line 12 : Get the number of element actually stored in the sequence
Line 14-15 : Grow the sequence to five elements and initialize element number 5
Line 17-18 : Print sequence element
Another example for the Tango::DevVarStringArray type is given

CHAPTER 8. WRITING A TANGO DEVICE SERVER 293

1 Tango::DevVarStringArray mystrseq(4);
2 mystrseq.length(4);
3
4 mystrseq[0] = CORBA::string_dup("Rock and Roll");
5 mystrseq[1] = CORBA::string_dup("Bossa Nova");
6 mystrseq[2] = CORBA::string_dup(“Waltz”);
7 mystrseq[3] = CORBA::string_dup("Tango");
8
9 CORBA::Long nb_elt = mystrseq.length();
10
11 for (int i = 0;i < mystrseq.length();i++)
12 cout << "Sequence elt " << i + 1 << " = " << mystrseq[i] << endl;

Line 1 : Create a sequence using the maximum constructor
Line 2 : Set the sequence length to 4. This is mandatory even if you used the maximum constructor.
Line 4-7 : Populate the sequence
Line 9 : Get how many strings are stored into the sequence
Line 11-12 : Print sequence elements.

8.2.1.1.4 Structures Only three TANGO types are defined as structures. These types are the Tango::DevVarLongStringArray,
the Tango::DevVarDoubleStringArray and the Tango::DevEncoded data type. IDL structures map to C++
structures with corresponding members. For the Tango::DevVarLongStringArray, the two members are
named svalue for the sequence of strings and lvalue for the sequence of longs. For the Tango::DevVarDoubleStringArray,
the two structure members are called svalue for the sequence of strings and dvalue for the sequence of
double. For the Tango::DevEncoded, the two structure members are called encoded_format for a string
describing the data coding and encoded_data for the data themselves. The encoded_data field type is a
Tango::DevVarCharArray. An example of the usage of the Tango::DevVarLongStringArray type is detailed
below.

1 Tango::DevVarLongStringArray my_vl;
2
3 myvl.svalue.length(2);
4 myvl.svalue[0] = CORBA_string_dup("Samba");
5 myvl.svalue[1] = CORBA_string_dup("Rumba");
6
7 myvl.lvalue.length(1);
8 myvl.lvalue[0] = 10;

Line 1 : Declaration of the structure
Line 3-5 : Initialization of two strings in the sequence of string member
Line 7-8 : Initialization of one long in the sequence of long member

8.2.1.1.5 Enumeration Only one TANGO type is an enumeration. This is the Tango::DevState type
used to transfer device state between client and server. IDL enumerated types map to C++ enumerations
(amazing no!) with a trailing dummy enumerator to force enumeration to be a 32 bit type. The first
enumerator will have the value 0, the next one will have the value 1 and so on.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 294

1 Tango::DevState state;
2
3 state = Tango::ON;
4 state = Tango::FAULT;

8.2.1.2 Using command data types with Java

All the rules described in this chapter are valid only for data exchanged between client and server. For
device server internal data, classical Java types can be use.

TANGO commands argument types can be grouped on four groups depending on the IDL data type
used. These groups are :

1. Data type using basic types (DevBoolean, DevShort, DevLong, DevFloat, DevDouble, DevUShort,
DevULong and DevString)

2. Data types using sequences (DevVarxxxArray types except DevVarLongStringArray and DevVar-
DoubleStringArray)

3. Data types using structures (DevVarLongStringArray and DevVarDoubleStringArray types)

4. Data type using enumeration (DevState type)

In the following sub chapters, only summaries of the IDL to Java mapping are given. For a full description
of the Java mapping, please refer to [12].

8.2.1.2.1 Basic types For these types, the mapping between IDL and Java is obvious and defined in the
following table.

Tango type name IDL type Java type
DevBoolean boolean boolean

DevShort short short
DevLong long int

DevLong64 long long long
DevFloat float float

DevDouble double double
DevString string String
DevUShort unsigned short short
DevULong unsigned long int

DevULong64 unsigned long long long

The Java int is a 32 bits type3 and therefore, the DevLong type maps to Java int. Java does not support
unsigned types, this is why the DevUShort type maps to short and the DevULong type maps to int. In the
contrary of C++, Java does not support a preprocessor and therefore, declaring a data from the DevLong
type (or any other type in the previous table) will result in compiler errors. Instead, the Java types must be
used.

IDL string maps directly to java.lang.String class.

3The Java long type is a 64 bits data type

CHAPTER 8. WRITING A TANGO DEVICE SERVER 295

8.2.1.2.2 Sequences IDL sequences map to Java array. The following tables details the mapping used
for Tango sequence types.

Tango type name IDL type Java type
DevVarCharArray sequence of byte byte[]
DevVarShortArray sequence of short short[]
DevVarLongArray sequence of long int[]

DevVarLong64Array sequence of long long long[]
DevVarFloatArray sequence of float float[]

DevVarDoubleArray sequence of double double[]
DevVarUShortArray sequence of unsigned short short[]
DevVarULongArray sequence of unsigned long int[]

DevVarULong64Array sequence of unsigned long long long[]
DevVarStringArray sequence of string String[]

8.2.1.2.3 Structures IDL structures map to a final Java class with the same name. This class provides
instance variables for all IDL structure fields. It also provides a default constructor and a constructor from
all structures fields values. The class name, the field name and types are summaries in the following table

Tango type name Java class name field name field Java type
DevVarLongStringArray DevVarLongStringArray lvalue int[]

svalue String[]
DevVarDoubleStringArray DevVarDoubleStringArray dvalue double[]

svalue String[]
DevEncoded DevEncoded encoded_format String

encoded_data char[]

8.2.1.2.4 Enumeration Enumeration does not exist in Java. An IDL enumeration is mapped to a final
class with the same name as the enum type. This class has the following members :

1. A value method which returns the value as an integer.

2. A pair of static data members per label.

(a) The first one is an integer with a name equals to the label name prepended with an underscore
(“_”) like _ON for instance.

(b) The second one is a reference to an object of the class representing the enumeration with its
value set to the label value.

3. An integer conversion method called from_int which returns a reference to an object of the class
representing the enumeration

4. A private constructor

CHAPTER 8. WRITING A TANGO DEVICE SERVER 296

The following code fragment is an example of Tango command data types usage

1 short l = 2;
2
3 String[] str_array = new String[2];
4 str_array[0] = new String("Be Bop");
5 str_array[1] = new String("Break dance");
6
7 System.out.println("Elt nb in DevVarStringArray data " + str_array.length);
8 for (int i = 0;i < str_array.length;i++)
9 System.out.println("Element value = " + str_array[i]);
10
11 DevVarLongStringArray ls = new DevVarLongStringArray();
12 ls.lvalue = new int[1];
13 ls.lvalue[0] = 1;
14 ls.svalue = new String[2];
15 ls.svalue[0] = new String("Smurf");
16 ls.svalue[1] = new String("Pogo");
17
18 DevState st = DevState.FAULT;
19 switch (st.value())
20 {
21 case DevState._ON :
22 System.out.println("The state is ON");
23 st = DevState.FAULT;
24 break;
25
26 case DevState._FAULT :
27 System.out.println("The state is FAULT");
28 st = DevState.ON;
29 break;
30 }

Line 1 : Use of a DevShort type (pretty simple no)
Line 3-5 : Use of a DevVarStringArray data type with 2 elements
Line 7-9 : Print DevVarStringArray data element number and value
Line 11-16 : Use of a DevVarLongStringArray data type
Line 18 : Initialization of a DevState data with the FAULT state
Line 19 : Test on the DevState data value
Line 21 : Use the integer value associated to each enumeration label to test DevState data
Line 23 : Update DevState data value

8.2.2 Passing data between client and server
In order to have one definition of the CORBA operation used to send a command to a device whatever
the command data type is, TANGO uses CORBA IDL any object. The IDL type any provides a universal
type that can hold a value of arbitrary IDL types. Type any therefore allows you to send and receive values
whose types are not fixed at compile time.

Type any is often compared to a void * in C. Like a pointer to void, an any value can denote a datum of
any type. However, there is an important difference; whereas a void * denotes a completely untyped value
that can be interpreted only with advance knowledge of its type, values of type any maintain type safety.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 297

For example, if a sender places a string value into an any, the receiver cannot extract the string as a value
of the wrong type. Attempt to read the contents of an any as the wrong type cause a run-time error.

Internally, a value of type any consists of a pair of values. One member of the pair is the actual value
contained inside the any and the other member of the pair is the type code. The type code is a description
of the value’s type. The type description is used to enforce type safety when the receiver extracts the
value. Extraction of the value succeeds only if the receiver extracts the value as a type that matches the
information in the type code.

Within TANGO, the command input and output parameters are objects of the IDL any type. Only
insertion/extraction of all types defined as command data types is possible into/from these any objects.

8.2.2.1 C++ mapping for IDL any type

The IDL any maps to the C++ class CORBA::Any. This class contains a large number of methods with
mainly methods to insert/extract data into/from the any. It provides a default constructor which builds an
any which contains no value and a type code that indicates “no value”. Such an any must be used for
command which does not need input or output parameter. The operator <<= is overloaded many times
to insert data into an any object. The operator >>= is overloaded many times to extract data from an any
object.

8.2.2.1.1 Inserting/Extracting TANGO basic types The insertion or extraction of TANGO basic types
is straight forward using the <<= or >>= operators. Nevertheless, the Tango::DevBoolean type is mapped
to a unsigned char and other IDL types are also mapped to char C++ type (The unsigned is not taken
into account in the C++ overloading algorithm). Therefore, it is not possible to use operator overload-
ing for these IDL types which map to C++ char. For the Tango::DevBoolean type, you must use the
CORBA::Any::from_boolean or CORBA::Any::to_boolean intermediate objects defined in the CORBA::Any
class.

8.2.2.1.2 Inserting/Extracting TANGO strings The <<= operator is overloaded for const char * and
always makes a deep copy. This deep copy is done using the CORBA::string_dup function. The extraction
of strings uses the >>= overloaded operator. The main point is that the Any object retains ownership of the
string, so the returned pointer points at memory inside the Any. This means that you must not deallocate
the extracted string and you must treat the extracted string as read-only.

8.2.2.1.3 Inserting/Extracting TANGO sequences Insertion and extraction of sequences also uses the
overloaded <<= and >>= operators. The insertion operator is overloaded twice: once for insertion by
reference and once for insertion by pointer. If you insert a value by reference, the insertion makes a deep
copy. If you insert a value by pointer, the Any assumes the ownership of the pointed-to memory.

Extraction is always by pointer. As with strings, you must treat the extracted pointer as read-only and
must not deallocate it because the pointer points at memory internal to the Any.

8.2.2.1.4 Inserting/Extracting TANGO structures This is identical to inserting/extracting sequences.

8.2.2.1.5 Inserting/Extracting TANGO enumeration This is identical to inserting/extracting basic
types

1 CORBA::Any a;
2 Tango::DevLong l1,l2;
3 l1 = 2;
4 a <<= l1;
5 a >>= l2;
6

CHAPTER 8. WRITING A TANGO DEVICE SERVER 298

7 CORBA::Any b;
8 Tango::DevBoolean b1,b2;
9 b1 = true;
10 b <<= CORBA::Any::from_boolean(b1);
11 b >>= CORBA::Any::to_boolean(b2);
12
13 CORBA::Any s;
14 Tango::DevString str1,str2;
15 str1 = "I like dancing TANGO";
16 s <<= str1;
17 s >>= str2;
18
19 // CORBA::string_free(str2);
20 // a <<= CORBA::string_dup("Oups");
21
22 CORBA::Any seq;
23 Tango::DevVarFloatArray fl_arr1;
24 fl_arr1.length(2);
25 fl_arr1[0] = 1.0;
26 fl_arr1[1] = 2.0;
27 seq <<= fl_arr1;
28 const Tango::DevVarFloatArray *fl_arr_ptr;
29 seq >>= fl_arr_ptr;
30
31 // delete fl_arr_ptr;

Line 1-5 : Insertion and extraction of Tango::DevLong type
Line 7-11 Insertion and extraction of Tango::DevBoolean type using the CORBA::Any::from_boolean

and CORBA::Any::to_boolean intermediate structure
Line 13-17 : Insertion and extraction of Tango::DevString type
Line 19 : Wrong ! You should not deallocate a string extracted from an any
Line 20 : Wrong ! Memory leak because the <<= operator will do the copy.
Line 22-29 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion by refer-

ence and the use of the <<= operator makes a deep copy of the sequence. Therefore, after line 27, it is
possible to deallocate the sequence

Line 31: Wrong.! You should not deallocate a sequence extracted from an any

8.2.2.2 The insert and extract methods of the Command class

In order to simplify the insertion/extraction into/from Any objects, small helper methods have been written
in the Command class. The signatures of these methods are :

1 void extract(const CORBA::Any &,<Tango type> &);
2 CORBA::Any *insert(<Tango type>);

An extract method has been written for all Tango types. These method extract the data from the Any
object passed as parameter and throw an exception if the Any data type is incompatible with the awaiting
type. An insert method have been written for all Tango types. These method create an Any object, insert
the data into the Any and return a pointer to the created Any. For Tango types mapped to sequences or

CHAPTER 8. WRITING A TANGO DEVICE SERVER 299

structures, two insert methods have been written: one for the insertion from pointer and the other for the
insertion from reference. For Tango strings, two insert methods have been written: one for insertion from a
classical Tango::DevString type and the other from a const Tango::DevString type. The first one deallocate
the memory after the insert into the Any object. The second one only inserts the string into the Any object.

The previous example can be rewritten using the insert/extract helper methods (We suppose that we can
use the Command class insert/extract methods)

1 Tango::DevLong l1,l2;
2 l1 = 2;
3 CORBA::Any *a_ptr = insert(l1);
4 extract(*a_ptr,l2);
5
6 Tango::DevBoolean b1,b2;
7 b1 = true;
8 CORBA::Any *b_ptr = insert(b1);
9 extract(*b_ptr,b2);
10
11 Tango::DevString str1,str2;
12 str1 = "I like dancing TANGO";
13 CORBA::Any *s_ptr = insert(str1);
14 extract(*s_ptr,str2);
15
16 Tango::DevVarFloatArray fl_arr1;
17 fl_arr1.length(2);
18 fl_arr1[0] = 1.0;
19 fl_arr1[1] = 2.0;
20 insert(fl_arr1);
21 CORBA::Any *seq_ptr = insert(fl_arr1);
22 Tango::DevVarFloatArray *fl_arr_ptr;
23 extract(*seq_ptr,fl_arr_ptr);

Line 1-4 : Insertion and extraction of Tango::DevLong type
Line 6-9 : Insertion and extraction of Tango::DevBoolean type
Line 11-14 : Insertion and extraction of Tango::DevString type
Line 16-23 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion by refer-

ence which makes a deep copy of the sequence. Therefore, after line 20, it is possible to deallocate the
sequence

8.2.2.3 Java mapping for IDL any type

The IDL any maps to the Java class org.omg.CORBA.Any . This class has all the necessary methods to
insert and extract instances of IDL native types (short, int, float, string..). The method name to insert native
IDL types is insert_<type name> (insert_short(), insert_float(), insert_string()). They all take a reference
to the element to be inserted as argument. The method name to extract basic types is extract_<type name>
(extract_short(), extract_float() or extract_string()). These extract methods do not need argument and
return a reference to the extracted data. If the extraction operations have a mismatched type, the CORBA
BAD_OPERATION exception is raised. An “any” object is constructed with the create_any() method of
the CORBA “orb” object. This orb object represents the Object Request Broker. Within a Tango device
server, you can retrieve it with a method of the TangoUtil class described in [8].

CHAPTER 8. WRITING A TANGO DEVICE SERVER 300

8.2.2.3.1 Inserting/Extracting TANGO basic types and strings The insertion or extraction of TANGO
basic types and strings is straight forward using the insert or extract methods provided by the org.omg.CORBA.Any
class.

8.2.2.3.2 Inserting/Extracting TANGO sequences, structures or enumeration The IDL to Java com-
piler generates Helper classes for all types defined in the IDL file. The generated classes name is the name
of the type followed by the suffix Helper (DevVarCharArrayHelper, DevLongHelper). Classes are gener-
ated even for types which directly map to native Java types. Several static methods needed to manipulate
the type are supplied in these classes. These include “Any” insert and extract operations for the type. For a
data type <typename>, the insert and extract method are :

• public static void insert(org.omg.CORBA.Any a, <typename> t) {..}

• public static <typename> extract(Any a) {...}

Such classes exists for all the TANGO data types. The following code fragment is an example of the
insertion/extraction in/from Any object with Java

1 Any a = TangoUtil.instance().get_orb().create_any();
2 int l1 = 1;
3 a.insert_long(l1);
4 int l2 = a.extract_long();
5
6 DevLongHelper.insert(a,l1);
7 int l3 = DevLongHelper.extract(a);
8
9 Any s = TangoUtil.instance().get_orb().create_any();
10 String str = new String("I like dancing TANGO");
11 s.insert_string(str);
12 String str_ex = s.extract_string();
13
14 DevStringHelper.insert(s,str);
15 String str_help = DevStringHelper.extract(s);
16
17 Any arr = TangoUtil.instance().get_orb().create_any();
18 int[] array = new int[2];
19 array[0] = 1;
20 array[1] = 2;
21 DevVarLongArrayHelper.insert(arr,array);
22 int[] array_ext = DevVarLongArrayhelper.extract(arr);

Line 1 : Create an instance of the Any class.
Line 3 : Insert a DevLong data into the Any object. The method name is insert_long because this is a

method to insert an IDL long type into the object even if the IDL long type maps to an int in Java.
Line 4 : Extract a DevLong type from the Any
Line 6-7 : Insert or Extract DevLong data type to/from the Any object using the Helper class.
Line 9-12 : Create an Any object and a DevString data. Insert and Extract this string into/from the Any

using the method provided by the any object
Line 14-15 : Insert or Extract string into/from the Any using methods provided by the Helper class
Line 17-22 : The same thing for data of the DevVarLongArray type. Note that DevVarLongArray is

not a basic IDL type and the Any class does not provide method to insert/extract data of this type into/from
the Any. The use of the methods provided by the Helper class is mandatory in this case.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 301

8.2.2.4 The insert and extract methods of the Command class for Java

In order to simplify the insertion/extraction into/from Any objects, small helper methods have been written
in the Command class. The signatures of these methods are :

1 <java type> extract_<Tango type_name>(Any);
2 Any insert(<Tango type>);

An extract method has been written for all Tango types. These method extract the data from the Any
object passed as parameter and throw an exception if the Any data type is incompatible with the awaiting
type. All these extract methods take the same input parameter and only differ in their return type which is
not taken into account for method overloading. Therefore, the name of the method depends on the type of
the data to be extracted. The following is some example of these method names and signatures :

• int extract_DevLong(Any) throws DevFailed for the DevLong type

• int[] extract_DevVarULongArray(Any) throws DevFailed for DevVarULongArray type

• String[] extract_DevVarStringArray(Any) throws DevFailed for DevVarStringArray

An insert method have been written for all Tango types. These method create an Any object, insert the
data into the Any and return a pointer to the created Any. The previous example can be rewritten using the
insert/extract helper methods (We suppose that we can use the Command class insert/extract methods)

1 int l1 = 1;
2 Any a = insert(l1);
3 int l2 = extract_DevLong(a);
4
5 String str = new String("I like dancing TANGO");
6 Any s = insert(str);
7 String str_ex = extract_DevString(s);
8
9 int[] array = new int[2];
10 array[0] = 1;
11 array[1] = 2;
12 Any arr = insert(array);
13 int[] array_ext = extract_DevVarLongArray(arr);

Line 1-3 : Insertion/Extraction of DevLong type
Line 5-7 : Insertion/Extraction of DevString type
Line 9-13 : Insertion/Extraction of DevVarLongArray type

8.2.3 C++ memory management
The rule described here are valid for variable length command data types like Tango::DevString or all the
Tango:: DevVarxxxxArray types.

The method executing the command must allocate the memory used to pass data back to the client
or use static memory (like buffer declares as object data member. If necessary, the ORB will deallocate
this memory after the data have been sent to the caller. Fortunately, for incoming data, the method have no
memory management responsibilities. The details about memory management given in this chapter assume
that the insert/extract methods of the Tango::Command class are used and only the method in the device
object is discussed.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 302

8.2.3.1 For string

Example of a method receiving a Tango::DevString and returning a Tango::DevString is detailed just below

1 Tango::DevString MyDev::dev_string(Tango::DevString argin)
2 {
3 Tango::DevString argout;
4
5 cout << "the received string is " << argin << endl;
6
7 string str("Am I a good Tango dancer ?");
8 argout = new char[str.size() + 1];
9 strcpy(argout,str.c_str());
10
11 return argout;
12 }

Note that there is no need to deallocate the memory used by the incoming string. Memory for the
outgoing string is allocated at line 8, then it is initialized at the following line. The memory allocated
at line 8 will be automatically freed by the usage of the Command::insert() method. Using this schema,
memory is allocated/freed each time the command is executed. For constant string length, a statically
allocated buffer can be used.

1 Tango::ConstDevString MyDev::dev_string(Tango::DevString argin)
2 {
3 Tango::ConstDevString argout;
4
5 cout << "the received string is " << argin << endl;
6
7 argout = "Hello world";
8 return argout;
9 }

A Tango::ConstDevString data type is used. It is not a new data Tango data type. It has been introduced
only to allows Command::insert() method overloading. The argout pointer is initialized at line 7 with
memory statically allocated. In this case, no memory will be freed by the Command::insert() method.
There is also no memory copy in the contrary of the previous example. A buffer defined as object data
member can also be used to set the argout pointer.

8.2.3.2 For array/sequence

Example of a method returning a Tango::DevVarLongArray is detailed just below

CHAPTER 8. WRITING A TANGO DEVICE SERVER 303

1 Tango::DevVarLongArray *MyDev::dev_array()
2 {
3 Tango::DevVarLongArray *argout = new Tango::DevVarLongArray();
4
5 long output_array_length = ...;
6 argout->length(output_array_length);
7 for (int i = 0;i < output_array_length;i++)
8 (*argout)[i] = i;
9
10 return argout;
11 }

In this case, memory is allocated at line 3 and 6. Then, the sequence is populated. The sequence
is created and returned using pointer. The Command::insert() method will insert the sequence into the
CORBA::Any object using this pointer. Therefore, the CORBA::Any object will take ownership of the
allocated memory. It will free it when it will be destroyed by the CORBA ORB after the data have been
sent away. It is also possible to use a statically allocated memory and to avoid copying in the sequence used
to returned the data. This is explained in the following example assuming a buffer of long data is declared
as device data member and named buffer.

1 Tango::DevVarLongArray *MyDev::dev_array()
2 {
3 Tango::DevVarLongArray *argout;
4
5 long output_array_length = ...;
6 argout = create_DevVarLongArray(buffer,output_array_length);
7 return argout;
8 }

At line 3 only a pointer to a DevVarLongArray is defined. This pointer is set at line 6 using the
create_DevVarLongArray() method. This method will create a sequence using this buffer without memory
allocation and with minimum copying. The Command::insert() method used here is the same than the one
used in the previous example. The sequence is created in a way that the destruction of the CORBA::Any
object in which the sequence will be inserted will not destroy the buffer. The following create_xxx methods
are defined in the DeviceImpl class :

Method name data type
create_DevVarCharArray() unsigned char
create_DevVarShortArray() short
create_DevVarLongArray() DevLong

create_DevVarLong64Array() DevLong64
create_DevVarFloatArray() float

create_DevVarDoubleArray() double
create_DevVarUShortArray() unsigned short
create_DevVarULongArray() DevULong

create_DevVarULong64Array() DevULong64

CHAPTER 8. WRITING A TANGO DEVICE SERVER 304

8.2.3.3 For string array/sequence

Example of a method returning a Tango::DevVarStringArray is detailed just below

1 Tango::DevVarStringArray *MyDev::dev_str_array()
2 {
3 Tango::DevVarStringArray *argout = new Tango::DevVarStringArray();
4
5 argout->length(3);
6 (*argout)[0] = CORBA::string_dup("Rumba");
7 (*argout)[1] = CORBA::string_dup("Waltz");
8 string str("Jerck");
9 (*argout)[2] = CORBA::string_dup(str.c_str());
10 return argout;
11 }

Memory is allocated at line 3 and 5. Then, the sequence is populated at lines 6,7 and 9. The usage
of the CORBA::string_dup function also allocates memory. The sequence is created and returned using
pointer. The Command::insert() method will insert the sequence into the CORBA::Any object using this
pointer. Therefore, the CORBA::Any object will take ownership of the allocated memory. It will free
it when it will be destroyed by the CORBA ORB after the data have been sent away. For portability
reason, the ORB uses the CORBA::string_free function to free the memory allocated for each string. This
is why the corresponding CORBA::string_dup or CORBA::string_alloc function must be used to reserve
this memory.It is also possible to use a statically allocated memory and to avoid copying in the sequence
used to returned the data. This is explained in the following example assuming a buffer of pointer to char
is declared as device data member and named int_buffer.

1 Tango::DevVarStringArray *DocDs::dev_str_array()
2 {
3 int_buffer[0] = "first";
4 int_buffer[1] = "second";
5
6 Tango::DevVarStringArray *argout;
7 argout = create_DevVarStringArray(int_buffer,2);
8 return argout;
9 }

The intermediate buffer is initialized with statically allocated memory at lines 3 and 4. The returned
sequence is created at line 7 with the create_DevVarStringArray() method. Like for classical array, the
sequence is created in a way that the destruction of the CORBA::Any object in which the sequence will be
inserted will not destroy the buffer.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 305

8.2.3.4 For Tango composed types

Tango supports only two composed types which are Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray.
These types are translated to C++ structure with two sequences. It is not possible to use memory statically
allocated for these types. Each structure element must be initialized as described in the previous sub-
chapters using the dynamically allocated memory case.

8.2.4 Reporting errors
Tango uses the C++ and Java try/catch plus exception mechanism to report errors. Two kind of errors can
be transmitted between client and server :

1. CORBA system error. These exceptions are raised by the ORB and indicates major failures (A
communication failure, An invalid object reference...)

2. CORBA user exception. These kind of exceptions are defined in the IDL file. This allows an excep-
tion to contain an arbitrary amount of error information of arbitrary type.

TANGO defines one user exception called DevFailed. This exception is a variable length array of DevEr-
ror type (a sequence of DevError). The DevError type is a four fields structure. These fields are :

1. A string describing the type of the error. This string replaces an error code and allows a more easy
management of include files.

2. The error severity. It is an enumeration with the three values which are WARN, ERR or PANIC.

3. A string describing in plain text the reason of the error

4. A string describing the origin of the error

The Tango::DevFailed type is a sequence of DevError structures in order to transmit to the client what
is the primary error reason when several classes are used within a command. The sequence element 0
must be the DevError structure describing the primary error. A method called print_exception() defined
in the Tango::Except class prints the content of exception (CORBA system exception or Tango::DevFailed
exception). Some static methods of the Tango::Except class called throw_exception() can be used to throw
Tango::DevFailed exception. Some other static methods called re_throw_exception() may also be used
when the user want to add a new element in the exception sequence and re-throw the exception. With Java,
these functions are static methods of the Except class. Details on these methods can be found in [8].

8.2.4.1 Example of throwing exception using C++

This example is a piece of code from the command_handler() method of the DeviceImpl class. An excep-
tion is thrown to the client to indicate that the requested command is not defined in the command list.

1 TangoSys_OMemStream o;
2
3 o << "Command " << command << " not found" << ends;
4 Tango::Except::throw_exception((const char *)"API_CommandNotFound",
5 o.str(),
6 (const char *)"DeviceClass::command_handler");
7
8
9 try
10 {
11
12 }

CHAPTER 8. WRITING A TANGO DEVICE SERVER 306

13 catch (Tango::DevFailed &e)
14 {
15 TangoSys_OMemStream o;
16
17 o << "Command " << command << " not found" << ends;
18 Tango::Except::re_throw_exception(e,
19 (const char *)"API_CommandNotFound",
20 o.str(),
21 (const char *)"DeviceClass::command_handler");
22 }

Line 1 : Build a memory stream. Use the TangoSys_MemStream because memory streams are not
managed the same way between Windows and Unix

Line 3 : Build the reason string in the memory stream
Line 4-5 : Throw the exception to client using one of the throw_exception static method of the Except

class. This throw_exception method used here allows the definition of the error type string, the reason
string and the origin string of the DevError structure. The remaining DevError field (the error severity) will
be set to its default value. Note that the first and third parameters are casted to a const char *. Standard
C++ defines that such a string is already a const char * but the GNU C++ compiler (release 2.95) does
not use this type inside its function overloading but rather uses a char * which leads to calling the wrong
function.

Line 13-22 : Re-throw an already catched tango::DevFailed exception with one more element in the
exception sequence.

8.2.4.2 Example of throwing exception using Java

This example is a fragment of code from the command_handler() method of the DeviceImpl class. An
exception is thrown to the client to indicate that the requested command is not defined in the command list.

1 StringBuffer o = new StringBuffer("Command ");
2 o.append(command);
3 o.append(" not found");
4
5 Except.throw_exception("API_CommandNotFound",
6 o.toString(),
7 "DeviceClass.command_handler");

Line 1-3 : Build a string with a message describing the error. The StringBuffer class is used instead of
the String class because the StringBuffer class allows dynamic resizing of the string.

Line 5-7 : Throw the exception to client using the static throw_exception method of the Except class.
The throw_exception method used here allows the definition of the reason string, the description string and
the origin string of the DevError structure. The remaining DevError field (the error severity) will be set
to its default value. Like C++, some static re_throw_exception() methods also exist to re-throw DevFailed
exception with one more sequence element.

Note that the CORBA system exception inherits from the java.lang.RuntimeException. Exception
derivate from this class do not need to be catched or re-thrown. This is the case for the BAD_OPERATION
exception thrown when a mismatched type is used to extract data from an Any object. CORBA user ex-
ception (like the DevFailed exception) inherits from the java.Exception class and needs to be catched or
re-thrown.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 307

8.3 The Tango Logging Service
A first introduction about this logging service has been done in chapter 3.5

The TANGO Logging Service (TLS) gives the user the control over how much information is actually
generated and to where it goes. In practice, the TLS allows to select both the logging level and targets of
any device within the control system.

8.3.1 Logging Targets
The TLS implementation allows each device logging requests to print simultaneously to multiple destina-
tions. In the TANGO terminology, an output destination is called a logging target. Currently, targets exist
for console, file and log consumer device.

CONSOLE: logs are printed to the console (i.e. the standard output),
FILE: logs are stored in a XML file. A rolling mechanism is used to backup the log file when it reaches

a certain size (see below),
DEVICE: logs are sent to a device implementing a well known TANGO interface (see section A.8 for a

definition of the log consumer interface). One implementation of a log consumer associated to a graphical
user interface is available within the Tango package. It is called the LogViewer.

The device’s logging behavior can be control by adding and/or removing targets.
Note : When the size of a log file (for file logging target) reaches the so-called rolling-file-threshold

(rft), it is backuped as "current_log_file_name" + "_1" and a new "current_log_file_name" is opened. Ob-
viously, there is only one backup file at a time (i.e. any existing backup is destroyed before the current log
file is backuped). The default threshold is 2Mb, the minimum is 500 Kb and the maximum is 20 Mb.

8.3.2 Logging Levels
Devices can be assigned a logging level. It acts as a filter to control the kind of information sent to
the targets. Since, there are (usually) much more low level log statements than high level statements,
the logging level also control the amount of information produced by the device. The TLS provides the
following levels (semantic is just given to be indicative of what could be log at each level):

OFF: Nothing is logged
FATAL: A fatal error occurred. The process is about to abort
ERROR: An (unrecoverable) error occurred but the process is still alive
WARN: An error occurred but could be recovered locally
INFO: Provides information on important actions performed
DEBUG: Generates detailed information describing the internal behavior of a device
Levels are ordered the following way:

DEBUG < INFO < WARN < ERROR < FATAL < OFF

For a given device, a level is said to be enabled if it is greater or equal to the logging level assigned
to this device. In other words, any logging request which level is lower than the device’s logging level is
ignored.

Note: The logging level can’t be controlled at target level. The device’s targets shared the same device
logging level.

8.3.3 Sending TANGO Logging Messages
8.3.3.1 Logging macros in C++

The TLS provides the user with easy to use C++ macros with printf and stream like syntax. For each
logging level, a macro is defined in both styles:

• LOG_{FATAL, ERROR, WARN, INFO or DEBUG}

• {FATAL, ERROR, WARN, INFO or DEBUG}_STREAM

CHAPTER 8. WRITING A TANGO DEVICE SERVER 308

These macros are supposed to be used within the device’s main implementation class (i.e. the class that
inherits (directly or indirectly) from the Tango::DeviceImpl class). In this context, they produce logging
messages containing the device name. In other words, they automatically identify the log source. Section
8.3.3.2 gives a trick to log in the name of device outside its main implementation class. Printf like example:

LOG_DEBUG(("Msg#%d - Hello world", i++));

Stream like example:

DEBUG_STREAM << "Msg#" << i++ << "- Hello world" << endl;

These two logging requests are equivalent. Note the double parenthesis in the printf version.

8.3.3.2 C++ logging in the name of a device

A device implementation is sometimes spread over several classes. Since all these classes implement
the same device, their logging requests should be associated with this device name. Unfortunately, the
C++ logging macros can’t be used because they are outside the device’s main implementation class. The
Tango::LogAdapter class is a workaround for this limitation.

Any method not member of the device’s main implementation class, which send log messages asso-
ciated to a device must be a member of a class inheriting from the Tango::LogAdapter class. Here is an
example:

1 class MyDeviceActualImpl: public Tango::LogAdapter
2 {
3 public :
4 MyDeviceActualImpl(...,Tango::DeviceImpl *device,...)
5 :Tango::LogAdpater(device)
6 {
7
8 //
9 // The following log is associated to the device passed to the constructor
10 //
11 DEBUG_STREAM << "In MyDeviceActualImpl constructor" << endl;
12
13
14 }
15 };

CHAPTER 8. WRITING A TANGO DEVICE SERVER 309

8.3.3.3 Logging in Java

In order to send a log from a device implementation method (i.e. a method of a class inheriting from
TangoDs.DeviceImpl), the developer makes use of the org.apache.log4j.Logger instance which reference
is returned by the DeviceImpl.get_logger method. The org.apache.log4j.Logger.{fatal,error,warn,info and
debug} methods provide the actual logging features. See for more information about the Logger class.
Here is an example of Logging usage with Java:

1 public class myDevice extends DeviceImpl implements TangoConst
2 {
3 ...
4
5 public void init_device()
6 {
7
8 // A Debug log
9
10 get_logger().debug("Initializing device " + get_name());
11
12 try
13 {
14 // Initialization code
15 String p = get_property("startup property");
16 if (p == null)
17 {
18 get_logger().warn("No startup property defined for " + get_name());
19 ...
20 }
21 }
22 catch (Exception e)
23 {
24 // An error log
25
26 get_logger().error("unknown exception caught");
27 }
28 }
29 ...
30 }

8.3.3.4 Logging in the name of a device with Java

Using Java, you can log in the name of a device from anywhere in your code as far as you get a reference
to this device. Use the device get_logger public method to obtain its associated logger then proceed as
describe in 8.3.3.3.

8.4 Writing a device server
Writing a device server can be made easier by adopting the correct approach. This chapter will describe how
to write a device server. It is divided into the following parts : understanding the device, defining device
commands, choosing device state and writing the necessary classes. All along this chapter, examples will

CHAPTER 8. WRITING A TANGO DEVICE SERVER 310

be given using the stepper motor device server. Writing a device server for our stepper motor example
device means writing :

• The main function

• The class_factory method (only for C++ device server)

• The StepperMotorClass class

• The DevReadPositionCmd and DevReadDirectionCmd classes

• The PositionAttr, SetPositionAttr and DirectionAttr classes

• The StepperMotor class.

All these functions and classes will be detailed. The stepper motor device server described in this chapter
supports 2 commands and 3 attributes which are :

• Command DevReadPosition implemented using the inheritance model

• Command DevReadDirection implemented using the template command model

• Attribute Position (position of the first motor). This attribute is readable and is linked with a writable
attribute (called SetPosition). When the value of this attribute is requested by the client, the value of
the associated writable attribute is also returned.

• Attribute SetPosition (writable attribute linked with the Position attribute). This attribute has some
properties with user defined default value.

• Attribute Direction (direction of the first motor)

As the reader will understand during the reading of the following sub-chapters, the command and attributes
classes (DevReadPositionCmd, DevReadDirectionCmd, PositionAttr, SetPositionAttr and DirectionAttr)
are very simple classes. A tool called Pogo has been developped to automatically generate/maintain these
classes and to write part of the code needed in the remaining one. See xx to know more on this Pogo tool.

In order to also gives an example of how the database objects part of the Tango device pattern could
be used, our device have two properties. These properties are of the Tango long data types and are named
“Max” and “Min”.

8.4.1 Understanding the device
The first step before writing a device server is to develop an understanding of the hardware to be pro-
grammed. The Equipment Responsible should have description of the hardware and its operating modes
(manuals, spec sheets etc.). The Equipment Responsible must also provide specifications of what the de-
vice server should do. The Device Server Programmer should demand an exact description of the registers,
alarms, interlocks and any timing constraints which have to be kept. It is very important to have a good
understanding of the device interfacing before starting designing a new class.

Once the Device Server Programmer has understood the hardware the next important step is to define
what is a logical device i.e. what part of the hardware will be abstracted out and treated as a logical device.
In doing so the following points of the TDSOM should be kept in mind

• Each device is known and accessed by its ascii name.

• The device is exported onto the network to be imported by applications.

• Each device belongs to a class.

• A list of commands exists per device.

• Applications use the device server api to execute commands on a device.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 311

The above points have to be taken into account when designing the level of device abstraction. The def-
inition of what is a device for a certain hardware is primarily the job of the Device Server Programmer
and the Applications Programmer but can also involve the Equipment Responsible. The Device Server
Programmer should make sure that the Applications Programmer agrees with her definition of what is a
device.

Here are some guidelines to follow while defining the level of device abstraction -

• efficiency, make sure that not a too fine level of device abstraction has been chosen. If possible group
as many attributes together to form a device. Discuss this with the Applications Programmer to find
out what is efficient for her application.

• hardware independency, one of the main reasons for writing device servers is to provide the Appli-
cations Programmer with a software interface as opposed to a hardware interface. Hide the hardware
structure of the device. For example if the user is only interested in a single channel of a multichan-
nel device then define each channel to be a logical device. The user should not be aware of hardware
addresses or cabling details. The user is very often a scientist who has a physics-oriented world
view and not a hardware-oriented world view. Hardware independency also has the advantage that
applications are immune to hardware changes to the device

• object oriented world view, another raison d’etre behind the device server model is to build up
an object oriented view of the world. The device should resemble the user’s view of the object as
closely as possible. In the case of the ESRF’s beam lines for example, the devices should resemble
beam line scientist’s view of the machine.

• atomism, each device can be considered like an atom - is a independent object. It should appear
independent to the client even if behind the scenes it shares some hardware or software with other
objects. This is often the case with multichannel devices where the user would like to see each chan-
nel as a device but it is obvious that the channels cannot be programmed completely independently.
The logical device is there to hide or make transparent this fact. If it is impossible to send commands
to one device without modifying another device then a single device should be made out the two
devices.

• tailored vs general, one of the philosophies of the TDSOM is to provide tailored solutions. For
example instead of writing one serial line class which treats the general case of a serial line device
and leaving the device protocol to be implemented in the client the TDSOM advocates implementing
a device class which handles the protocol of the device. This way the client only has to know the
commands of the class and not the details of the protocol. Nothing prevents the device class from
using a general purpose serial line class if it exists of course.

8.4.2 Defining device commands
Each device has a list of commands which can be executed by the application across the network or lo-
cally. These commands are the Application Programmer’s network knobs and dials for interacting with the
device.

The list of commands to be implemented depends on the capabilities of the hardware, the list of sensible
functions which can be executed at a distance and of course the functionality required by the application.
This implies a close collaboration between the Equipment Responsible, Device Server Programmer and
the Application Programmer.

When drawing up the list of commands particular attention should be paid to the following points

• performance, no single command should monopolize the device server for a long time (a nominal
value for long is one second). Commands should be implemented in such a way that it executes
immediately returning with a response. At best try to keep command execution time down to less
than the typical overhead of an rpc call i.e. som milliseconds. This of course is not always possible
e.g. a serial line device could require 100 milliseconds of protocol exchange. The Device Server

CHAPTER 8. WRITING A TANGO DEVICE SERVER 312

Programmer should find the best trade-off between the users requirements and the devices capabili-
ties. If a command implies a sequence of events which could last for a long time then implement the
sequence of events in another thread - don’t block the device server.

• robustness, should be provided which allow the client to recover from error conditions and or do a
warm startup.

8.4.2.1 Standard commands

A minimum set of three commands exist for all devices. These commands are

• State which returns the state of a device

• Status which returns the status of the device as a formatted ascii string

• Init which re-initialize a device without changing its network connection

These commands have already been discussed in 8.1.5

8.4.3 Choosing device state
The device state is a number which reflects the availability of the device. To simplify the coding for generic
application, a predefined set of states are supported by TANGO. This list has 14 members which are

State name
ON
OFF

CLOSE
OPEN

INSERT
EXTRACT
MOVING

STANDBY
FAULT

INIT
RUNNING
ALARM

DISABLE
UNKNOWN

The names used here have obvious meaning.

8.4.4 Device server utilities to ease coding/debugging
The device server framework supports one in C++ and two set of utilities to ease the process of coding and
debugging device server code. These utilities are :

1. The device server verbose option

2. The device server output redirection system (Java specific)

Using these two facilities avoids the usage of the classical “#ifdef DEBUG” style which makes code less
readable.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 313

8.4.4.1 The device server verbose option

Each device server supports a verbose option called -v. Four verbose levels are defined from 1 to 4. Level
4 is the most talkative one. If you use the -v option without specifying level, level 4 will be assumed.

Since Tango release 3, a Tango Logging Service has been introduced (detailed in chapter 8.3). This
-v option set-up the logging service. If it used, it will automatically add a console target to all devices
embedded within the device server process. Level 1 and 2 will set the logging level to all devices embedded
within the device server to INFO. Level 3 and 4 will set the logging level to all devices embedded within the
device server to DEBUG. All messages sent by the API layer are associated to the administration device.

Java specific: A device server started with output level n will print all the messages of level between 1
and n. For instance, if you start a device server using -v3 option, only the output for level 1,2 and 3 will be
displayed. Output for level 4 will not be printed. If you don’t used the -v option, the output level is set to
0. By convention, level 3 and 4 are reserved for print message embedded into the Tango library. Level 1
and 2 are free for the user.

8.4.4.1.1 Choosing the output level using C++ In C++ device server, this feature is now implemented
using the Tango Logging Service (TLS), see chapter 8.3 to get all details on this service.

8.4.4.1.2 Choosing the output level using Java With Java, four static objects inside the Util class have
been defined. These objects are called out1, out2, out3 and out4. These four objects support the println
method exactly as the out object inside the System class does. The first object (out1) defines a message
which should be printed only when output level 1 or more is requested. The second one (out2) defines a
message which should be printed only when output level 2 or more is requested. The same philosophy is
used for out3 and out4. The usage of these outx objects is the same than the classical out.

1 Util.out3.println("What a nice dance");
2 Util.out3.println("What’s its name ?");
3
4 System.out.println("Its name is TANGO");

Line 1-2 : The two questions are level 3 messages.
Line 4 : This print will be printed whatever the print level is.
If this piece of code is part of a device server started with a -v2 option, only the message defined line 4

will be displayed. If the device server is started with a -v3, -v4 or -v option, the two messages defined at
lines 1 and 2 will also be displayed.

8.4.4.1.3 Changing the output level at run time (Java specific) It is possible to change the output
level at run time. You do so using commands of the dserver device. These two commands are :

• SetTraceLevel. This command needs the new trace level as input parameter. Using this command
supersedes the level requested at device server process command line

• GetTraceLevel. This command returns the actual trace level.

8.4.4.2 Device server output redirection (Java specific)

Two commands of the dserver device allow device server output redirection. Theses two commands are :

• SetTraceOutput. This command sets all the device server output used to print message to be redi-
rected to a file. This command needs the complete file path as input parameter. The file is local to
the computer where the device server process is running.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 314

• GetTraceOutput. This command returns the name of the file used to redirect device server process
output. If no SetTraceOutput command has been used prior to the execution of this command, it
returns a special string (“Initial Output”) to indicates that the output is still the output defines at
process startup.

8.4.4.3 Java usage example

These two previously described features can ease device server debugging. Suppose a device server process
is started with the following command line (UNIX command line)

Java -DTANGO_HOST=xxx Perkin/Perkin id22 >/dev/null

This command line does not define any output level. Therefore the default output level is chosen (0) and no
message are printed. Sending a SetTraceLevel command requesting level 4 and a SetTraceOutput command
with a file name /tmp/server.out will make the device server sending all the output to the /tmp/server.out
file without stopping the process. The inspection of the /tmp/server.out file will hopefully help to find the
reason of the device server problem. When the output are not needed anymore, sending a SetTraceOutput
command with the input parameter set to “Initial Output” followed by a SetTraceLevel command with a
requested level of 0 will return the server to its original state.

8.4.4.4 C++ utilities to ease device server coding

Some utilities functions have been added in the C++ release to ease Tango device server development.
These utilities allow the user to

• Init a C++ vector from a data of one of the Tango DevVarXXXArray data types

• Init a data of one of the Tango::DevVarxxxArray data type from a C++ vector

• Print a data of one of Tango::DevVarxxxArray data type

They mainly used the “<<” operator overloading features. The following code lines are an example of
usage of these utilities.

1 vector<string> v1;
2 v1.push_back("one");
3 v1.push_back("two");
4 v1.push_back("three");
5
6 Tango::DevVarStringArray s;
7 s << v1;
8 cout << s << endl;
9
10 vector<string> v2;
11 v2 << s;
12
13 for (int i = 0;i < v2.size();i++)
14 cout << "vector element = " << v2[i] << endl;

Line 1-4 : Create and Init a C++ string vector
Line 7 : Init a Tango::DevVarStringArray data from the C++ vector
Line 8 : Print all the Tango::DevVarStringArray element in one line of code.
Line 11 : Init a second empty C++ string vector with the content of the Tango::DevVarStringArray

CHAPTER 8. WRITING A TANGO DEVICE SERVER 315

Line 13-14 : Print vector element

Warning: Note that due to a strange behavior of the Windows VC++ compiler compared to other
compilers, to use these utilities with the Windows VC++ compiler, you must add the line “using namespace
tango” at the beginning of your source file.

8.4.5 Avoiding name conflicts
8.4.5.1 Using C++

Namespace are used to avoid name conflicts. Each device pattern implementation is defined within its own
namespace. The name of the namespace is the device pattern class name. In our example, the namespace
name is StepperMotor.

8.4.5.2 Using Java

Package are used to avoid name conflicts. Each device pattern implementation is defined within its own
package. The name of the package is the device pattern class name. In our example, the package name is
StepperMotor.

8.4.6 The device server main function
A device server main function (or method) always follows the same framework. It exactly implements all
the action described in chapter 8.1.7.5. Even if it could be always the same, it has not been included in the
library because some linkers are perturbed by the presence of two main functions.

8.4.6.1 Using C++

1 #include <tango.h>
2
3 int main(int argc,char *argv[])
4 {
5
6 Tango::Util *tg;
7
8 try
9 {
10
11 tg = Tango::Util::init(argc,argv);
12
13 tg->server_init();
14
15 cout << "Ready to accept request" << endl;
16 tg->server_run();
17 }
18 catch (bad_alloc)
19 {
20 cout << "Can’t allocate memory!!!" << endl;
21 cout << "Exiting" << endl;
22 }
23 catch (CORBA::Exception &e)
24 {
25 Tango::Except::print_exception(e);

CHAPTER 8. WRITING A TANGO DEVICE SERVER 316

26
27 cout << "Received a CORBA::Exception" << endl;
28 cout << "Exiting" << endl;
29 }
30
31 tg->server_cleanup();
32
33 return(0);
34 }

Line 1 : Include the tango.h file. This file is a master include file. It includes several other files. The
list of files included by tango.h can be found in [8]

Line 11 : Create the instance of the Tango::Util class (a singleton). Passing argc,argv to this method is
mandatory because the device server command line is checked when the Tango::Util object is constructed.

Line 13 : Start all the device pattern creation and initialization with the server_init() method
Line 16 : Put the server in a endless waiting loop with the server_run() method. In normal case, the

process should never returns from this line.
Line 18-22 : Catch all exceptions due to memory allocation error, display a message to the user and

exit
Line 23 : Catch all standard TANGO exception which could occur during device pattern creation and

initialization
Line 25 : Print exception parameters
Line 27-28 : Print an additional message
Line 31 : Cleanup the server before exiting by calling the server_cleanup() method.

8.4.6.2 Using Java

The main method can be defined in any class. There is no mandatory class where it should be defined. In
our StepperMotor example, the main method has been implemented in the StepperMotor class because it
is the most logical place.

1 package StepperMotor
2
3 import java.util.*;
4 import org.omg.CORBA.*;
5 import fr.esrf.Tango.*;
6 import fr.esrf.TangoDs.*;
7
8 public class StepperMotor extends DeviceImpl implements TangoConst
9 {
10 public static void main(String[] argv)
11 {
12 try
13 {
14
15 Util tg = Util.init(argv,"StepperMotor");
16
17 tg.server_init();
18
19 System.out.println("Ready to accept request");
20

CHAPTER 8. WRITING A TANGO DEVICE SERVER 317

21 tg.server_run();
22 }
23 catch (OutOfMemoryError ex)
24 {
25 System.err.println("Can’t allocate memory !!!!");
26 System.err.println("Exiting");
27 }
28 catch (UserException ex)
29 {
30 Except.print_exception(ex);
31
32 System.err.println("Received a CORBA user exception");
33 System.err.println("Exiting");
34 }
35 catch (SystemException ex)
36 {
37 Except.print_exception(ex);
38
39 System.err.println("Received a CORBA system exception");
40 System.err.println("Exiting");
41 }
42
43 System.exit(-1);
44
45 }
46 }

line 1 : The StepperMotor class is part of the StepperMotor package
Line 3-6 : Import several packages. The reason of importing these package will be explained when the

StepperMotor class will be detailed later in this chapter
Line 8 : Definition of the StepperMotor class (will be explained later)
Line 10 : Definition of the main method
Line 15 : Create the instance of the Util class (a singleton). Passing argv to this method is manda-

tory because the device server command line is checked when the Util object is constructed. The second
argument of this init method is the device server executable name as defined in 8.1.7.1

Line 17 : Start all the device pattern creation and initialization
Line 21 : Put the server in a endless waiting loop. In normal case, the process should never returns

from this line.
Line 23-27 : Catch all exceptions due to memory error and display a message to the user. It seems

strange to deal with memory allocation error with Java.The Java garbage collection system reclaims mem-
ory only for object which have a reference count equal to zero. If, inside a program, objects are created
and stay with an object reference count different than zero, they will never be destructed. If many of these
objects are created, memory allocation errors can occurs. You may think that the author of this manual is
paranoid but have a look at [13]

Line 28-34 : Catch CORBA user exception included the TANGO DevFailed exception which could
occur during device pattern creation and initialization

Line 30 : Use the static print_exception method of the Except class to print all the data members of the
exception object.

Line 35-41 : catch CORBA system exception.
Line 37 : Use the static print_exception method of the Except class to print all the data members of the

exception object.
Line 43 : Exit the device server

CHAPTER 8. WRITING A TANGO DEVICE SERVER 318

8.4.7 The DServer::class_factory method (C++ specific)
As described in chapter 8.1.7.2, C++ device server needs a class_factory() method. This method creates
all the device pattern implemented in the device server by calling their init() method. The following is an
example of a class_factory method for a device server with one implementation of the device server pattern
for stepper motor device.

1 #include <tango.h>
2 #include <steppermotorclass.h>
3
4 void Tango::DServer::class_factory()
5 {
6
7 add_class(StepperMotor::StepperMotorClass::init("StepperMotor"));
8
9 }

Line 1 : Include the Tango master include file
Line 2 : Include the steppermotorclass class definition file
Line 7 : Create the StepperMotorClass singleton by calling its init method and stores the returned

pointer into the DServer object. Remember that all classes for the device pattern implementation for the
stepper motor class is defined within a namespace called StepperMotor.

8.4.8 Writing the StepperMotorClass class
8.4.8.1 Using C++

8.4.8.1.1 The class definition file

1 #include <tango.h>
2
3 namespace StepperMotor
4 {
5
6 class StepperMotorClass : public Tango::DeviceClass
7 {
8 public:
9 static StepperMotorClass *init(const char *);
10 static StepperMotorClass *instance();
11 ~StepperMotorClass() {_instance = NULL;}
12
13 protected:
14 StepperMotorClass(string &);
15 static StepperMotorClass *_instance;
16 void command_factory();
17 void attribute_factory(vector<Tango::Attr *> &);
18
19 public:
20 void device_factory(const Tango::DevVarStringArray *);
21 };
22
23 } /* End of StepperMotor namespace */

CHAPTER 8. WRITING A TANGO DEVICE SERVER 319

Line 1 : Include the Tango master include file
Line 3 : This class is defined within the StepperMotor namespace
Line 6 : Class StepperMotorClass inherits from Tango::DeviceClass
Line 9-10 : Definition of the init and instance methods. These methods are static and can be called

even if the object is not already constructed.
Line 11: The destructor
Line 14 : The class constructor. It is protected and can’t be called from outside the class. Only the init

method allows a user to create an instance of this class. See [10] to get details about the singleton design
pattern.

Line 15 : The instance pointer. It is static in order to set it to NULL during process initialization phase
Line 16 : Definition of the command_factory method
Line 17 : Definition of the attribute_factory method
Line 20 : Definition of the device_factory method

8.4.8.1.2 The singleton related methods

1 #include <tango.h>
2
3 #include <steppermotor.h>
4 #include <steppermotorclass.h>
5
6 namespace StepperMotor
7 {
8
9 StepperMotorClass *StepperMotorClass::_instance = NULL;
10
11 StepperMotorClass::StepperMotorClass(string &s):
12 Tango::DeviceClass(s)
13 {
14 INFO_STREAM << "Entering StepperMotorClass constructor" << endl;
15
16 INFO_STREAM << "Leaving StepperMotorClass constructor" << endl;
17 }
18
19
20 StepperMotorClass *StepperMotorClass::init(const char *name)
21 {
22 if (_instance == NULL)
23 {
24 try
25 {
26 string s(name);
27 _instance = new StepperMotorClass(s);
28 }
29 catch (bad_alloc)
30 {
31 throw;
32 }
33 }
34 return _instance;

CHAPTER 8. WRITING A TANGO DEVICE SERVER 320

35 }
36
37 StepperMotorClass *StepperMotorClass::instance()
38 {
39 if (_instance == NULL)
40 {
41 cerr << "Class is not initialised !!" << endl;
42 exit(-1);
43 }
44 return _instance;
45 }

Line 1-4 : include files: the Tango master include file (tango.h), the StepperMotorClass class definition
file (steppermotorclass.h) and the StepperMotor class definition file (steppermotor.h)

Line 6 : Open the StepperMotor namespace.
Line 9 : Initialize the static _instance field of the StepperMotorClass class to NULL
Line 11-18 : The class constructor. It takes an input parameter which is the controlled device class

name. This parameter is passed to the constructor of the DeviceClass class. Otherwise, the constructor
does nothing except printing a message

Line 20-35 : The init method. This method needs an input parameter which is the controlled device
class name (StepperMotor in this case). This method checks is the instance is already constructed by
testing the _instance data member. If the instance is not constructed, it creates one. If the instance is
already constructed, the method simply returns a pointer to it.

Line 37-45 : The instance method. This method is very similar to the init method except that if the
instance is not already constructed. the method print a message and abort the process.

As you can understand, it is not possible to construct more than one instance of the StepperMotorClass
(it is a singleton) and the init method must be called prior to any other method.

8.4.8.1.3 The command_factory method Within our example, the stepper motor device supports two
commands which are called DevReadPosition and DevReadDirection. These two command takes a Tango::DevLong
argument as input and output parameter. The first command is created using the inheritance model and the
second command is created using the template command model.

1
2 void StepperMotorClass::command_factory()
3 {
4 command_list.push_back(new DevReadPositionCmd("DevReadPosition",
5 Tango::DEV_LONG,
6 Tango::DEV_LONG,
7 "Motor number (0-7)",
8 "Motor position"));
9
10 command_list.push_back(
11 new TemplCommandInOut<Tango::DevLong,Tango::DevLong>
12 ((const char *)"DevReadDirection",
13 static_cast<Tango::Lg_CmdMethPtr_Lg>
14 (&StepperMotor::dev_read_direction),
15 static_cast<Tango::StateMethPtr>
16 (&StepperMotor::direct_cmd_allowed))
17);

CHAPTER 8. WRITING A TANGO DEVICE SERVER 321

18 }
19

Line 4 : Creation of one instance of the DevReadPositionCmd class. The class is created with five
arguments which are the command name, the command type code for its input and output parameters and
two strings which are the command input and output parameters description. The pointer returned by the
new C++ keyword is added to the vector of available command.

Line 10-14 : Creation of the object used for the DevReadDirection command. This command has one
input and output parameter. Therefore the created object is an instance of the TemplCommandInOut class.
This class is a C++ template class. The first template parameter is the command input parameter type,
the second template parameter is the command output parameter type. The second TemplCommandInOut
class constructor parameter (set at line 13) is a pointer to the method to be executed when the command is
requested. A casting is necessary to store this pointer as a pointer to a method of the DeviceImpl class4.
The third TemplCommandInOut class constructor parameter (set at line 15) is a pointer to the method to
be executed to check if the command is allowed. This is necessary only if the default behavior (command
always allowed) does not fulfill the needs. A casting is necessary to store this pointer as a pointer to a
method of the DeviceImpl class. When a command is created using the template command method, the
input and output parameters type are determined from the template C++ class parameters.

8.4.8.1.4 The device_factory method The device_factory method has one input parameter. It is a
pointer to Tango::DevVarStringArray data which is the device name list for this class and the instance of
the device server process. This list is fetch from the Tango database.

1 void StepperMotorClass::device_factory(const Tango::_DevVarStringArray *devlist_ptr)
2 {
3
4 for (long i = 0;i < devlist_ptr->length();i++)
5 {
6 DEBUG_STREAM << "Device name : " << (*devlist_ptr)[i] << endl;
7
8 device_list.push_back(new StepperMotor(this,
9 (*devlist_ptr)[i]));
10
11 if (Tango::Util::_UseDb == true)
12 export_device(device_list.back());
13 else
14 export_device(device_list.back(),(*devlist_ptr[i]));
15 }
16 }

Line 4 : A loop for each device
Line 8 : Create the device object using a StepperMotor class constructor which needs two arguments.

These two arguments are a pointer to the StepperMotorClass instance and the device name. The pointer to
the constructed object is then added to the device list vector

Line 11-14 : Export device to the outside world using the export_device method of the DeviceClass
class.

4The StepperMotor class inherits from the DeviceImpl class and therefore is a DeviceImpl

CHAPTER 8. WRITING A TANGO DEVICE SERVER 322

8.4.8.1.5 The attribute_factory method The rule of this method is to fulfill a vector of pointer to
attributes. A reference to this vector is passed as argument to this method.

1 void StepperMotorClass::attribute_factory(vector<Tango::Attr *> &att_list)
2 {
3 att_list.push_back(new PositionAttr());
4
5 Tango::UserDefaultAttrProp def_prop;
6 def_prop.set_label("Set the motor position");
7 def_prop.set_format("scientific;setprecision(4)");
8 Tango::Attr *at = new SetPositionAttr();
9 at->set_default_properties(def_prop);
10 att_list.push_back(at);
11
12 att_list.push_back(new DirectcionAttr());
13 }

Line 3 : Create the PositionAttr class and store the pointer to this object into the attribute pointer vector.
Line 5-7 : Create a Tango::UserDefaultAttrProp instance and set the label and format properties default

values in this object
Line 8 : Create the SetPositionAttr attribute.
Line 9 : Set attribute user default value with the set_default_properties() method of the Tango::Attr

class.
Line 10 : Store the pointer to this object into the attribute pointer vector.
Line 12 : Create the DirectionAttr class and store the pointer to this object into the attribute pointer

vector.
Please, note that in some rare case, it is necessary to add attribute to this list during the device server life

cycle. This attribute_factory() method is called once during device server start-up. A method add_attribute()
of the DeviceImpl class allows the user to add a new attribute to the attribute list outside of this at-
tribute_factory() method. See [8] for more information on this method.

8.4.8.2 Using Java

8.4.8.2.1 The singleton related method

1 package StepperMotor;
2
3 import java.util.*;
4 import fr.esrf.Tango.*;
5 import fr.esrf.TangoDs.*;
6
7 public class StepperMotorClass extends DeviceClass implements TangoConst
8 {
9 private static StepperMotorClass _instance = null;
10
11
12 public static StepperMotorClass instance()
13 {
14 if (_instance == null)

CHAPTER 8. WRITING A TANGO DEVICE SERVER 323

15 {
16 System.err.println("StepperMotorClass is not initialised !!!");
17 System.err.println("Exiting");
18 System.exit(-1);
19 }
20 return _instance;
21 }
22
23
24 public static StepperMotorClass init(String class_name) throws DevFailed
25 {
26 if (_instance == null)
27 {
28 _instance = new StepperMotorClass(class_name);
29 }
30 return _instance;
31 }
32
33 protected StepperMotorClass(String name) throws DevFailed
34 {
35 super(name);
36
37 Util.out2.println("Entering StepperMotorClass constructor");
38
39 Util.out2.println("Leaving StepperMotorClass constructor");
40 }
41 }

Line 1 : This class is part of the StepperMotor package.
Line 3-5 : Import different packages. The first one (java.lang.util) is a classical Java package from the

JDK. The second one (fr.esrf.Tango) is the package generated by the IDL compiler from the Tango IDL
file. The last one (fr.esrf.TangoDs) is the name of the package with all the root classes of the device server
framework.

Line 7 : The StepperMotorClass inherits from the DeviceClass and implements the TangoConst inter-
face. The TangoConst interface does not defines any method but simply defines constant variables. The
TangoConst interface is a member of the TangoDs package.

Line 9 : The instance pointer. It is static and private. It is initialized to NULL
Line 12-21 : The instance method. This method is very similar to the init method except that if the

instance is not already constructed. the method print a message and abort the process.
Line 24-31: The init method. This method needs an input parameter which is the controlled device

class name (StepperMotor in this case). This method checks is the instance is already constructed by
testing the _instance data member. If the instance is not constructed, it creates one. If the instance is
already constructed, the method simply returns a pointer to it.

Line 33-40 : The class constructor which is protected. It takes an input parameter which is the con-
trolled device class name. This parameter is passed to the constructor of the DeviceClass class (line 35).
Otherwise, the constructor does nothing except printing a message

As you can understand, it is not possible to construct more than one instance of the StepperMotorClass
(it is a singleton) and the init method must be called prior to any other method.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 324

8.4.8.2.2 The command_factory method Within our example, the stepper motor device supports two
commands which are called DevReadPosition and DevReadDirection. These two command takes a Tango_DevLong
argument as input and output parameter. The first command is created using the inheritance model and the
second command is created using the template command model.

1 public void command_factory()
2 {
3 String str = new String("DevReadPosition");
4 command_list.addElement(new DevReadPositionCmd(str,
5 Tango_DEV_LONG,Tango_DEV_LONG,
6 "Motor number (0-7)",
7 "Motor position"));
8
9 str = new String("DevReadDirection");
10 command_list.addElement(new TemplCommandInOut(str,
11 "dev_read_direction",
12 "direct_cmd_allowed"));
13 }

Line 4: Creation of one instance of the DevReadPositionCmd class. The class is created with five
arguments which are the command name, the command type code for its input and output parameters
and the parameters description (input and output). The Tango_DEV_LONG constant is defined in the
TangoConst interface. The reference returned by the new Java keyword is added to the vector of available
command via the addElement method of the Java Vector class.

Line 10-12 : Creation of the object used for the DevReadDirection command. This command has one
input and output parameter. Therefore the created object is an instance of the TemplCommandInOut class.
The second TemplCommandInOut class constructor parameter (set at line 11) is the method name to be
executed when the command is requested. The third TemplCommandInOut class constructor parameter
(set at line 12) is the method name to be executed to check if the command is allowed. This is necessary
only if the default behavior (command always allowed) does not fulfill the needs. When a command is
created using the template command method, the input and output parameter types are determined from
the given method declaration.

8.4.8.2.3 The device_factory method The device_factory method has one input parameter. It is a
pointer to a DevVarStringArray5data which is the device name list for this class and the instance of the
device server process. This list is fetch from the Tango database.

1 public void device_factory(String[] devlist) throws DevFailed
2 {
3 for (int i = 0;i < devlist.length;i++)
4 {
5 Util.out4.println("Device name : " + devlist[i]);
6
7 device_list.addElement(new StepperMotor(this,
8 devlist[i],
9 "A Tango motor",
10 DevState.ON,

5DevVarStringArray maps to Java String[]

CHAPTER 8. WRITING A TANGO DEVICE SERVER 325

11 "The motor is ON"));
12
13 if (Util.instance()._UseDb == true)
14 export_device(((DeviceImpl)(device_list.lastElement())));
15 else
16 export_device(((DeviceImpl)(device_list.lastElement())),
17 devlist[i]);
18 }
19 }

Line 3 : A loop for each device
Line 7 : Create the device object using a StepperMotor class constructor which needs five arguments.

These five arguments are a reference to the StepperMotorClass instance, the device name, the device de-
scription, the device original state and the device original status. The reference to the constructed object is
then added to the device list vector with the addElement method of the java.util.Vector class.

Line 13-17 : Export device to the outside world using the export_device method of the DeviceClass
class. The lastElement method of the java.util.Vector class returns a reference to an object of the java
Object class. It must be casted before being passed to the export_device method

8.4.8.2.4 The attribute_factory method The rule of this method is to fulfill a vector of references to
attribute. A reference to this vector is passed to this method. The Tango core classes will use this vector
to build all the attributes related objects (An instance of the MultiAttribute class and one Attribute or
WAttribute object for each attribute defined in this vector).

1 public void attribute_factory(Vector att) throws DevFailed
2 {
3 att.addElement(new Attr("Position",
4 Tango_DEV_LONG,
5 AttrWriteType.READ_WITH_WRITE,
6 "SetPosition"));
7
8 UserDefaultAttrProp def_prop = new UserDefaultAttrProp();
9 def_prop.set_label("set the motor position");
10 def_prop.set_format("scientific;setprecision(4)");
11 Attr at = new Attr("SetPosition",
12 Tango_DEV_LONG,
13 AttrWriteType.WRITE));
14 at.set_default_properties(def_prop);
15 att.addElement(at);
16
17 att.addElement(new Attr("Direction",
18 Tango_DEV_LONG));
19 }

Line 3-6 : Build a one dimension attribute of TANGO_DEV_LONG type with an associate writable
attribute. Store a reference to this attribute in the vector. In this example, the attribute display type is not
defined in the Attr class constructor. Therefore, it will be initialized with its default value (OPERATOR).
Several Attr class constructors are defined with or without the attribute display type. See [8] for a complete
constructor list.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 326

Line 8-10 : Create a UserDefaultAttrProp instance and set the label and format properties default values
in this object

Line 11-13 : Build a one dimension writable attribute.
Line 14 : Set attribute user default value with the set_default_properties() method of the Tango::Attr

class.
Line 15 : Store the reference to this attribute object into the attribute vector.
Line 17-18 : Build a one dimension attribute. Store the reference to this attribute object into the attribute

vector.
Please, note that in some rare case, it is necessary to add attribute to this list during the device server life

cycle. This attribute_factory() method is called once during device server start-up. A method add_attribute()
of the DeviceImpl class allows the user to add a new attribute to the attribute list outside of this at-
tribute_factory() method. See [8] for more information on this method.

8.4.9 The DevReadPositionCmd class
8.4.9.1 Using C++

8.4.9.1.1 The class definition file

1 #include <tango.h>
2
3 namespace StepperMotor
4 {
5
6 class DevReadPositionCmd : public Tango::Command
7 {
8 public:
9 DevReadPositionCmd(const char *,Tango::CmdArgType,
10 Tango::CmdArgType,
11 const char *,const char *);
12 ~DevReadPositionCmd() {};
13
14 virtual bool is_allowed (Tango::DeviceImpl *, const CORBA::Any &);
15 virtual CORBA::Any *execute (Tango::DeviceImpl *, const CORBA::Any &);
16 };
17
18 } /* End of StepperMotor namespace */

Line 1 : Include the tango master include file
Line 3 : Open the StepperMotor namespace.
Line 6 : The DevReadPositionCmd class inherits from the Tango::Command class
Line 9 : The constructor
Line 12 : The destructor
Line 14 : The definition of the is_allowed method. This method is not necessary if the default behavior

implemented by the default is_allowed method fulfill the requirements. The default behavior is to always
allows the command execution (always return true).

Line 15: The definition of the execute method

CHAPTER 8. WRITING A TANGO DEVICE SERVER 327

8.4.9.1.2 The class constructor The class constructor does nothing. It simply invoke the Command
constructor by passing it its five arguments which are:

1. The command name

2. The command input type code

3. The command output type code

4. The command input parameter description

5. The command output parameter description

With this 5 parameters command class constructor, the command display level is not specified. Therefore
it is set to its default value (OPERATOR). If the command does not have input or output parameter, it is not
possible to use the Command class constructor defined with five parameters. In this case, the command con-
structor execute the Command class constructor with three elements (class name, input type, output type)
and set the input or output parameter description fields with the set_in_type_desc or set_out_type_desc
Command class methods. To set the command display level, it is possible to use a 6 parameters constructor
or it is also possible to set it in the constructor code with the set_disp_level method. Many Command class
constructors are defined. See [8]for a complete list.

8.4.9.1.3 The is_allowed method In our example, the DevReadPosition command is allowed only if
the device is in the ON state. This method receives two argument which are a pointer to the device object
on which the command must be executed and a reference to the command input Any object. This method
returns a boolean which must be set to true if the command is allowed. If this boolean is set to false, the
DeviceClass command_handler method will automatically send an exception to the caller.

1 bool DevReadPositionCmd::is_allowed(Tango::DeviceImpl *device,
2 const CORBA::Any &in_any)
3 {
4 if (device->get_state() == Tango::ON)
5 return true;
6 else
7 return false;
8 }

Line 4 : Call the get_state method of the DeviceImpl class which simply returns the device state
Line 5 : Authorize command if the device state is ON
Line 7 : Refuse command execution in all other cases.

8.4.9.1.4 The execute method This method receives two arguments which are a pointer to the device
object on which the command must be executed and a reference to the command input Any object. This
method returns a pointer to an any object which must be initialized with the data to be returned to the caller.

1 CORBA::Any *DevReadPositionCmd::execute(
2 Tango::DeviceImpl *device,
3 const CORBA::Any &in_any)
4 {
5 INFO_STREAM << "DevReadPositionCmd::execute(): arrived" << endl;
6 Tango::DevLong motor;

CHAPTER 8. WRITING A TANGO DEVICE SERVER 328

7
8 extract(in_any,motor);
9 return insert(
10 (static_cast<StepperMotor *>(device))->dev_read_position(motor));
11 }

Line 8 : Extract incoming data from the input any object using a Command class extract helper method.
If the type of the data in the Any object is not a Tango::DevLong, the extract method will throw an exception
to the client.

Line 9 : Call the stepper motor object method which execute the DevReadPosition command and insert
the returned value into an allocated Any object. The Any object allocation is done by the insert method
which return a pointer to this Any.

8.4.9.2 Using Java

8.4.9.2.1 The class constructor The class constructor does nothing. It simply invoke the Command
constructor by passing it its five arguments which are:

1. The command name

2. The command input type code

3. The command output type code

4. The command input parameter description

5. The command output parameter description

With this 5 parameters command class constructor, the command display level is not specified. Therefore
it is set to its default value (OPERATOR). If the command does not have input or output parameter, it is not
possible to use the Command class constructor defined with five parameters. In this case, the command con-
structor execute the Command class constructor with three elements (class name, input type, output type)
and set the input or output parameter description fields with the set_in_type_desc or set_out_type_desc
Command class methods. To set the command display level, it is possible to use a 6 parameters constructor
or it is also possible to set it in the constructor code with the set_disp_level method. Many Command class
constructors are defined. See [8]for a complete list.

8.4.9.2.2 The is_allowed method In our example, the DevReadPosition command is allowed only if
the device is in the ON state. This method receives two argument which are a reference to the device object
on which the command must be executed and a reference to the command input Any object. This method
returns a boolean which must be set to true if the command is allowed. If this boolean is set to false, the
DeviceClass command_handler method will automatically send an exception to the caller.

1 package StepperMotor;
2
3 import org.omg.CORBA.*;
4 import fr.esrf.Tango.*;
5 import fr.ersf.TangoDs.*;
6
7 public class DevReadPositionCmd extends Command implements TangoConst
8 {
9 public boolean is_allowed(DeviceImpl dev, Any data_in)
10 {

CHAPTER 8. WRITING A TANGO DEVICE SERVER 329

11 if (dev.get_state() == DevState.ON)
12 return(true);
13 else
14 return(false);
15 }
16
17 }

Line 1 : This class is part of the StepperMotor package
Line 3-5 : Import different packages. The first one (org.omg.CORBA) is a package which contains all

the CORBA related classes. The second one (fr.esrf.Tango) is the package generated by the IDL compiler
from the Tango IDL file. The last one (fr.ersf.TangoDs) is the name of the package with all the root classes
of the device server pattern.

Line 7 : The DevReadPositionCmd class inherits from the Command class and implements the Tan-
goConst interface. The TangoConst interface does not defines any method but simply defines constant
variables. The TangoConst interface is a member of the TangoDs package.

Line 11 : Call the get_state method of the DeviceImpl class which simply returns a reference to the
device state

Line 12 : Authorise command if the device state is ON
Line 14 : Refuse command execution in all other cases.

8.4.9.2.3 The execute method This method receives two arguments which are a reference to the device
object on which the command must be executed and a reference to the command input Any object. This
method returns a reference to an any object which must be initialized with the data to be returned to the
caller.

1 public Any execute(DeviceImpl device,Any in_any) throws DevFailed
2 {
3 Util.out2.println("DevReadPositionCmd.execute(): arrived");
4
5 int motor = extract_DevLong(in_any);
6
7 return insert(((StepperMotor)(device)).dev_read_position(motor));
8 }

Line 5 : Extract incoming data from the input any object
Line 7 : Call the stepper motor object method which execute the DevReadPosition command, insert its

return value into an any and return.

8.4.10 The PositionAttr class
8.4.10.1 Using C++

8.4.10.1.1 The class definition file

CHAPTER 8. WRITING A TANGO DEVICE SERVER 330

1 #include <tango.h>
2 #include <steppermotor.h>
3
4 namespace StepperMotor
5 {
6
7
8 class PositionAttr: public Tango::Attr
9 {
10 public:
11 PositionAttr():Attr("Position",
12 Tango::DEV_LONG,
13 Tango::READ_WITH_WRITE,
14 "SetPosition") {};
15 ~PositionAttr() {};
16
17 virtual void read(Tango::DeviceImpl *dev,Tango::Attribute &att)
18 {(static_cast<StepperMotor *>(dev))->read_Position(att);}
19 virtual bool is_allowed(Tango::DeviceImpl *dev,Tango::AttReqType ty)
20 {return (static_cast<StepperMotor *>(dev))->is_Position_allowed(ty);}
21 };
22
23 } /* End of StepperMotor namespace */
24
25 #endif // _STEPPERMOTORCLASS_H

Line 1-2 : Include the tango master include file and the steppermotor class definition include file
Line 4 : Open the StepperMotor namespace.
Line 8 : The PosiitionAttr class inherits from the Tango::Attr class
Line 11-14 : The constructor with 4 arguments
Line 15 : The destructor
Line 17 : The definition of the read method. This method forwards the call to a StepperMotor class

method called read_Position()
Line 19 : The definition of the is_allowed method. This method is not necessary if the default behaviour

implemented by the default is_allowed method fulfills the requirements. The default behaviour is to always
allows the attribute reading (always return true). This method forwards the call to a StepperMotor class
method called is_Position_allowed()

8.4.10.1.2 The class constructor The class constructor does nothing. It simply invoke the Attr con-
structor by passing it its four arguments which are:

1. The attribute name

2. The attribute data type code

3. The attribute writable type code

4. The name of the associated write attribute

With this 4 parameters Attr class constructor, the attribute display level is not specified. Therefore it is set
to its default value (OPERATOR). To set the attribute display level, it is possible to use in the constructor
code the set_disp_level method. Many Attr class constructors are defined. See [8]for a complete list.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 331

This Position attribute is a scalar attribute. For spectrum attribute, instead of inheriting from the Attr
class, the class must inherits from the SpectrumAttr class. Many SpectrumAttr class constructors are
defined. See [8]for a complete list.

For Image attribute, instead of inheriting from the Attr class, the class must inherits from the ImageAttr
class. Many ImageAttr class constructors are defined. See [8]for a complete list.

8.4.10.1.3 The is_allowed method This method receives two argument which are a pointer to the
device object to which the attribute belongs to and the type of request (read or write). In the Posi-
tionAttr class, this method simply "forwards" the request to a method of the StepperMotor class called
is_Position_allowed() passing the request type to this method. This method returns a boolean which must
be set to true if the attribute is allowed. If this boolean is set to false, the DeviceImpl read_attribute method
will automatically send an exception to the caller.

8.4.10.1.4 The read method This method receives two arguments which are a pointer to the device
object to which the attribute belongs to and a reference to the corresponding attribute object. This method
"forwards" the request to a StepperMotor class called read_Position() passing it the reference on the at-
tribute object.

8.4.11 The StepperMotor class
8.4.11.1 Using C++

8.4.11.1.1 The class definition file

1 #include <tango.h>
2
3 #define AGSM_MAX_MOTORS 8 // maximum number of motors per device
4
5 namespace StepperMotor
6 {
7
8 class StepperMotor: public Tango::DeviceImpl
9 {
10 public :
11 StepperMotor(Tango::DeviceClass *,string &);
12 StepperMotor(Tango::DeviceClass *,const char *);
13 StepperMotor(Tango::DeviceClass *,const char *,const char *);
14 ~StepperMotor() {};
15
16 DevLong dev_read_position(DevLong);
17 DevLong dev_read_direction(DevLong);
18 bool direct_cmd_allowed(const CORBA::Any &);
19
20 virtual Tango::DevState dev_state();
21 virtual Tango::ConstDevString dev_status();
22
23 virtual void always_executed_hook();
24
25 virtual void read_attr_hardware(vector<long> &attr_list);
26
27 void read_position(Tango::Attribute &);
28 bool is_Position_allowed(Tango::AttReqType req);

CHAPTER 8. WRITING A TANGO DEVICE SERVER 332

29 void write_SetPosition(Tango::WAttribute &);
30 void read_Direction(Tango::Attribute &);
31
32 virtual void init_device();
33 virtual void delete_device();
34
35 void get_device_properties();
36
37 protected :
38 long axis[AGSM_MAX_MOTORS];
39 DevLong position[AGSM_MAX_MOTORS];
40 DevLong direction[AGSM_MAX_MOTORS];
41 long state[AGSM_MAX_MOTORS];
42
43 Tango::DevLong *attr_Position_read;
44 Tango::DevLong *attr_Direction_read;
45 Tango::DevLong attr_SetPosition_write;
46
47 Tango::DevLong min;
48 Tango::DevLong max;
49
50 Tango::DevLong *ptr;
51 };
52
53 } /* End of StepperMotor namespace */

Line 1 : Include the Tango master include file
Line 5 : Open the StepperMotor namespace.
Line 8 : The StepperMotor class inherits from the DeviceImpl class
Line 11-13 : Three different object constructors
Line 14 : The destructor which calls the delete_device() method
Line 16 : The method to be called for the execution of the DevReadPosition command. This method

must be declared as virtual if it is needed to redefine it in a class inheriting from StepperMotor. See chapter
8.7.2 for more details about inheriting.

Line 17 : The method to be called for the execution of the DevReadDirection command
Line 18 : The method called to check if the execution of the DevReadDirection command is allowed.

This method is necessary because the DevReadDirection command is created using the template command
method and the default behavior is not acceptable

Line 20 : Redefinition of the dev_state. This method is used by the State command
Line 21 : Redefinition of the dev_status. This method is used by the Status command
Line 23 : Redefinition of the always_executed_hook method. This method is the place to code manda-

tory action which must be executed prior to any command.
Line 25-30 : Attribute related methods
Line 32 : Definition of the init_device method.
Line 33 : Definition of the delete_device method
Line 35 : Definition of the get_device_properties method
Line 38-50 : Data members.
Line 43-44 : Pointers to data for readable attributes Position and Direction
Line 45 : Data for the SetPosition attribute
Line 47-48 : Data members for the two device properties

CHAPTER 8. WRITING A TANGO DEVICE SERVER 333

8.4.11.1.2 The constructors Three constructors are defined here. It is not mandatory to defined three
constructors. But at least one is mandatory. The three constructors take a pointer to the StepperMotorClass
instance as first parameter6. The second parameter is the device name as a C++ string or as a classical
pointer to char array. The third parameter necessary only for the third form of constructor is the device
description string passed as a classical pointer to a char array.

1 #include <tango.h>
2 #include <steppermotor.h>
3
4 namespace StepperMotor
5 {
6
7 StepperMotor::StepperMotor(Tango::DeviceClass *cl,string &s)
8 :Tango::DeviceImpl(cl,s.c_str())
9 {
10 init_device();
11 }
12
13 StepperMotor::StepperMotor(Tango::DeviceClass *cl,const char *s)
14 :Tango::DeviceImpl(cl,s)
15 {
16 init_device();
17 }
18
19 StepperMotor::StepperMotor(Tango::DeviceClass *cl,const char *s,const char *d)
20 :Tango::DeviceImpl(cl,s,d)
21 {
22 init_device();
23 }
24
25 void StepperMotor::init_device()
26 {
27 cout << "StepperMotor::StepperMotor() create " << device_name << endl;
28
29 long i;
30
31 for (i=0; i< AGSM_MAX_MOTORS; i++)
32 {
33 axis[i] = 0;
34 position[i] = 0;
35 direction[i] = 0;
36 }
37
38 ptr = new Tango::DevLong[10];
39
40 get_device_properties();
41 }
42
43 void StepperMotor::delete_device()
44 {

6The StepperMotorClass inherits from the DeviceClass and therefore is a DeviceClass

CHAPTER 8. WRITING A TANGO DEVICE SERVER 334

45 delete [] ptr;
46 }

Line 1-2 : Include the Tango master include file (tango.h) and the StepperMotor class definition file
(steppermotor.h)

Line 4 : Open the StepperMotor namespace
Line 7-11 : The first form of the class constructor. It execute the Tango::DeviceImpl class constructor

with the two parameters. Note that the device name passed to this constructor as a C++ string is passed to
the Tango::DeviceImpl constructor as a classical C string. Then the init_device method is executed.

Line 13-17 : The second form of the class constructor. It execute the Tango::DeviceImpl class con-
structor with its two parameters. Then the init_device method is executed.

Line 19-23: The third form of constructor. Again, it execute the Tango::DeviceImpl class constructor
with its three parameters. Then the init_device method is executed.

Line 25-41 : The init_device method. All the device data initialization is done in this method. The
device properties are also retrieved from database with a call to the get_device_properties method at line
40. The device data member called ptr is initialized with allocated memory at line 38. It is not needed to
have this pointer, it has been added only for educational purpose.

Line 43-46 : The delete_device method. The rule of this method is to free memory allocated in the
init_device method. In our case , only the device data member ptr is allocated in the init_device method.
Therefore, its memory is freed at line 45. This method is called by the automatically added Init command
before it calls the init_device method. It is also called by the device destructor.

8.4.11.1.3 The methods used for the DevReadDirection command The DevReadDirection command
is created using the template command method. Therefore, there is no specific class needed for this com-
mand but only one object of the TemplCommandInOut class. This command needs two methods which
are the dev_read_direction method and the direct_cmd_allowed method. The direct_cmd_allowed method
defines here implements exactly the same behavior than the default one. This method has been used only
for pedagogic issue. The dev_read_direction method will be executed by the execute method of the Tem-
plCommandInOut class. The direct_cmd_allowed method will be executed by the is_allowed method of
the TemplCommandInOut class.

1 DevLong StepperMotor::dev_read_direction(DevLong axis)
2 {
3 if (axis < 0 || axis > AGSM_MAX_MOTORS)
4 {
5 WARNING_STREAM << "Steppermotor::dev_read_direction(): axis out of range !";
6 WARNING_STREAM << endl;
7 TangoSys_OMemStream o;
8
9 o << "Axis number " << axis << " out of range" << ends;
10 throw_exception((const char *)"StepperMotor_OutOfRange",
11 o.str(),
12 (const char *)"StepperMotor::dev_read_direction");
13 }
14
15 return direction[axis];
16 }
17
18
19 bool StepperMotor::direct_cmd_allowed(const CORBA::Any &in_data)

CHAPTER 8. WRITING A TANGO DEVICE SERVER 335

20 {
21 INFO_STREAM << "In direct_cmd_allowed() method" << endl;
22
23 return true;
24 }
25

Line 1-16 : The dev_read_direction method
Line 5-12 : Throw exception to client if the received axis number is out of range
Line 7 : A TangoSys_OMemStream is used as stream. The TangoSys_OMemStream has been defined

in improve portability across platform. For Unix like operating system, it is a ostrtream type. For operating
system with a full implementation of the standard library, it is a ostringstream type.

Line 19-24 : The direct_cmd_allowed method. The command input data is passed to this method in
case of it is needed to take the decision. This data is still packed into the CORBA Any object.

8.4.11.1.4 The methods used for the Position attribute To enable reading of attributes, the Stepper-
Motor class must re-define two or three methods called read_attr_hardware(), read_<Attribute_name>()
and if necessary a method called
is_<Attribute_name>_allowed(). The aim of the first one is to read the hardware. It will be called only
once at the beginning of each read_attribute CORBA call. The second method aim is to build the ex-
act data for the wanted attribute and to store this value into the Attribute object. Special care has been
taken in order to minimize the number of data copy and allocation. The data passed to the Attribute ob-
ject as attribute value is passed using pointers. It must be allocated by the method7 and the Attribute
object will not free this memory. Data members called attr_<Attribute_name>_read are foreseen for this
usage. The read_attr_hardware() method receives a vector of long which are indexes into the main at-
tributes vector of the attributes to be read. The read_Position() method receives a reference to the Attribute
object. The third method (is_Position_allowed()) aim is to allow or dis-allow, the attribute reading. In
some cases, some attributes can be read only if some conditions are met. If this method returns true, the
read_<Attribute_name>() method will be called. Otherwise, an error will be generated for the attribute.
This method receives one argument which is an emumeration describing the attribute request type (read or
write). In our example, the reading of the Position attribute is allowed only if the device state is ON.

1 void StepperMotor::read_attr_hardware(vector<long> &attr_list)
2 {
3 INFO_STREAM << "In read_attr_hardware for " << attr_list.size();
4 INFO_STREAM << " attribute(s)" << endl;
5
6 for (long i = 0;i < attr_list.size();i++)
7 {
8 string attr_name;
9 attr_name = dev_attr->get_attr_by_ind(attr_list[i]).get_name();
10
11 if (attr_name == "Position")
12 {
13 attr_Position_read = &(position[0]);
14 }
15 else if (attr_name == "Direction")
16 {
17 attr_Direction_read = &(direction[0]);

7It can also be data declared as object data members or memory declared as static

CHAPTER 8. WRITING A TANGO DEVICE SERVER 336

18 }
19 }
20 }
21
22 void read_Position(Tango::Attribute &att)
23 {
24 att.set_value(attr_Position_read);
25 }
26
27 bool is_Position_allowed(Tango::AttReqType req)
28 {
29 if (req == Tango::WRITE_REQ)
30 return false;
31 else
32 {
33 if (get_state() == Tango::ON)
34 return true;
35 else
36 return false;
37 }
38 }

Line 6 : A loop on each attribute to be read
Line 9 : Get attribute name
Line 11 : Test on attribute name
Line 13 : Read hardware (pretty simple in our case)
Line 24 : Set attribute value in Attribute object using the set_value() method. This method will also

initializes the attribute quality factor to Tango::ATTR_VALID if no alarm level are defined and will set the
attribute returned date. It is also possible to use a method called set_value_date_quality() which allows the
user to set the attribute quality factor as well as the attribute date.

Line 33 : Test on device state

8.4.11.1.5 The methods used for the SetPosition attribute To enable writing of attributes, the Step-
perMotor class must re-define one or two methods called write_<Attribute_name>() and if necessary a
method called is_<Attribute_name>_allowed(). The aim of the first one is to write the hardware. The
write_Position() method receives a reference to the WAttribute object. The value to write is in this WAt-
tribute object. The third method (is_Position_allowed()) aim is to allow or dis-allow, the attribute writing.
In some cases, some attributes can be write only if some conditions are met. If this method returns true, the
write_<Attribute_name>() method will be called. Otherwise, an error will be generated for the attribute.
This method receives one argument which is an emumeration describing the attribute request type (read or
write). For read/write attribute, this method is the same for reading and writing. The input argument value
makes the difference.

For our example, it is always possible to write the SetPosition attribute. Therefore, the StepperMotor
class only defines a write_SetPosition() method.

1 void StepperMotor::write_SetPosition(Tango::WAttribute &att)
2 {
3 att.get_write_value(sttr_SetPosition_write);
4
5 INFO_STREAM << "Attribute SetPosition value = ";

CHAPTER 8. WRITING A TANGO DEVICE SERVER 337

6 INFO_STREAM << attr_SetPosition_write << endl;
7
8 position[0] = attr_SetPosition_write;
9 }

Line 3 : Retrieve new attribute value
Line 5-6 : Send some messages using Tango Logging system
Line 8 : Set the hardware (pretty simple in our case)

8.4.11.1.6 Retrieving device properties Retrieving properties is fairly simple with the use of the database
object. Each Tango device is an aggregate with a DbDevice object (see figure 8.1). This has been grouped
in a method called get_device_properties(). The classes and methods of the Dbxxx objects are described
in the Tango API documentation.

1 void DocDs::get_device_property()
2 {
3 Tango::DbData data;
4 data.push_back(DbDatum("Max"));
5 data.push_back(DbDatum("Min"));
6
7 get_db_device()->get_property(data);
8
9 if (data[0].is_empty()==false)
10 data[0] >> max;
11 if (data[1].is_empty()==false)
12 data[1] >> min;
13 }

Line 4-5 : Two DbDatum (one per property) are stored into a DbData object
Line 7 : Call the database to retrieve properties value
Line 9-10 : If the Max property is defined in the database, extract its value from the DbDatum object

and store it in a device data member
Line 11-12 : If the Min property is defined in the database, extract its value from the DbDatum object

and store it in a device data member

8.4.11.1.7 The remaining methods The remaining methods are the dev_state, dev_status, always_executed_hook,
dev_read_position and read_Direction() methods. The dev_state method parameters are fixed. It does
not receive any input parameter and must return a Tango_DevState data type. The dev_status param-
eters are also fixed. It does not receive any input parameter and must return a Tango string. The al-
ways_executed_hook receives nothing and return nothing. The dev_read_position method input parameter
is the motor number as a long and the returned parameter is the motor position also as a long data type.
The read_Direction() method is the method for reading the Direction attribute.

1 DevLong StepperMotor::dev_read_position(DevLong axis)
2 {
3
4 if (axis < 0 || axis > AGSM_MAX_MOTORS)

CHAPTER 8. WRITING A TANGO DEVICE SERVER 338

5 {
6 WARNING_STREAM << "Steppermotor::dev_read_position(): axis out of range !";
7 WARNING_STREAM << endl;
8
9 TangoSys_OMemStream o;
10
11 o << "Axis number " << axis << " out of range" << ends;
12 throw_exception((const char *)"StepperMotor_OutOfRange",
13 o.str(),
14 (const char *)"StepperMotor::dev_read_position");
15 }
16
17 return position[axis];
18 }
19
20 void always_executed_hook()
21 {
22 INFO_STREAM << "In the always_executed_hook method << endl;
23 }
24
25 Tango_DevState StepperMotor::dev_state()
26 {
27 INFO_STREAM << "In StepperMotor state command" << endl;
28 return DeviceImpl::dev_state();
29 }
30
31 Tango_DevString StepperMotor::dev_status()
32 {
33 INFO_STREAM << "In StepperMotor status command" << endl;
34 return DeviceImpl::dev_status();
35 }
36
37 void read_Direction(Tango::Attribute att)
38 {
39 att.set_value(attr_Direction_read);
40 }

Line 1-18 : The dev_read_position method
Line 6-14 : Throw exception to client if the received axis number is out of range
Line 9 : A TangoSys_OMemStream is used as stream. The TangoSys_OMemStream has been defined

in improve portability across platform. For Unix like operating system, it is a ostrtream type. For operating
system with a full implementation of the standard library, it is a ostringstream type.

Line 20-23 : The always_executed_hook method. It does nothing. It has been included here only as
pedagogic usage.

Line 25-29 : The dev_state method. It does exactly what the default dev_state does. It has been
included here only as pedagogic usage

Line 31-35 : The dev_status method. It does exactly what the default dev_status does. It has been
included here only as pedagogic usage

Line 37-40 : The read_Direction method. Simply set the Attribute object internal value

CHAPTER 8. WRITING A TANGO DEVICE SERVER 339

8.4.11.2 Using Java

8.4.11.2.1 The constructor The constructor take a reference to the StepperMotorClass instance as first
parameter8. The second parameter is the device name as a Java string.

1 package StepperMotor;
2
3 import java.util.*;
4 import org.omg.CORBA.*;
5 import fr.esrf.Tango.*;
6 import fr.esrf.TangoDs.*;
7
8 public class StepperMotor extends DeviceImpl implements TangoConst
9 {
10 protected final int SM_MAX_MOTORS = 8;
11
12 protected int[] axis = new int[SM_MAX_MOTORS];
13 protected int[] position = new int[SM_MAX_MOTORS];
14 protected int[] direction = new int[SM_MAX_MOTORS];
15 protected int[] state = new int[SM_MAX_MOTORS];
16
17 protected int[] attr_Direction_read = new int[1];
18 protected int[] attr_Position_read = new int[1];
19 protected int attr_SetPosition_write;
20
21
22 StepperMotor(DeviceClass cl,String s,String desc,
23 DevState state,String status) throws DevFailed
24 {
25 super(cl,s,desc,state,status);
26 init_device();
27 }
28
29 public void init_device()
30 {
31 System.out.println("StepperMotor() create motor " + dev_name);
32
33 int i;
34
35 for (i=0; i< SM_MAX_MOTORS; i++)
36 {
37 axis[i] = 0;
38 position[i] = 0;
39 direction[i] = 0;
40 state[i] = 0;
41 }
42
43 }
44 }

8The StepperMotorClass inherits from the DeviceClass and therefore is a DeviceClass

CHAPTER 8. WRITING A TANGO DEVICE SERVER 340

Line 3-6: Import different packages. The first one (java.lang.util) is a classical Java package from the
JDK. The second one (org.omg.CORBA) is a package which contains all the CORBA related classes. The
third one (fr.esrf.Tango) is the package generated by the IDL compiler from the Tango IDL file. The last
one (fr.esrf.TangoDs) is the name of the package with all the root classes of the device server pattern.

Line 8 : The StepperMotor class inherits from the DeviceImpl class and implements the TangoConst
interface. The TangoConst interface does not defines any method but simply defines constant variables.
The TangoConst interface is a member of the TangoDs package.

Line 10 : Define an internal constant
Line 12-15 : Device internal variable
Line 17-19 : Device internal variable linked to attributes
Line 22-27 : The class constructor. It execute the DeviceImpl class constructor with five parameters.

Then the init_device method is executed.
Line 29-43 : The init_device method. All the device data initialization is done in this method.

8.4.11.2.2 The methods used for the DevReadDirection command The DevReadDirection command
is created using the template command method. Therefore, there is no specific class needed for this com-
mand but only one object of the TemplCommandInOut class. This command needs two methods which
are the dev_read_direction method and the direct_cmd_allowed method. The direct_cmd_allowed method
defines here implements exactly the same behavior than the default one. This method has been used only
for pedagogic issue. The dev_read_direction method will be executed by the execute method of the Tem-
plCommandInOut class. The direct_cmd_allowed method will be executed by the is_allowed method of
the TemplCommandInOut class.

1 public int dev_read_direction(int axis) throws DevFailed
2 {
3 if (axis < 0 || axis > SM_MAX_MOTORS)
4 {
5 Util.out1.println("Steppermotor.dev_read_direction(): axis out of range !");
6
7 StringBuffer o = new StringBuffer("Axis number ");
8 o.append(axis);
9 o.append(" out of range");
10
11 Except.throw_exception("StepperMotor_AxisOutOfRange",
12 o.toString(),
13 "StepperMotor.dev_read_direction()");
14 }
15
16 return direction[axis];
17 }
18
19 public boolean direct_cmd_allowed(Any data_in)
20 {
21 Util.out2.println("In StepperMotor.direct_cmd_allowed method");
22
23 return true;
24 }

Line 1-17 : The dev_read_direction method
Line 3-14 : Throw exception to client if the received axis number is out of range
Line 19-24 : The direct_cmd_allowed method. The command input data is passed to this method in

case of it is needed to take the decision. This data is still packed into the CORBA Any object.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 341

8.4.11.2.3 The write attribute related method To enable writing of writable attributes, the Stepper-
Motor class must re-define a method called write_attr_hardware(). The aim of this method is to write the
hardware. This method receives a vector of Integer objects as parameters. These data are the indexes of
the attributes to be written into the main attribute vector stored in the MultiAttribute object. Methods of
the MultiAttribute class allow the retrieval of the the correct attribute object from these indexes. The value
to be written is stored in the WAttribute object and can be retrieved with WAttribute class methods called
get_xx_write_value(). A data member called attr_<Attribute_name>_write is foreseen to temporary store
this extracted value.

1 public void write_attr_hardware(Vector attr_list)
2 {
3 Util.out2.println("In write_attr_hardware for "+attr_list.size()+" attribute(s)");
4
5 for (int i = 0;i < attr_list.size();i++)
6 {
7 int ind = ((Integer)(attr_list.elementAt(i))).intValue();
8 WAttribute att = dev_attr.get_w_attr_by_ind(ind);
9 String att_name = att.get_name();
10
11 if (att_name.equals("SetPosition") == true)
12 {
13 attr_SetPosition_write = att.get_lg_write_value();
14 Util.out2.println("Attribute SetPosition value = "+attr_SetPosition_write);
15 position[0] = attr_SetPosition_write;
16 }
17 }
18 }

Line 5 : A loop on each attribute to be written
Line 7-9 : Retrieve attribute name
Line 11 : A test on attribute name
Line 13 : Retrieve new attribute value
Line 15 : Set the hardware (very simple in our example)

8.4.11.2.4 The read attribute related methods To enable reading of attributes, the StepperMotor class
must re-define two methods called read_attr_hardware() and read_attr(). The aim of the first one is to read
the hardware. It will be called only once at the beginning of each read_attributes CORBA call. The second
method aim is to build the exact data for the wanted attribute and to store this value into the Attribute
object. This method will be called for each attribute to be read. Special care has been taken in order
to minimize the number of data copy and allocation. The data passed to the Attribute object as attribute
value is passed using pointers. It must be allocated by the method9 and the Attribute object will not
free this memory. Data members called attr_<Attribute_name>_read are foreseen for this usage. As for
the write_attr_hardware() method, the read_attr_hardware() method receives a vector of long which are
indexes into the main attributes vector of the attributes to be read. The read_attr() method receives a
reference to the Attribute object.

9It can also be data declared as object data members or memory declared as static

CHAPTER 8. WRITING A TANGO DEVICE SERVER 342

1 public void read_attr_hardware(Vector attr_list)
2 {
3 Util.out2.println("In read_attr_hardware for "+attr_list.size()+" attribute(s)");
4 for (int i = 0;i< attr_list.size();i++)
5 {
6 int ind = ((Integer)(attr_list.elementAt(i))).intValue();
7 String attr_name = dev_attr.get_attr_by_ind(ind).get_name();
8
9 if (attr_name == "Position")
10 {
11 attr_Position_read[0] = position[0];
12 }
13 else if (attr_name == "Direction")
14 {
15 attr_Direction_read[0] = direction[0];
16 }
17 }
18 }
19
20
21 public void read_attr(Attribute attr) throws DevFailed
22 {
23 String attr_name = attr.get_name();
24 Util.out2.println("In read_attr for attribute "+attr_name);
25 if (attr_name.equals("Position") == true)
26 {
27 attr.set_value(attr_Position_read);
28 }
29 else if (attr_name.equals("Direction") == true)
30 {
31 attr.set_value(attr_Direction_read);
32 }
33 }

Line 4 : A loop on each attribute to be read
Line 6 -7: Get attribute name
Line9 : Test on attribute name
Line 11 : Read hardware (pretty simple in our case)
Line 23 : Get attribute name
Line 25 : Test on attribute name
Line 27 : Set attribute value in Attribute object

8.4.11.2.5 Retrieving device properties Retrieving properties is fairly simple with the use of the database
object. Each Tango device is an aggregate with a DbDevice object (see figure 8.1). This has been grouped
in a method called get_device_properties(). The classes and methods of the Dbxxx objects are described
in the Tango API documentation.

1 void public get_device_property() throws DevFailed
2 {
3 String[] prop_names = {"Max","Min"};

CHAPTER 8. WRITING A TANGO DEVICE SERVER 343

4
5 DbDatum[] res_value = db_dev.get_property(prop_names);
6
7 if (res_value[0].is_empty() == false)
8 min = res_value[0].extractInt();
9 if (res_value[1].is_empty() == false)
10 max = res_value[1].extractInt();
11 }

Line 3 : Define the names of the properties to be retrieved
Line 5 : Call the database to retrieve properties value
Line 7-8 : If the Max property is defined in the database, extract its value from the DbDatum object

and store it in a device data member
Line 9-10 : If the Min property is defined in the database, extract its value from the DbDatum object

and store it in a device data member

8.4.11.2.6 The remaining methods The remaining methods are the dev_state, dev_status, always_executed_hook()
and dev_read_position methods. The dev_state method parameters are fixed. It does not receive any input
parameter and must return a DevState data type. The dev_status parameters are also fixed. It does not re-
ceive any input parameter and must return reference to a Java string. The always_executed_hook receives
nothing and return nothing The dev_read_position method input parameter is the motor number as an int
and the returned parameter is the motor position also as an int data type.

1 int dev_read_position(int axis) throws DevFailed
2 {
3
4 if (axis < 0 || axis > SM_MAX_MOTORS)
5 {
6 Util.out1.println("Steppermotor.dev_read_position(): axis out of range !");
7
8 StringBuffer o = new StringBuffer("Axis number ");
9 o.append(axis);
10 o.append(" out of range");
11
12 Except.throw_exception("StepperMotor_AxisOutOfRange",
13 o.toString(),
14 "StepperMotor.dev_read_position()");
15 }
16
17 return position[axis];
18 }
19
20 public void always_executed_hook()
21 {
22 Util.out2.println("In always_executed_hook method");
23 }
24
25 public DevState dev_state() throws DevFailed
26 {
27 Util.out2.println("In StepperMotor state command");

CHAPTER 8. WRITING A TANGO DEVICE SERVER 344

28 return super.dev_state();
29 }
30
31 public String dev_status() throws DevFailed
32 {
33 Util.out2.println("In StepperMotor status command");
34 return super.dev_status();
35 }

Line 1-18 : The dev_read_position method
Line 4-15 : Throw exception to client if the received axis number is out of range
Line 20-23 : The always_executed_hook method.It does nothing. It has been included here only as

pedagogic usage.
Line 25-29 : The dev_state method. It does exactly what the default dev_state does. It has been

included here only as pedagogic usage
Line 31-35 : The dev_status method. It does exactly what the default dev_status does. It has been

included here only as pedagogic usage.

8.5 Device server under Windows
Two kind of programs are available under Windows. These kinds of programs are called console application
or Windows application. A console application is started from a MS-DOS window and is very similar to
classical UNIX program. A Windows application is most of the time not started from a MS-DOS window
and is generally a graphical application without standard input/output. Writing a device server in a console
application is straight forward following the rules described in the previous sub-chapters. Writing a device
server in a Windows application needs some changes detailed in the following sub-chapters.

8.5.1 The Tango device server graphical interface
Within the Windows operating system, most of the running application has a window user interface. This
is also true for the Windows Tango device server. Using or not this interface is up to the device server
programmer. The choice is done with an argument to the server_init() method of the Tango::Util class.
This interface is pretty simple and is based on three windows which are :

• The device server main window

• The device server console window

• The device server help window

8.5.1.1 The device server main window

This window looks like :

Four menus are available in this window. The File menu allows the user to exit the device server. The
View menu allows you to display/hide the device server console window. The Debug menu allows the user
to change the server output verbose level. All the outputs goes to the console window even if it is hidden.
The Help menu displays the help window. The device server name is displayed in the window title. The
text displayed at the bottom of the window has a default value (the one displayed in this window dump)
but may be changed by the device server programmer using the set_main_window_text() method of the
Tango::Util class. If used, this method must be called prior to the call of the server_init() method. Refer to
[8] for a complete description of this method.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 345

Figure 8.7: Tango device server main window

CHAPTER 8. WRITING A TANGO DEVICE SERVER 346

8.5.1.2 The console window

This window looks like :

It simply displays all the logging message when a console target is used in the device server.

8.5.1.3 The help window

This window looks like :

This window displays

• The device server name

• The Tango library release

• The Tango IDL definition release

• The device server release. The device server programmer may set this release number using the
set_server_version() method of the Tango::Util class. If used, this must be done prior to the call of
the server_init() method. If the set_server_version() method is not used, x.y is displays as version
number. Refer to [8] for a complete description of this method.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 347

8.5.2 MFC device server
There is no main function within a classical MFC program. Most of the time, your application is rep-
resented by one instance of a C++ class which inherits from the MFC CWinApp class. This CWinApp
class has several methods that you may overload in your application class. For a device server to run cor-
rectly, you must overload two methods of the CWinApp class. These methods are the InitInstance() and
ExitInstance() methods. The rule of these methods is obvious following their names.

Remember that if the Tango device server graphical user interface is used, you must link your
device server with the Tango windows resource file. This is done by adding the Tango resource file to
the Project Settings/Link/Input/Object, library modules window in VC++.

8.5.2.1 The InitInstance method

The code to be added here is the equivalent of the code written in a classical main() function. Don’t forget
to add the tango.h file in the list of included files.

1 BOOL FluidsApp::InitInstance()
2 {
3 AfxEnableControlContainer();
4
5 // Standard initialization
6 // If you are not using these features and wish to reduce the size
7 // of your final executable, you should remove from the following
8 // the specific initialization routines you do not need.
9
10 #ifdef _AFXDLL
11 Enable3dControls(); // Call this when using MFC in a shared DLL
12 #else
13 Enable3dControlsStatic(); // Call this when linking to MFC statically
14 #endif
15 Tango::Util *tg;
16 try
17 {
18
19 tg = Tango::Util::init(m_hInstance,m_nCmdShow);
20
21 tg->server_init(true);
22
23 tg->server_run();
24
25 }
26 catch (bad_alloc)
27 {
28 MessageBox((HWND)NULL,"Memory error","Command line",MB_ICONSTOP);
29 return(FALSE);
30 }
31 catch (Tango::DevFailed &e)
32 {
33 MessageBox((HWND)NULL„e.errors[0].desc.in(),"Command line",MB_ICONSTOP);
34 return(FALSE);
35 }
36 catch (CORBA::Exception &)
37 {

CHAPTER 8. WRITING A TANGO DEVICE SERVER 348

38 MessageBox((HWND)NULL,"Exception CORBA","Command line",MB_ICONSTOP);
39 return(FALSE);
40 }
41
42 m_pMainWnd = new CWnd;
43 m_pMainWnd->Attach(tg->get_ds_main_window());
44
45 return TRUE;
46 }

Line 19 : Initialise Tango system. This method also analises the argument used in command line.
Line 21 : Create Tango classes requesting the Tango Windows graphical interface to be used
Line 23 : Start Network listener. Note that under NT, this call returns in the contrary of UNIX like

operating system.
Line 26-30 : Display a message box in case of memory allocation error and leave method with a return

value set to false in order to stop the process
Line 31-35 : Display a message box in case of error during server initialization phase.
Line 36-40 : Display a message box in case of error other than memory allocation. Leave method with

a return value set to false in order to stop the process.
Line 37-38 : Create a MFC main window and attach the Tango graphical interface main window to this

MFC window.

8.5.2.2 The ExitInstance method

This method is called when the application is stopped. For Tango device server, its rule is to destroy the
Tango::Util singleton if this one has been correctly constructed.

1 int FluidsApp::ExitInstance()
2 {
3 bool del = true;
4
5 try
6 {
7 Tango::Util *tg = Tango::Util::instance();
8 }
9 catch(Tango::DevFailed)
10 {
11 del = false;
12 }
13
14 if (del == true)
15 delete (Tango::Util::instance());
16
17 return CWinApp::ExitInstance();
18 }

CHAPTER 8. WRITING A TANGO DEVICE SERVER 349

Line 7 : Try to retrieve the Tango::Util singleton. If this one has not been constructed correctly, this
call will throw an exception.

Line 9-12 : Catch the exception in case of incomplete Tango::Util singleton construction
Line 14-15 : Delete the Tango::Util singleton. This will unregister the Tango device server from the

Tango database.
Line 17 : Execute the ExitInstance method of the CWinApp class.
If you don’t want to use the Tango device server graphical interface, do not pass any parameter to the

server_init() method and instead of the code display in lines 37 and 38 in the previous example of the
InitInstance() method, use your own code to initialize your own application.

8.5.2.3 Example of how to build a Windows device server MFC based

This sub-chapter gives an example of what it is needed to do to build a MFC Windows device server. Rather
than being a list of actions to strictly follow, this is some general rules of how using VC++ to build a Tango
device server using MFC.

1. Create your device server using Pogo. For a class named MyMotor, the following files will be needed
: class_factory.cpp, MyMotorClass.h, MyMotorClass.cpp, MyMotor.h and MyMotor.cpp.

2. On a Windows computer running VC++, create a new project of type “MFC app Wizard (exe)” using
static MFC libs. Ask for a dialog based project without ActiveX controls.

3. Copy the five files generated by Pogo to the Windows computer and add them to your project

4. Remove the dialog window files (xxxDlg.cpp and xxxDlg.h), the Resource include file and the re-
source script file from your project

5. Add #include <stdafx.h> as first line of the include files list in class_factory.cpp, MyMotorClass.cpp
and MyMotor.cpp file. Also add your own directory and the Tango include directory to the project
pre-compiler include directories list.

6. Enable RTTI in your project settings (see chapter 8.6.1.2)

7. Change your application class:

(a) Add the definition of an ExitInstance method in the declaration file. (xxx.h file)

(b) Remove the include of the dialog window file in the xxx.cpp file and add an include of the
Tango master include files (tango.h)

(c) Replace the InitInstance() method as described in previous sub-chapter. (xx.cpp file)

(d) Add an ExitInstance() method as described in previous sub-chapter (xxx.cpp file)

8. Add all the libraries needed to compile a Tango device server (see chapter 8.6.1.2) and the Tango
resource file to the linker Object/Libraries modules.

8.5.3 Win32 application
Even if it is more natural to use the C++ structure of the MFC class to write a Tango device server, it
is possible to write a device server as a Win32 application. Instead of having a main() function as the
application entry point, the operating system, provides a WinMain() function as the application entry point.
Some code must be added to this WinMain function in order to support Tango device server. Don’t forget
to add the tango.h file in the list of included files. If you are using the project files generated by Pogo,
don’t forget to change the linker SUBSYSTEM option to "Windows" (Under Linker/System in the project
properties window).

CHAPTER 8. WRITING A TANGO DEVICE SERVER 350

1 int APIENTRY WinMain(HINSTANCE hInstance,
2 HINSTANCE hPrevInstance,
3 LPSTR lpCmdLine,
4 int nCmdShow)
5 {
6 MSG msg;
7 Tango::Util *tg;
8
9 try
10 {
11 tg = Tango::Util::init(hInstance,nCmdShow);
12
13 string txt;
14 txt = "Blabla first line\n";
15 txt = txt + "Blabla second line\n";
16 txt = txt + "Blabla third line\n";
17 tg->set_main_window_text(txt);
18 tg->set_server_version("2.2");
19
20 tg->server_init(true);
21
22 tg->server_run();
23
24 }
25 catch (bad_alloc)
26 {
27 MessageBox((HWND)NULL,"Memory error","Command line",MB_ICONSTOP);
28 return (FALSE);
29 }
30 catch (Tango::DevFailed &e)
31 {
32 MessageBox((HWND)NULL,e.errors[0].desc.in(),"Command line",MB_ICONSTOP);
33 return (FALSE);
34 }
35 catch (CORBA::Exception &)
36 {
37 MessageBox((HWND)NULL,"Exception CORBA","Command line",MB_ICONSTOP);
38 return(FALSE);
39 }
40
41 while (GetMessage(&msg, NULL, 0, 0))
42 {
43 TranslateMessage(&msg);
44 DispatchMessage(&msg);
45 }
46
47 delete tg;
48
49 return msg.wParam;
50 }

CHAPTER 8. WRITING A TANGO DEVICE SERVER 351

Line 11 : Create the Tango::Util singleton
Line 13-18 : Set parameters for the graphical interface
Line 20 : Initialize Tango device server requesting the display of the graphical interface
Line 22 : Run the device server
Line 25-39 : Display a message box for all the kinds of error during Tango device server initialization

phase and exit WinMain function.
Line 41-45 : The Windows message loop
Line 47 : Delete the Tango::Util singleton. This class destructor unregisters the device server from the

Tango database.
Remember that if the Tango device server graphical user interface is used, you must add the

Tango windows resource file to your project.
If you don’t want to use the tango device server graphical user interface, do not use any parameter in

the call of the server_init() method and do not link your device server with the Tango Windows resource
file.

8.5.4 Device server as NT service
With Windows NT, if you want to have processes which survive to logoff sequence and/or are automatically
started during computer startup sequence, you have to write them as service. It is possible to write Tango
device server as service. You need to

1. Write a class which inherits from a pre-written Tango class called NTService. This class must have
a start method.

2. Write a main function following a predefined skeleton.

8.5.4.1 The service class

It must inherits from the NTService class and defines a start method. The NTService class must be con-
structed with one argument which is the device server executable name. The start method has three argu-
ments which are the number of arguments passed to the method, the argument list and a reference to an
object used to log info in the NT event system. The first two args must be passed to the Tango::Util::init
method and the last one is used to log error or info messages. The class definition file looks like

1 #include <tango.h>
2 #include <ntservice.h>
3
4 class MYService: public Tango::NTService
5 {
6 public:
7 MYService(char *);
8
9 void start(int,char **,Tango::NTEventLogger *);
10 };

Line 1-2 : Some include files
Line 4 : The MYService class inherits from Tango::NTService class
Line 7 : Constructor with one parameter
Line 9 : The start() method

The class source code looks like

CHAPTER 8. WRITING A TANGO DEVICE SERVER 352

1 #include <myservice.h>
2 #include <tango.h>
3
4 using namespace std;
5
6 MYService::MYService(char *exec_name):NTService(exec_name)
7 {
8 }
9
10 void MYService::start(int argc,char **argv,Tango::NTEventLogger *logger)
11 {
12 Tango::Util *tg;
13 try
14 {
15 Tango::Util::_service = true;
16
17 tg = Tango::Util::init(argc,argv);
18
19 tg->server_init();
20
21 tg->server_run();
22 }
23 catch (bad_alloc)
24 {
25 logger->error("Can’t allocate memory to store device object");
26 }
27 catch (Tango::DevFailed &e)
28 {
29 logger->error(e.errors[0].desc.in());
30 }
31 catch (CORBA::Exception &)
32 {
33 logger->error("CORBA Exception");
34 }
35 }

Line 6-8 : The MYService class constructor code.
Line 15 : Set to true the _service static variable of the Tango::Util class.
Line 17-21 : Classical Tango device server startup code
Line 23-34 : Exception management. Please, note that within a service. it is not possible to print data

on a console. This method receives a reference to a logger object. This object sends all its output to the
Windows NT event system. It is used to send messages when an exception has occurred.

8.5.4.2 The main function

The main function is used to create one instance of the class describing the service, to check the service
option and to run the service. The code looks like :

CHAPTER 8. WRITING A TANGO DEVICE SERVER 353

1 #include <tango.h>
2 #include <MYService.h>
3
4 using namespace std;
5
6
7 int main(int argc,char *argv[])
8 {
9 MYService service(argv[0]);
10
11 int ret;
12 if ((ret = service.options(argc,argv)) <= 0)
13 return ret;
14
15 service.run(argc,argv);
16
17 return 0;
18 }

Line 9 : Create one instance of the MYService class with the executable name as parameter
Line 12 : Check service option with the options() method inherited from the NTService class.
Line 15 : Run the service. The run() method is inherited from the NTService class. This method will

after some NT initialization sequence execute the user start() method.

8.5.4.3 Service options and messages

When a Tango device server is written as a Windows NT service, it supports several new options. These
option are linked to Windows NT service usage.

Before it can be used, a service must be installed. A name and a title is associated to each service. For
Tango device server used as service, the service name is build from the executable name followed by the
underscore character and the instance name. For example, a device server service executable file named
“opc” and started with “fluids” as instance name, will be named “opc_fluids”. The title string is built from
the service executable name followed by the sentence “Tango device server” and the instance name between
parenthesis. In the previous example, the service title will be “opc Tango device server (fluids)”. Once a
service is installed, you can configure it with the “Services” application of the control panel. Services title
are displayed by this application and allow the user to select one specific service. Once a service is selected,
it is possible to start/stop it and to configure its startup type as manual (with the Services application) or
as automatic. When the automatic mode is chosen, the service starts when the computer is started. In this
case, the service executable code must resides on the computer local disk.

Tango device server logs message in the Windows event system when the service is started or stopped.
You can see these messages with the “Event Viewer” application (Start->Programs->Administrative tools-
>Event Viewer) and choose the Application events.

The new options are -i, -s, -u, -h and -d.

• -i : Install the service

• -s : Install the service and choose the automatic startup mode

• -u : Un-install the service

• -dbg : Run in console mode to debug service. The service must have been installed prior to used it.
The classical -v device server option can be used with the -d option.

On the command line, all these options must be used after the device server instance name (“opc fluids -i”
to install the service, “opc fluids -u” to un-install the service, “opc fluids -v -d” to debug the service)

CHAPTER 8. WRITING A TANGO DEVICE SERVER 354

8.5.4.4 Tango device server using MFC as Windows NT service

If your Tango device server uses MFC and must be written as a Windows NT service, follow these rules :

• Don’t forget to add the stdafx.h file as the first file included in all the source files making the project.

• Comment out the definition of VC_EXTRALEAN in the stdafx.h file.

• Change the pre-processor definitions, replace _WINDOWS by _CONSOLE

• Add the /SUBSYSTEM:CONSOLE option in the linker options window of the project settings.

• Add a call to initialize the MFC (AfxWinInit()) in the service main function

1 int main(int argc,char *argv[])
2 {
3 if (!AfxWinInit(::GetModuleHandle(NULL),NULL,::GetCommandLine(),0))
4 {
5 cerr << "Can’t initialise MFC !" << endl;
6 return -1;
7 }
8
9 service serv(argv[0]);
10
11 int ret;
12 if ((ret = serv.options(argc,argv)) <= 0)
13 return ret;
14
15 serv.run(argc,argv);
16
17 return 0;
18 }

Line 3 : The MFC classes are initialized with the AfxWinInit() function call.

8.6 Compiling, linking and executing a TANGO device server pro-
cess

8.6.1 Compiling and linking a C++ device server
8.6.1.1 On UNIX like operating system

8.6.1.1.1 Supported development tools The supported compiler for Linux is gcc release 2.95.3 and
above. For Solaris with its native C++ compiler, CC release 5.3 is supported (FORTE C++ 6 Update 2).
Please, note that to debug a Tango device server running under Linux, gdb release 5 and above is needed
in order to correctly handle threads.

8.6.1.1.2 Compiling TANGO for C++ uses omniORB (release 4) as underlying CORBA Object Re-
quest Broker [11]. To compile a TANGO device server, your include search path must be set to :

• The omniORB include directory

• The Tango include directory

• Your development directory

CHAPTER 8. WRITING A TANGO DEVICE SERVER 355

8.6.1.1.3 Linking To build a running device server process, you need to link your code with several
libraries. Nine of them are always the same whatever the operating system used is. These nine libraries
are:

• The Tango libraries (called libtango and liblog4tango)

• Three omniORB package libraries (called libomniORB4, libomniDynamic4 and libCOS4)

• The omniORB threading library (called libomnithread)

On top of that, you need additional libraries depending on the operating system :

• For Solaris, add the posix4 library (libposix4), the socket library (libsocket), the nsl library (libnsl)
and the posix thread library (libpthread)

• For Linux, add the posix thread library (libpthread)

The following table summarizes the necessary options to compile a Tango C++ device server. Obviously,
the options -I and -L must be updated to reflect your file system organization.

Operating system Compiling option Linking option

Solaris CC -mt -I..
-mt -L.. -ltango -llog4tango -lomniORB4 -
lomniDynamic4 -lCOS4 -lomnithread -lposix4 -
lsocket -lnsl -lpthread

Linux gcc -D_REENTRANT -I..
-L.. -ltango -llog4tango -lomniORB4 -
lomniDynamic4 -lCOS4 -lomnithread -lpthread

The following is an example of a Makefile for Linux. Obviously, all the paths are set to the ESRF file
system structure.

1 #
2 # Makefile to generate a Tango server
3 #
4
5 CC = c++
6 BIN_DIR = suse82
7 TANGO_HOME = /segfs/tango
8
9 INCLUDE_DIRS = -I $(TANGO_HOME)/include/$(BIN_DIR) \
10 -I .
11
12 LIB_DIRS = -L $(TANGO_HOME)/lib/$(BIN_DIR)
13
14
15 CXXFLAGS = -D_REENTRANT $(INCLUDE_DIRS)
16 LFLAGS = $(LIB_DIRS) -ltango \
17 -llog4tango \
18 -lomniORB4 \
19 -lomniDynamic4 \
20 -lCOS4 \

CHAPTER 8. WRITING A TANGO DEVICE SERVER 356

21 -lomnithread \
22 -lpthread
23
24
25 SVC_OBJS = main.o \
26 classfactory.o \
27 steppermotorclass.o \
28 steppermotor.o
29
30
31 .SUFFIXES: .o .cpp
32 .cpp.o:
33 $(CC) $(CXXFLAGS) -c $<
34
35
36 all: StepperMotor
37
38 StepperMotor: $(SVC_OBJS)
39 $(CC) $(SVC_OBJS) -o $(BIN_DIR)/StepperMotor $(LFLAGS)
40
41 clean:
42 rm -f *.o core

Line 5-7 : Define Makefile macros
Line 9-10 : Set the include file search path
Line 12 : Set the linker library search path
Line 15 : The compiler option setting
Line 16-22 : The linker option setting
Line 25-28 : All the object files needed to build the executable
Line 31-33 : Define rules to generate object files
Line 36 : Define a “all” dependency
Line 38-39 : How to generate the StepperMotor device server executable
Line 41-42 : Define a “clean” dependency

8.6.1.2 On Windows using Developer Studio

Supported Windows compiler for Tango is Visual C++ release 7 and above. Most problems in building
a Windows device server revolve around the /M compiler switch family. This switch family controls
which run-time library names are embedded in the object files, and consequently which libraries are used
during linking. Attempt to mix and match compiler settings and libraries can cause link error and even if
successful, may produce undefined run-time behavior.

Selecting the correct /M switch in Developer Studio is done through a dialog box. To open this dialog
box, click on the “Project” menu and select the “Settings” option. To change the compiler switch click on
the “C/C++” tab and select “Code Generation” from the “Category” drop-down list. The “Use run-time
library” drop-down list is used to change the compiler switch. By looking at the string in the “Project
options” edit box, you can see what the switch value is for the drop-down list selection.

• Single-threaded = /ML

• Multithreaded = /MT (Supported)

• Multithreaded DLL = /MD (Supported)

• Debug Single-threaded = /MLd

CHAPTER 8. WRITING A TANGO DEVICE SERVER 357

• Debug Multithreaded = /MTd (Supported)

• Debug Multithreaded DLL = /MDd (Supported)

Compiling a file with a value of the /M switch family will impose at link phase the use of libraries also
compiled with the same value of the /M switch family. If you compiled your source code with the /MT
option (Multithreaded), you must link it with libraries also compiled with the /MT option.

The omniORB package used by TANGO, makes extensive use of exceptions and RTTI10. This requires
the /GX and /GR options be enabled when compiling. The setting can be found in Developer Studio in
the “Project Settings” dialog box. Click on the “C/C++” tab and select “C++ language” in the “Category”
drop-down list.

On 32 bits computer, omniORB and TANGO relies on the preprocessor identifier WIN32 being defined
in order to configure itself. On 64 bits computer (x64 architecture), the preprocessor identifier WIN64
has to be defined. If you build an application using static libraries (option /MT or /MTd), you must add
_WINSTATIC to the list of the preprocessor identifiers. If you build an application using DLL (option /MD
or /MDd), you must add LOG4TANGO_HAS_DLL and TANGO_HAS_DLL to the list of preprocessor
identifiers.

To build a running device server process, you need to link your code with several libraries on top of the
Windows libraries. These libraries are:

• The Tango libraries (called tango.lib and log4tango.lib or tangod.lib and log4tangod.lib for debug
mode)

• The omniORB package libraries (see next table)

Compile mode Libraries
Debug Multithreaded omniORB4d.lib, omniDynamic4d.lib, omnithreadd.lib and COS4d.lib

Multithreaded omniORB4.lib, omniDynamic4.lib, omnithread.lib and COS4.lib
Debug Multithreaded DLL omniORB414_rtd.lib, omniDynamic414_rtd.lib, omnithread34_rtd.lib,

and COS414_rtd.lib
Multithreaded DLL omniORB414_rt.lib, omniDynamic414_rt.lib, omnithread34_rt.lib

and COS414_rt.lib

• Windows network libraries (mswsock.lib and ws2_32.lib)

• Windows graphic library (comctl32.lib)

To add these libraries in Developer Studio, open the “Project Settings” dialog box and click on the “Link”
tab. Select “Input” from the “Category” drop-down list and add these library names to the list of library in
the “Object/library modules” box.

The “Win32 Debug” or “Win32 Release” configuration that you change with the “Build/Set active
configuration” menu changes the /M switch compiler. For instance, if you select a “Win32 Debug” config-
uration in a "non-DLL" project, use the omniORB4d.lib, omniDynamic4d.lib and omnithreadd.lib libraries
and the tango.lib library in the debug directory (at the ESRF). If you select the “Win32 Release” configu-
ration, use the omniORB4.lib, omniDynamic4.lib and omnithread.lib libraries and the tango.lib library in
the release directory (at the ESRF).

WARNING: In some cases, the Microsoft Visual Studio wizard used during project creation generates
an include file called Stdafx.h. If this file itself includes windows.h file, you have to add the preprocessor
macro _WIN32_WINNT and set it to 0x0400.

10RTTI stands for Run Time Type Identification

CHAPTER 8. WRITING A TANGO DEVICE SERVER 358

8.6.2 Running a C++ device server
To run a C++ Tango device server, you must set an environment variable. This environment variable is
called TANGO_HOST and has a fixed syntax which is

TANGO_HOST=<host>:<port>

The host field is the host name where the TANGO database device server is running. The port field is the
port number on which this server is listening. For instance, a valid syntax is TANGO_HOST=dumela:10000.
For UNIX like operating system, setting environment variable is possible with the export or setenv com-
mand depending on the shell used. For Windows NT, setting environment variable is possible with the
“Environment” tab of the “System” application in the control panel.

If you need to start a Tango device server on a pre-defined port (For Tango database device server or
device server without database usage), you must use one of the underlying ORB option endPoint like

myserver myinstance_name -ORBendPoint giop:tcp::<port number>

8.6.3 Compiling a Java device server
8.6.3.1 Supported java release

Tango device server written using Java language needs release 1.4.0 (or above) of the Java environment.

8.6.3.2 Setting the CLASSPATH

To correctly compile a Java Tango device server, the CLASSPATH environment variable must be set to :

• The Tango jar file. All Tango and TangoDs package classes have been stored in this jar file. On
top of that, this file also includes all the CORBA ORB classes (JacORB classes). This file is named
TangORB.jar

• The jar file with all the JDK classes (not always necessary, could be implicit)

• Your own directory

For UNIX like operating system, setting environment variable is done with the export or setenv command
depending on the shell used. For Windows NT, setting environment variable is possible with the “Environ-
ment” tab of the “System” application in the control panel.

8.6.3.3 Makefile

The following is an example of a Makefile for a Java Tango device server. Obviously, all the paths are set
to the ESRF file system structure.

1 #
2 # Makefile to generate a TANGO java device server
3 #
4
5 JAVAC = javac -classpath $(CLASSPATH):..
6
7 # ————————————————
8 #
9 # The compiler flags
10 #
11 #————————————————-
12

CHAPTER 8. WRITING A TANGO DEVICE SERVER 359

13 JAVAFLAGS = -g
14
15 #————————————————-
16
17
18 CL_LIST = DevReadPositionCmd.class \
19 StepperMotor.class \
20 StepperMotorClass.class
21
22 PACKAGE = server
23
24 #
25 # Rule for compiling
26 #
27
28 .SUFFIXES: .class .java
29 .java.class:
30 $(JAVAC) $(JAVAFLAGS) $<
31
32 #—————————————————
33
34
35 all: $(PACKAGE)
36
37 $(PACKAGE): $(CL_LIST)
38
39 clean:
40 rm -f *.class

Line 5 : Definition of the java compiler
Line 13 : The java compiler flag
Line 18 : List of class to be compiled
Line 28 : Define a dependency name
Line 29-30 : Define how source files must be compiled
Line 35 : The “all” dependency
Line 47 : The device server dependency
Line 39-40 : The “clean” dependency

8.6.3.4 Tango core software release number

All the Tango core classes are packaged in the Tango.jar file. A little utility tool called TangoVers allows
a user to know which release of the Tango core classes he(she) is using. This utility is available only with
Java 1.2 virtual machine. To run this utility, simply type

TangoVers <path to Tango.jar file>

if the directory /segfs/tango/bin is in your PATH environment variable.

CHAPTER 8. WRITING A TANGO DEVICE SERVER 360

8.6.4 Running a Java device server
A correct setting of the CLASSPATH environment variable is not enough to run a Java Tango device
server. You must also set a Java system property. The name of the system property is TANGO_HOST and
its syntax is the same than the syntax described in chapter 8.6.2. Setting a Java system property is done
by using -D option of the java interpreter command. To run a Java Tango device server, the command line
must start with

java -DTANGO_HOST=<host>:<port> xxxx

As all the device server files are part of a package, you have to run this command in the directory above
the package directory. For instance, for our StepperMotor device server started with et as instance name,
all files must be stored in a directory called StepperMotor and the command line must be

java -DTANGO_HOST=<host>:<port> StepperMotor/StepperMotor et

run from the directory above the StepperMotor one.
If you need to start a Tango device server on a pre-defined port (For Tango database device server or

device server without database usage), you must use one of the underlying ORB option OAPort like

java -DOAPort=<port number> myserver myinstance_name

8.7 Advanced programming techniques
The basic techniques for implementing device server pattern are required by each device server program-
mer. In certain situations, it is however necessary to do things out of the ordinary. This chapter will look
into programming techniques which permit the device server serve more than simply the network.

8.7.1 Receiving signal (C++ specific)
It is UNSAFE to use any CORBA call in a signal handler. It is also UNSAFE to use some system calls
in a signal handler. Tango device server solved this problem by using threads. A specific thread is started
to handle signals. Therefore, every Tango device server is automatically a threaded process. This allows
the programmer to write the code which must be executed when a signal is received as ordinary code. All
device server threads masks all signals except the specific signal thread which is permanently waiting for
signal. If a signal is sent to a device server process, only the signal thread will receive it because it is the
single thread which does not mask signals.

Nevertheless, signal management is not trivial and some care have to be taken. The signal management
differs from operating system to operating system. It is not recommended that you install your own signal
routine using any of the signal routines provided by the operating system calls or library.

8.7.1.0.1 Using Linux The classical thread library is used by the Tango device server. The thread
management offered by the Linux kernel and this library is a pure kernel-thread based implementation.
This means that each thread is seen as a process (each thread has a separate PID, the ps command displays
one line for each thread) even if they are not real process. For a Tango device server, a ps command will
show you several threads. One of them is the signal thread (the fifth one). Chapter 9.3 details how thread
are managed within a Tango device server or client.

The PID stored in the Tango database is the PID of the signal thread. All signals should be sent to the
signal thread. To kill a server from a console window, the PID of the signal thread should be used. The
Linux thread library is using the SIGUSR1 and SIGUSR2 signal for its own purpose. It is forbidden to use
these two signals in a Linux Tango device server. The Tango core classes will refuse to install something
for these two signals.

Nevertheless, the Linux thread library is not fully POSIX compliant about thread and signal manage-
ment. The POSIX specification says that an asynchronous signal must be delivered to one of the thread of
the program which does not block the signal (it is not specified which). Using this Linux thread library,

CHAPTER 8. WRITING A TANGO DEVICE SERVER 361

the signal is delivered to the thread it is been sent to, based on the PID of the thread. If that thread is
currently blocking the signal, the signal remains pending...This is a problem for Tango device server under
Linux using the alarm() system call. In this case, the system will send the signal to the device server thread
which has called alarm() and not to the device server signal management thread. A special case of the reg-
ister_signal method (detailed in the next sub-chapter) have been developed for such case. This is available
only for Linux.

8.7.1.0.2 Using Solaris There is no restriction on the signal to be used.

8.7.1.1 Using signal

It is possible for C++ device server to receive signals from drivers or other processes. The TDSOM sup-
ports receiving signal at two levels: the device level and the class level. Supporting signal at the device
level means that it is possible to specify interest into receiving signal on a device basis. This feature is
supported via three methods defined in the DeviceImpl class. These methods are called register_signal,
unregister_signal and signal_handler.

The register_signal method has one parameter which is the signal number. This method informs the
device server signal system that the device want to be informed when the signal passed as parameter is
received by the process. There is a special case for Linux as explained in the previous sub-chapter. It is
possible to register a signal to be executed in the a signal handler context (with all its restrictions). This is
done with a second parameter to this register_signal method. This second parameter is simply a boolean
data. If it is true, the signal_handler will be executed in a signal handler context in the device server main
thread. A default value (false) has been defined for this parameter.

The unregister_signal method also have an input parameter which is the signal number. This method
removes the device from the list of object which should be warned when the signal is received by the
process.

The signal_handler method is the method which is triggered when a signal is received if the corre-
sponding register_signal has been executed. This method is defined as virtual and can be redefined by the
user. It has one input argument which is the signal number.

The same three methods also exist in the DeviceClass class. Their action and their usage are similar
to the DeviceImpl class methods. Installing a signal at the class level does not mean that all the device
belonging to this class will receive the signal. This only means that the signal_handler method of the
DeviceClass instance will be executed. This is useful if an action has to be executed once for a class of
devices when a signal is received.

The following code is an example with our stepper motor device server configured via the database to
serve three motors. These motors have the following names : id04/motor/01, id04/motor/02 and id04/motor/03.
The signal SIGALRM (alarm signal) must be propagated only to the motor number 2 (id04/motor/02)

1 void StepperMotor::init_device()
2 {
3 cout << "StepperMotor::StepperMotor() create motor " << dev_name << endl;
4
5 long i;
6
7 for (i=0; i< AGSM_MAX_MOTORS; i++)
8 {
9 axis[i] = 0;
10 position[i] = 0;
11 direction[i] = 0;
12 }
13
14 if (dev_name == "id04/motor/02")

CHAPTER 8. WRITING A TANGO DEVICE SERVER 362

15 register_signal(SIGALRM);
16 }
17
18 StepperMotor::~StepperMotor()
19 {
20 unregister_signal(SIGALRM);
21 }
22
23 void StepperMotor::signal_handler(long signo)
24 {
25 INFO_STREAM << "Inside signal handler for signal " << signo << endl;
26
27 // Do what you want here
28
29 }

The init_device method is modified.
Line 14-15 : The device name is checked and if it is the correct name, the device is registered in the list

of device wanted to receive the SIGALARM signal.
The destructor is also modified
Line 20 : Unregister the device from the list of devices which should receives the SIGALRM signal.

Note that unregister a signal for a device which has not previously registered its interest for this signal does
nothing.

The signal_handler method is redefined
Line 25 : Print signal number
Line 27 : Do what you have to do when the signal SIGALRM is received.
If all devices must be warned when the device server process receives the signal SIGALRM, removes

line 14 in the init_device method.

8.7.1.2 Exiting a device server gracefully

A device server has to exit gracefully by unregistering itself from the database. The necessary action to
gracefully exit are automatically executed on reception of the following signal :

• SIGINT, SIGTERM, SIGHUP and SIGQUIT for device server running on Solaris or Linux

• SIGINT, SIGTERM, SIGABRT and SIGBREAK for device server running on Windows-NT

This does not prevents device server to also register interest at device or class levels for those signals. The
user installed signal_handler method will first be called before the graceful exit.

8.7.2 Inheriting
This sub-chapter details how it is possible to inherit from an existing device pattern implementation. As
the device pattern includes more than a single class, inheriting from an existing device pattern needs some
explanations.

Let us suppose that the existing device pattern implementation is for devices of class A. This means that
classes A and AClass already exists plus classes for all commands offered by device of class A. One new
device pattern implementation for device of class B must be written with all the features offered by class A
plus some new one. This is easily done with the inheritance. Writing a device pattern implementation for
device of class B which inherits from device of class A means :

• Write the BClass class

CHAPTER 8. WRITING A TANGO DEVICE SERVER 363

• Write the B class

• Write B class specific commands

• Eventually redefine A class commands

8.7.2.1 Using C++

The miscellaneous code fragments given below detail only what has to be updated to support device pattern
inheritance

8.7.2.1.1 Writing the BClass As you can guess, BClass has to inherit from AClass. The command_factory
method must also be adapted.

1 namespace B
2 {
3
4 class BClass : public A::AClass
5 {
6
7 }
8
9 BClass::command_factory()
10 {
11 A::AClass::command_factory();
12
13 command_list.push_back(....);
14 }
15
16 } /* End of B namespace */

Line 1 : Open the B namespace
Line 4 : BClass inherits from AClass which is defined in the A namespace.
Line 11 : Only the command_factory method of the BClass will be called at start-up. To create the

AClass commands, the command_factory method of the AClass must also be executed. This is the reason
of the line

Line 13 : Create BClass commands

8.7.2.1.2 Writing the B class As you can guess, B has to inherits from A.

1 namespace B
2 {
3
4 class B : public A:A
5 {
6
7 };
8
9 B::B(Tango::DeviceClass *cl,const char *s):A::A(cl,s)

CHAPTER 8. WRITING A TANGO DEVICE SERVER 364

10 {
11
12 init_device();
13 }
14
15 void B::init_device()
16 {
17
18 }
19
20 } /* End of B namespace */

Line 1 : Open the B namespace.
Line 4 : B inherits from A which is defined in the A namespace
Line 9 : The B constructor calls the right A constructor

8.7.2.1.3 Writing B class specific command Noting special here. Write these classes as usual

8.7.2.1.4 Redefining A class command It is possible to redefine a command which already exist in
class A only if the command is created using the inheritance model (but keeping its input and output
argument types). The method which really execute the class A command is a method implemented in the
A class. This method must be defined as virtual. In class B, you can redefine the method executing the
command and implement it following the needs of the B class.

8.7.2.2 Using Java

The miscellaneous code fragments given below detail only what has to be updated to support device pattern
inheritance

8.7.2.2.1 Writing the BClass As you can guess, BClass has to inherit from AClass. Some change must
be done in the definition of the init and instance methods. The command_factory method must also be
adapted.

1 public class BClass extends AClass implements TangoConst
2 {
3 public static AClass init(String name) throws DevFailed
4 {
5
6 }
7
8 public static AClass instance()
9 {
10
11 }
12
13 public void command_factory()
14 {
15 super.command_factory();
16
17 command_list.addElement(....);

CHAPTER 8. WRITING A TANGO DEVICE SERVER 365

18 }
19 };

Line 1 : BClass inherits from AClass and implements TangoConst interface
Line 3 : The return data type of the init method must be the same as the type defines in the AClass

(therefore a reference to AClass) otherwise, the compiler complains. BClass inherits from AClass and a
reference to a BClass is also a reference to the AClass

Line 8 : The return data type of the instance method must also be adapted as explained for the init
method

Line 15 : Only the command_factory method of the BClass will be called at start-up. To create the
AClass commands, the command_factory method of the AClass must also be executed. This is the reason
of the line

Line 17 : Create BClass commands

8.7.2.2.2 Writing the B class As you can guess, B has to inherits from A. The init_device method must
be adapted, the constructor has to be modified and an instance variable must be added

1 public class B extends A implements TangoConst
2 {
3 boolean constructed = false;
4
5 A(DeviceClass cl,String s)
6 {
7 super(cl,s);
8 constructed = true;
9 ...
10 init_device();
11 }
12
13 public void init_device()
14 {
15 if (constructed == false)
16 {
17 return;
18 }
19 super.init_device();
20
21 ...
22 }
23 };

Line 1 : B inherits from A and implements TangoConst interface
Line 3 : A boolean initialized to false is added as instance variable
Line 8 : The constructor is modified to set the constructed boolean to true after all the super classes

have been created and before the call to the init_device method.
Line 15-18 : The init_device method immediately returns if the constructed boolean is false (if the

super classes are not correctly created)
Line 19 : The init_device method of class A is called

CHAPTER 8. WRITING A TANGO DEVICE SERVER 366

8.7.2.2.3 Writing B class specific command Noting special here. Write these classes as usual

8.7.2.2.4 Redefining A class command It is possible to to redefine a command which already exist in
class A only if the command is created using the inheritance model (but keeping its input and output
argument types). The method which really execute the class A command is a method implemented in the A
class. With Java, it is possible to redefine all methods except those which are declared as “final”. Therefore,
in class B, you can redefine the method executing the command and implement it following the needs of
the B class. The following is an example for a command xxx which is programmed to call a my_cmd
method11.

1 public class A extends DeviceImpl implements TangoConst
2 {
3 public void my_cmd(long input)
4 {
5 }
6 }
7
8 public class B extends A implements TangoConst
9 {
10 public void my_cmd(long input)
11 {
12 }
13 }

Line 3 : The my_cmd method is defined in class A
Line 10 : The my_cmd method is redefined in class B
Inside the device pattern, the device object is created as an instance of class B12. Java will call the

my_cmd method of the B class when the command is received. It is still possible to call the my_cmd
method of the A class with the help of the Java “super” keyword inside the code of the my_cmd method of
the B class.

8.7.3 Using another device pattern implementation within the same server
It is often necessary that inside the same device server, a method executing a command needs a command
of another class to be executed. For instance, a device pattern implementation for a device driven by a
serial line class can use the command offered by a serial line class embedded within the same device server
process. To execute one of the command (or any other CORBA operations/attributes) of the serial line
class, just call it as a normal client will do by using one instance of the Deviceproxy class. The ORB will
recognize that all the devices are inside the same process and will execute calls as a local calls. To create
the DeviceProxy class instance, the only thing you need to know is the name of the device you gave to the
serial line device. Retrieving this could be easily done by a Tango device property. The DeviceProxy class
is fully described in chapters related to the Java or C++ Tango Application Programming Interface (API)

11In the command execute method
12By the device_factory method of the BClass class

CHAPTER 8. WRITING A TANGO DEVICE SERVER 367

Chapter 9

Advanced features

9.1 Attribute alarms
Each Tango attribute two several alarms. These alarms are :

• A four thresholds level alarm

• The read different than set (RDS) alarm

9.1.1 The level alarms
This alarm is defined for all Tango attribute read type and for numerical data type. The action of this alarm
depend on the attribute value when it is read :

• If the attribute value is below or equal the attribute configuration min_alarm parameter, the at-
tribute quality factor is switched to Tango::ATTR_ALARM and if the device state is Tango::ON, it
is switched to Tango::ALARM.

• If the attribute value is below or equal the attribute configuration min_warning parameter, the at-
tribute quality factor is switched to Tango::ATTR_WARNING and if the device state is Tango::ON,
it is switched to Tango::ALARM.

• If the attribute value is above or equal the attribute configuration max_warning parameter, the at-
tribute quality factor is switched to Tango::ATTR_WARNING and if the device state is Tango::ON,
it is switched to Tango::ALARM.

• If the attribute value is above or equal the attribute configuration max_alarm parameter, the at-
tribute quality factor is switched to Tango::ATTR_ALARM and if the device state is Tango::ON, it
is switched to Tango::ALARM.

If the attribute is a spectrum or an image, then the alarm is set if any one of the attribute value satisfies the
above criterium. By default, these four parameters are not defined and no check will be done.

The following figure is a drawing of attribute quality factor and device state values function of the the
attribute value.

Attribute
 value

Attribute quality
 factor

Device state

ATTR_ALARM ATTR_WARNING ATTR_VALID ATTR_WARNING ATTR_ALARM

ALARM ON ALARM

min_alarm min_warning max_warning max_alarm

Figure 9.1: Level alarm

368

CHAPTER 9. ADVANCED FEATURES 369

If the min_warning and max_warning parameters are not set, the attribute quality factor will simply
change between Tango::ATTR_ALARM and Tango::ATTR_VALID function of the attribute value.

9.1.2 The Read Different than Set (RDS) alarm
This alarm is defined only for attribute of the Tango::READ_WRITE and Tango::READ_WITH_WRITE
read/write type and for numerical data type. When the attribute is read (or when the device state is re-
quested), if the difference between its read value and the last written value is something more than or equal
to an authorized delta and if at least a certain amount of milli seconds occurs since the last write operation,
the attribute quality factor will be set to Tango::ATTR_ALARM and if the device state is Tango::ON, it
is switched to Tango::ALARM. If the attribute is a spectrum or an image, then the alarm is set if any one
of the attribute value’s satisfies the above criterium. This alarm configuration is done with two attribute
configuration parameters called delta_val and delta_t. By default, these two parameters are not defined
and no check will be done.

9.2 Device polling

9.2.1 Introduction
Each tango device server automatically have a separate polling thread pool. Polling a device means peri-
odically executing command on a device (or reading device attribute) and storing the results (or the thrown
exception) in a polling buffer. The aim of this polling is threefold :

• Speed-up response time for slow device

• Get a first-level history of device command output or attribute value

• Be the data source for the Tango event system

Speeding-up response time is achieved because the command_inout CORBA operation is able to get its
data from the polling buffer or from the a real access to the device. For “slow” device, getting the data
from the buffer is much faster than accessing the device. Returning a first-level command output history
(or attribute value history) to a client is possible due to the polling buffer which is managed as a circular
buffer. The history is the contents of this circular buffer. Obviously, the history depth is limited to the
depth of the circular buffer. The polling is also the data source for the event system because detecting an
event means being able to regularly read the data, memorize it and declaring that it is an event after some
comparison with older values.

9.2.2 Configuring the polling system
9.2.2.1 Configuring what has to be polled and how

It is possible to configure the polling in order to poll :

• Any command which does not need input parameter

• Any attribute

Configuring the polling is done by sending command to the device server administration device automat-
ically implemented in every device server process. Seven commands are dedicated to this feature. These
commands are

AddObjPolling It add a new object (command or attribute) to the list of object(s) to be polled. It is also
with this command that the polling period is specified.

RemObjPolling To remove one object (command or attribute) from the polled object(s) list

UpdObjPollingPeriod Change one object polling period

CHAPTER 9. ADVANCED FEATURES 370

StartPolling Starts polling for the whole process

StopPolling Stops polling for the whole process

PolledDevice Allow a client to know which device are polled

DevPollStatus Allow a client to precisely knows the polling status for a device

All the necessary parameters for the polling configuration are stored in the Tango database. Therefore,
the polling configuration is not lost after a device server process stop and restart (or after a device server
process crash!!).

It is also possible to automatically poll a command (or an attribute) without sending command to the
device server administration device. This request some coding (a method call) in the device server software
during the command or attribute creation. In this case, for every devices supporting this command or this
attribute, polling configuration will be automatically updated in the database and the polling will start
automatically at each device server process startup. It is possible to stop this behavior on a device basis
by sending a RemObjPolling command to the device server administration device. The following piece of
code shows how the source code should be written.

1
2 void DevTestClass::command_factory()
3 {
4 ...
5 command_list.push_back(new IOStartPoll("IOStartPoll",
6 Tango::DEV_VOID,
7 Tango::DEV_LONG,
8 "Void",
9 "Constant number"));
10 command_list.back()->set_polling_period(400);
11 ...
12 }
13
14
15 void DevTestClass::attribute_factory(vector<Tango::Attr *> &att_list)
16 {
17 ...
18 att_list.push_back(new Tango::Attr("String_attr",
19 Tango::DEV_STRING,
20 Tango::READ));
21 att_list.back()->set_polling_period(250);
22 ...
23 }

A polling period of 400 mS is set for the command called “IOStartPoll” at line 10 with the set_polling_period
method of the Command class. Therefore, for a device of this class, the polling thread will start polling its
IOStartPoll command at process start-up except if a RemObjPolling indicating this device and the IOStart-
Poll command has already been received by the device server administration device. This is exactly the
same behavior for attribute. The polling period for attribute called “String_attr” is defined at line 20.

Configuring the polling means defining device attribute/command polling period. The polling period
has to be chosen with care. If reading an attribute needs 200 mS, there is no point to poll this attribute with
a polling period equal or even below 200 mS. You should also take into account that some "free" time has
to be foreseen for external request(s) on the device. On average, for one attribute needing X mS as reading

CHAPTER 9. ADVANCED FEATURES 371

time, define a polling period which is equal to 1.4 X (280 mS for our example of one attribute needing
200 mS as reading time). In case the polling tuning is given to external user, Tango provides a way to
define polling period minimun threshold. This is done using device properties. These properties are named
min_poll_period, cmd_min_poll_period and attr_min_poll_period. The property min_poll_period (mS)
defined a minimun polling period for the device. The property cmd_min_poll_period allows the definition
of a minimun polling period for a specific device command. The property attr_min_poll_period allows
the definition of a minimun polling period for one device attribute. In case these properties are defined,
it is not possible to poll the device command/attribute with a polling period below those defined by these
properties. See Appendix A on device parameter to get a precise syntax description for these properties.

The Jive[21] tool also allows a graphical device polling configuration.

9.2.2.2 Configuring the polling threads pool

Starting with Tango release 7, a Tango device server process may have several polling threads managed
as a pool. For instance, this could be usefull in case of devices within the same device server process but
accessed by different hardware channel when one of the channel is not responding (Thus generating long
timeout and de-synchronising the polling thread). By default, the polling threads pool size is set to 1 and
all the polled object(s) are managed by the same thread (idem polling system in Tango releases older than
release 7) . The configuration of the polling thread pool is done using two properties associated to the
device server administration device. These properties are named:

• polling_threads_pool_size defining the maximun number of threads that you can have in the pool

• polling_threads_pool_conf defining which threads in the pool manages which device

The granularity of the polling threads pool tuning is the device. You cannot ask the polling threads pool to
have thread number 1 in charge of attribute att1 of device dev1 and thread number 2 to be in charge of att2
of the same device dev1.

When you require a new object (command or attribute) to be polled, two main cases may arrive:

1. Some polled object(s) belonging to the device are already polled by one of the polling threads in the
pool: There is no new thread created. The object is simply added to the list of objects to be polled
for the existing thread

2. There is no thread already created for the device. We have two sub-cases:

(a) The number of polling threads is less than the polling_threads_pool_size: A new thread is
created and started to poll the object (command or attribute)

(b) The number of polling threads is already equal to the polling_threads_pool_size: The software
search for the thread with the smallest number of polled objects and add the new polled object
to this thread

Each time the polling threads pool configuration is changed, it is written in the database using the polling_threads_pool_conf
property. If the behaviour previously described does not fulfill your needs, it is possible to update the
polling_threads_pool_conf property in a graphical way using the Tango Astor [19] tool or manually using
the Jive tool [21]. These changes will be taken into account at the next device server process start-up. At
start-up, the polling threads pool will allways be configured as required by the polling_threads_pool_conf
property. The syntax used for this property is described in the Reference part of the Appendix A. The
following window dump is the Astor tool window which allows polling threads pool management.

CHAPTER 9. ADVANCED FEATURES 372

In this example, the polling threads pool size to set to 9 but only 4 polling threads are running. Thread
1 is in charge of all polled objects related to device pv/thread-pool/test-1 and pv/thread-pool/test-2. Thread
2 is in charge of all polled objects related to device pv/thread-pool/test-3. Thread 3 is in charge of all
polled objects related to device pv/thread-pool/test-5 anf finally, thread 4 is in charge of all polled objects
for devices pv/thread-pool/test-4, pv/thread-pool/test-6 and pv/thread-pool/test-7.

It’s also possible to define the polling threads pool size programmatically in the main function of a de-
vice server process using the Util::set_polling_threads_pool_size() method before the call to the Util::server_init()
method

9.2.3 Reading data from the polling buffer
For a polled command or a polled attribute, a client has three possibilities to get command result or attribute
value (or the thrown exception) :

• From the device itself

• From the polling buffer

• From the polling buffer first and from the device if data in the polling buffer are invalid or if the
polling is badly configured.

The choice is done during the command_inout CORBA operation by positioning one of the operation
parameter. When reading data from the polling buffer, several error cases are possible

CHAPTER 9. ADVANCED FEATURES 373

• The data in the buffer are not valid any more. Every time data are requested from the polling buffer,
a check is done between the client request date and the date when the data were stored in the buffer.
An exception is thrown if the delta is greater than the polling period multiplied by a “too old” factor.
This factor has a default value and is up-datable via a device property. This is detailed in the reference
part of this manual.

• The polling is correctly configured but there is no data yet in the polling buffer.

9.2.4 Retrieving command/attribute result history
The polling thread stores the command result or attribute value in circular buffers. It is possible to re-
trieve an history of the command result (or attribute value) from these polling buffers. Obviously the
history is limited by the depth of the circular buffer. For commands, a CORBA operation called com-
mand_inout_history_2 allows this retrieval. The client specifies the command name and the record number
he want to retrieve. For each record, the call returns the date when the command was executed, the com-
mand result or the exception stack in case of the command failed when it was executed by the polling
thread. In such a case, the exception stack is sent as a structure member and not as an exception. The same
thing is available for attribute. The CORBA operation name is read_attribute_history_2. For these two
calls, there is no check done between the call date and the record date in contrary of the call to retrieve the
last command result (or attribute value).

9.2.5 Externally triggered polling (only for C++ device server)
Sometimes, rather than polling a command or an attribute regulary with a fixed period, it is more interesting
to "manually" decides when the polling must occurs. The Tango polling system also supports this kind of
usage. This is called externally triggered polling. To define one attribute (or command) as externally
triggered, simply set its polling period to 0. This can be done with the device server administration device
AddObjPolling or UpdObjPollingPeriod command. Once in this mode, the attribute (or command) polling
is triggered with the trigger_cmd_polling() method (or trigger_attr_polling() method) of the Util class.
The following piece of code shows how this method could be used for one externally triggered command.

1
2
3 string ext_polled_cmd("MyCmd");
4 Tango::DeviceImpl *device =;
5
6 Tango::Util *tg = Tango::Util::instance();
7
8 tg->trigger_cmd_polling(device,ext_polled_cmd);
9
10

line 3 : The externally polled command name
line 4 : The device object
line 8 : Trigger polling of command MyCmd

9.2.6 Filling polling buffer (only for C++ device server)
Some hardware to be interfaced already returned an array of pair value, timestamp. In order to be read with
the command_inout_history or read_attribute_history calls, this array has to be transferred in the attribute
or command polling buffer. This is possible only for attribute or command configured in the externally

CHAPTER 9. ADVANCED FEATURES 374

triggered polling mode. Once in externally triggered polling mode, the attribute (or command) polling
buffer is filled with the fill_cmd_polling_buffer() method (or fill_attr_polling_buffer() method) of the Util
class. For command, the user uses a template class called TimedCmdData for each element of the command
history. Each element is stored in a stack in one instance of a template class called CmdHistoryStack. This
object is one of the argument of the fill_cmd_polling_buffer() method. Obviously, the stack depth cannot
be larger than the polling buffer depth. See A.1.4 to learn how the polling buffer depth is defined. The same
way is used for attribute with the TimedAttrData and AttrHistoryStack template classes. These classes are
documented in [8]. The following piece of code fills the polling buffer for a command called MyCmd which
is already in externally triggered mode. It returns a DevVarLongArray data type with three elements. This
example is not really something you will find in a real hardware interface. It is only to demonstrate the
fill_cmd_polling_buffer() method usage. Error management has also been removed.

1
2
3 Tango::DevVarLongArray dvla_array[4];
4
5 for(int i = 0;i < 4;i++)
6 {
7 dvla_array[i].length(3);
8 dvla_array[i][0] = 10 + i;
9 dvla_array[i][1] = 11 + i;
10 dvla_array[i][2] = 12 + i;
11 }
12
13 Tango::CmdHistoryStack<DevVarLongArray> chs;
14 chs.length(4);
15
16 for (int k = 0;k < 4;k++)
17 {
18 time_t when = time(NULL);
19
20 Tango::TimedCmdData<DevVarLongArray> tcd(&dvla_array[k],when);
21 chs.push(tcd);
22 }
23
24 Tango::Util *tg = Tango::Util::instance();
25 string cmd_name("MyCmd");
26 DeviceImpl *dev =;
27
28 tg->fill_cmd_polling_buffer(dev,cmd_name,chs);
29
30

Line 3-11 : Simulate data coming from hardware
Line 13-14 : Create one instance of the CmdHistoryStack class and reserve space for one history of 4

elements
Line 16-17 : A loop on each history element
Line 18 : Get date (hardware simulation)
Line 20 : Create one instance of the TimedCmdData class with data and date
Line 21 : Store this command history element in the history stack. The element order will be the

insertion order whatever the element date is.

CHAPTER 9. ADVANCED FEATURES 375

Line 28 : Fill command polling buffer
After one execution of this code, a command_inout_history() call will return one history with 4 ele-

ments. The first array element of the oldest history record will have the value 10. The first array element of
the newest history record will have the value 13. A command_inout() call with the data source parameter set
to CACHE will return the newest history record (ie an array with values 13,14 and 15). A command_inout()
call with the data source parameter set to DEVICE will return what is coded is the command method. If
you execute this code a second time, a command_inout_history() call will return an history of 8 elements.

The next example fills the polling buffer for an attribute called MyAttr which is already in externally
triggered mode. It is a scalar attribute of the DevString data type. This example is not really something you
will find in a real hardware interface. It is only to demonstrate the fill_attr_polling_buffer() method usage
with memory management issue. Error management has also been removed.

1
2
3 AttrHistoryStack<DevString> ahs;
4 ahs.length(3);
5
6 for (int k = 0;k < 3;k++)
7 {
8 time_t when = time(NULL);
9
10 DevString *ptr = new DevString [1];
11 ptr = CORBA::string_dup("Attr history data");
12
13 TimedAttrData<DevString> tad(ptr,Tango::ATTR_VALID,true,when);
14 ahs.push(tad);
15 }
16
17 Tango::Util *tg = Tango::Util::instance();
18 string attr_name("MyAttr");
19 DeviceImpl *dev =;
20
21 tg->fill_attr_polling_buffer(dev,attr_name,ahs);
22
23

Line 3-4 : Create one instance of the AttrHistoryStack class and reserve space for an history with 3
elements

Line 6-7 : A loop on each history element
Line 8 : Get date (hardware simulation)
Line 10-11 : Create a string. Note that the DevString object is created on the heap
Line 13 : Create one instance of the TimedAttrData class with data and date requesting the memory to

be released.
Line 14 : Store this attribute history element in the history stack. The element order will be the insertion

order whatever the element date is.
Line 21 : Fill command polling buffer
It is not necessary to return the memory allocated at line 10. The fill_attr_polling_buffer() method will

do it for you.

CHAPTER 9. ADVANCED FEATURES 376

9.3 Threading
When used with C++, Tango used omniORB as underlying ORB. This CORBA implementation is a
threaded implementation and therefore a C++ Tango device server or client are multi-threaded processes.

9.3.1 C++ device server process
A classical Tango device server without any connected clients has five threads. These threads are :

1. The main thread waiting in the ORB main loop

2. An ORB implementation thread (the POA thread)

3. The ORB scavanger thread

4. The signal thread

5. The heartbeat thread (needed by the Tango event system)

On top of these five threads, you have to add the thread(s) used by the polling threads pool. This num-
ber depends on the polling thread pool configuration and could be between 0 (no polling at all) and the
maximun number of threads in the pool.

Linux specific (for kernel < 2.6) : On top of the 5 basic threads allways there, there is a sixth thread
which is the Linux thread manager. If you type a "ps" command, you will see at least six "processes". The
signal thread is the fifth one and its PID is the PID which should be used when sending signal to the device
server process.

A new thread is started for each connected client. Device server are mostly used to interface hardware
which most of the time does not support multi-threaded access. Therefore, all remote calls executed from
a client are serialized within the device server code by using mutual exclusion. See chapter 9.3.1.1 on
which serialization model are available. In order to limit thread number, the underlying ORB (omniORB)
is configured to shutdown threads dedicated to client if the connection is inactive for more than 3 minutes.
To also limit thread number, the ORB is configured to create one thread per connection up to 55 threads.
When this level is reached, the threading model is automatically switch to a "thread pool" model with up
to 100 threads. If the number of threads decrease down to 50, the threading model will return to "thread
per connection" model.

If you are using event, the event system for its internal heartbeat system periodically (every 200 sec-
onds) sends a command to the device server administration device. As explained above, a thread is created
to execute these command. The omniORB scavanger will terminate this thread before the next event system
heartbeat command arrives. For example, if you have a device server with three connected clients using
only event, the process thread number will permanently change between 5 and 8 threads (6 and 9 under
Linux with kernel < 2.6).

In summary, the number of threads in a device server process can be evaluated with the following
formula:

4 + 1 + k + m

k is the number of polling threads used from the polling threads pool and m is the number of threads used
for connected clients.

9.3.1.1 Serialization model within a device server

Four serialization models are available within a device server. These models protect all requests coming
from the network but also requests coming from the polling thread. These models are:

1. Serialization by device. All access to the same device are serialized. As an example, let’s take a
device server implementing one class of device with two instances (dev1 and dev2). Two clients are
connected to these devices (client1 and client2). Client2 will not be able to access dev1 if client1 is
using it. Nevertheless, client2 is able to access dev2 while client1 access dev1 (There is one mutual
exclusion object by device)

CHAPTER 9. ADVANCED FEATURES 377

2. Serialization by class. With non multi-threaded legacy software, the preceding scenario could gen-
erate problem. In this mode of serialization, client2 is not able to access dev2 while client1 access
dev1 because dev2 and dev1 are instances of the same class (There is one mutual exclusion object
by class)

3. Serialization by process. This is one step further than the previous case. In this mode, only one
client can access any device embedded within the device server at a time. There is only one mutual
exclusion object for the whole process)

4. No serialization. This is an exotic kind of serialization and should be used with extreme care only
with device which are fully thread safe. In this model, most of the device access are not serialized
at all. Due to Tango internal structure, the get_attribute_config, set_attribute_config, read_attributes
and write_attributes CORBA calls are still protected. Reading the device state and status via com-
mands or via CORBA attribute is also protected.

By default, every Tango device server is in serialization by device mode. A method of the Tango::Util class
allows to change this default behavior.

CHAPTER 9. ADVANCED FEATURES 378

1 #include <tango.h>
2
3 int main(int argc,char *argv[])
4 {
5
6 try
7 {
8
9 Tango::Util *tg = Tango::Util::init(argc,argv);
10
11 tg->set_serial_model(Tango::BY_CLASS);
12
13 tg->server_init();
14
15 cout << "Ready to accept request" << endl;
16 tg->server_run();
17 }
18 catch (bad_alloc)
19 {
20 cout << "Can’t allocate memory!!!" << endl;
21 cout << "Exiting" << endl;
22 }
23 catch (CORBA::Exception &e)
24 {
25 Tango::Except::print_exception(e);
26
27 cout << "Received a CORBA::Exception" << endl;
28 cout << "Exiting" << endl;
29 }
30
31 return(0);
32 }

The serialization model is set at line 11 before the server is initialized and the infinite loop is started.
See [8] for all details on the methods to set/get serialization model.

9.3.1.2 Attribute Serialization model

Even with the serialization model described previously, in case of attributes carrying a large number of data
and several clients reading this attribute, a device attribute serialization has to be followed. Without this
level of serialization, for attribute using a shared buffer, a thread scheduling may happens while the device
server process is in the CORBA layer transferring the attribute data on the network. Three serialization
models are available for attribute serialization. The default is well adapted to nearly all cases. Nevertheless,
if the user code manages several attributes data buffer or if it manages its own buffer protection by one way
or another, it could be interesting to tune this serialization level. The available models are:

1. Serialization by kernel. This is the default case. The kernel is managing the serialization

2. Serialization by user. The user code is in charge of the serialization. This serialization is done by
the use of a omni_mutex object. An omni_mutex is an object provided by the omniORB package.
It is the user responsability to lock this mutex when appropriate and to give this mutex to the Tango
kernel before leaving the attribute read method

CHAPTER 9. ADVANCED FEATURES 379

3. No serialization.

By default, every Tango device attribute is in serialization by kernel. Methods of the Tango::Attribute class
allow to change the attribute serialization behavior and to give the user omni_mutex object to the kernel.

1 void MyClass::init_device()
2 {
3 ...
4 ...
5 Tango::Attribute &att = dev_attr->get_attr_by_name("TheAttribute");
6 att.set_attr_serial_model(Tango::ATTR_BY_USER);
7
8
9
10 }
11
12
13 void MyClass::read_TheAttribute(Tango::Attribute &attr)
14 {
15
16
17 the_mutex.lock();
18
19 // Fill the attribute buffer
20
21 attr.set_value(buffer,....);
22 attr->set_user_attr_mutex(&the_mutex);
23 }
24

The serialization model is set at line 6 in the init_device() method. The user omni_mutex is passed to
the Tango kernel at line 22. This omni_mutex object is a device data member. See [8] for all details on the
methods to set attribute serialization model.

9.3.2 C++ client process
Clients are also multi threaded processes. The underlying C++ ORB (omniORB) try to keep system re-
sources to a minimum. To decrease process file descriptors usage, each connection to server is automati-
cally closed if it is idle for more than 2 minutes and automatically re-opened when needed. A dedicated
thread is spawned by the ORB to manage this automatic closing connection (the scavanger thread).

Threrefore, a Tango client has two threads (3 under Linux) which are:

1. The main thread

2. The ORB scavanger thread

If the client is using the event system and as Tango is using the event push-push model, it has to be a server
for the Notification service. This increases the number of thread. The client now has 6 threads (7 under
Linux with kernel < 2.6) which are:

1. The main thread

2. The ORB scavanger thread

CHAPTER 9. ADVANCED FEATURES 380

3. The main server ORB loop thread

4. The server POA thread

5. The thread created by omniORB has soon has an event has been sent by a Notification service. This
thread will execute the callbacks

6. A Tango internal event system thread (called the KeepAliveThread)

9.4 Generating events in a device server
The server is at the origin of events. It will fire events as soon as they occur. Standard events (change,
periodic and archive) are detected automatically in the polling thread and fired as soon as they are detected.
The periodic events can only be handled by the polling thread. Change, Data ready and archive events can
also be pushed from the device server code. To allow a client to subscribe to events of non polled attributes
the server has to declare that events are pushed from the code. Three methods are available for this purpose:

Attr::set_change_event(bool implemented, bool detect = true);
Attr::set_archive_event(bool implemented, bool detect = true);
Attr::set_data_ready_event(bool implemented);

where implemented=true indicates that events are pushed manually from the code and detect=true (when
used) triggers the verification of the same event properties as for events send by the polling thread. When
setting detect=false, no value checking is done on the pushed value! The class DeviceImpl also supports
the first two methods with an addictional parameter attr_name defining the attribute name.

To push events manually from the code a set of data type dependent methods can be used:

DeviceImpl::push_change_event (string attr_name,);
DeviceImpl::push_archive_event(string attr_name,);

For the data ready event, a DeviceImpl class method has to be used to push the event.

DeviceImpl::push_data_ready_event(string attr_name,Tango::DevLong ctr);

See the class documentation for all available interfaces.
For non-standard events a single call exists for pushing the data to the CORBA Notification Service

(omniNotify). Clients who are subscribed to this event have to know what data type is in the DeviceAt-
tribute and unpack it accordingly.

To push non-standard events, use the following api call is available to all device servers :

DeviceImpl::push_event(string attr_name,
vector<string> &filterable_names,
vector<double> &filterable_vals,
Attribute &att)

where attr_name is the name of the attribute. Filterable_names and filterable_vals represent any filterable
data which can be used by clients to filter on. Here is a typical example of what a server will need to do to
send its own events. We are in the read method of the "Sinusoide" attribute. This attribute is readable as
any other attribute but an event is sent if its value is positive when it is read. On top of that, this event is
sent with one filterable field called "value" which is set to the attribute value.

CHAPTER 9. ADVANCED FEATURES 381

1 void MyClass::read_Sinusoide(Tango::Attribute &attr)
2 {
3 ...
4 struct timeval tv;
5 gettimeofday(&tv, NULL);
6 sinusoide = 100 * sin(2 * 3.14 * frequency * tv.tv_sec);
7
8 if (sinusoide >= 0)
9 {
10 vector<string> filterable_names;
11 vector<double> filterable_value;
12
13 filterable_names.push_back("value");
14 filterable_value.push_back((double)sinusoide);
15
16 push_event(attr.get_name(),
17 filterable_names, filterable_value,
18 &sinusoide);
19 }
20
21
22
23 }

line 13-14 : The filter pair name/value is initialised
line 16-18 : The event is pushed

9.5 Memorized attribute
It is possible to ask Tango to store in its database the last written value for attribute of the SCALAR data
format and obviously only for READ_WRITE or READ_WITH_WRITE attribute. This is fully automatic.
During device startup phase, for all device memorized attributes, the value written in the database is fetched
and applied. A write_attribute call can be generated to apply the memorized value to the attribute or only
the attribute set point can be initialised. The following piece of code shows how the source code should be
written to set an attribute as memorized and to initialise only the attribute set point.

1 void DevTestClass::attribute_factory(vector<Tango::Attr *> &att_list)
2 {
3 ...
4 att_list.push_back(new String_attrAttr());
5 att_list.back()->set_memorized();
6 att_list.back()->set_memorized_init(false);
7 ...
8 }

Line 4 : The attribute to be memorized is created and inserted in the attribute vector.
Line 5 : The set_memorized() method of the attribute base class is called to define the attribute as

memorized.

CHAPTER 9. ADVANCED FEATURES 382

Line 6 : The set_memorized_init() method is called with the parameter false to define that only the set
point should be initialsied.

9.6 Transfering images
Some optimized methods have been written to optimize image transfer between client and server using the
attribute DevEncoded data type. All these methods have been merged in a class called EncodedAttribute.
Within this class, you will find methods to:

• Encode an image in a compressed way (JPEG) for images coded on 8 (gray scale), 24 or 32 bits

• Encode a grey scale image coded on 8 or 16 bits

• Encode a color image coded on 24 bits

• Decode images coded on 8 or 16 bits (gray scale) and returned a 8 or 16 bits grey scale image

• Decode color images transmitted using a compressed format (JPEG) and returns a 32 bits RGB image

The following code snippets are examples of how these methods have to be used in a server and in a client.
On the server side, creates an instance of the EncodedAttribute class within your object

1 class MyDevice::Tango::Device_4Impl
2 {
3 ...
4 Tango::EncodedAttribute jpeg;
5 ...
6 }

In the code of your device, use an encoding method of the EncodedAttribute class

1 void MyDevice::read_Encoded_attr_image(Tango::Attribute &att)
2 {
3
4 jpeg.encode_jpeg_gray8(imageData,256,256,50.0);
5 att.set_value(&jpeg);
6 }

Line 4: Image encoding. The size of the image is 256 by 256. Each pixel is coded using 8 bits. The
encoding quality is defined to 50 in a scale of 0 - 100. imageData is the pointer to the image data (pointer
to unsigned char)

Line 5: Set the value of the attribute using a Attribute::set_value() method.
On the client side, the code is the following (without exception management)

CHAPTER 9. ADVANCED FEATURES 383

1
2 DeviceAttribute da;
3 EncodedAttribute att;
4 int width,height;
5 unsigned char *gray8;
6
7 da = device.read_attribute("Encoded_attr_image");
8 att.decode_gray8(&da,&width,&height,&gray8);
9
10 delete [] gray8;
11 ...

The attribute named Encoded_attr_image is read at line7. The image is decoded at line 8 in a 8 bits
gray scale format. The image data are stored in the buffer pointed to by "gray8". The memory allocated by
the image decoding at line 8 is returned to the system at line 10.

9.7 Device server with user defined event loop
Sometimes, it could be usefull to write your own process event handling loop. For instance, this feature
can be used in a device server process where the ORB is only one of several components that must perform
event handling. A device server with a graphical user interface must allow the GUI to handle windowing
events in addition to allowing the ORB to handle incoming requests. These types of device server therefore
perform non-blocking event handling. They turn the main thread of control over each of the vvarious
event-handling sub-systems while not allowing any of them to block for significants period of time. The
Tango::Util class has a method called server_set_event_loop() to deal with such a case. This method has
only one argument which is a function pointer. This function does not receive any argument and returns
a boolean. If this boolean is true, the device server process exits. The device server core will call this
function in a loop without any sleeping time between the call. It is the user responsability to implement
in this function some kind of sleeping mechanism in order not to make this loop too CPU consuming.
The code of this function is executed by the device server main thread. The following piece of code is an
example of how you can use this feature.

1
2 bool my_event_loop()
3 {
4 bool ret;
5
6 some_sleeping_time();
7
8 ret = handle_gui_events();
9
10 return ret;
11 }
12
13 int main(int argc,char *argv[])
14 {
15 Tango::Util *tg;
16 try
17 {
18 // Initialise the device server

CHAPTER 9. ADVANCED FEATURES 384

19 //--
20 tg = Tango::Util::init(argc,argv);
21
22 tg->set_polling_threads_pool_size(5);
23
24 // Create the device server singleton
25 // which will create everything
26 //--
27 tg->server_init(false);
28
29 tg->server_set_event_loop(my_event_loop);
30
31 // Run the endless loop
32 //--
33 cout << "Ready to accept request" << endl;
34 tg->server_run();
35 }
36 catch (bad_alloc)
37 {
38 ...

The device server main event loop is set at line 29 before the call to the Util::server_run() method. The
function used as server loop is defined between lines 2 and 11.

9.8 Device server using file as database
For device servers not able to access the Tango database (most of the time due to network route or security
reason), it is possible to start them using file instead of a real database. This is done via the device server

-file=<file name>

command line option. In this case,

• Getting, setting and deleting class properties

• Getting, setting and deleting device properties

• Getting, setting and deleting class attribute properties

• Getting, setting and deleting device attribute properties

are handled using the specified file instead of the Tango database. The file is an ASCII file and follows a
well-defined syntax with predefined keywords. The simplest way to generate the file for a specific device
server is to use the Jive application. See [21] to get Jive documentation. The Tango database is not only
used to store device configuration parameters, it is also used to store device network access parameter (the
CORBA IOR). To allow an application to connect to a device hosted by a device server using file instead
of database, you need to start it on a pre-defined port, and you must use one of the underlying ORB option
called endPoint like

myserver myinstance_name -file=/tmp/MyServerFile -ORBendPoint giop:tcp::<port number>

to start your device server. The device name passed to the client application must also be modified in order
to refect the non-database usage. See C.1 to learn about Tango device name syntax. Nevertheless, using
this Tango feature prevents some other features to be used :

CHAPTER 9. ADVANCED FEATURES 385

• No check that the same device server is running twice.

• No device or attribute alias name.

• In case of several device servers running on the same host, the user must manually manage a list of
already used network port.

9.9 Device server without database
In some very specific cases (Running a device server within a lab during hardware development...), it
could be very useful to have a device server able to run even if there is no database in the control system.
Obviously, running a Tango device server without a database means loosing Tango features. The lost
features are :

• No check that the same device server is running twice.

• No device configuration via properties.

• No event generated by the server.

• No memorized attributes

• No device attribute configuration via the database.

• No check that the same device name is used twice within the same control system.

• In case of several device servers running on the same host, the user must manually manage a list of
already used network port.

To run a device server without a database, the -nodb command line option must be used. One problem
when running a device server without the database is to pass device name(s) to the device server. Within
Tango, it is possible to define these device names at two different levels :

1. At the command line with the -dlist option: In case of device server with several device pattern
implementation, the device name list given at command line is only for the last device pattern created
in the class_factory() method. In the device name list, the device name separator is the comma
character.

2. At the device pattern implementation level: In the class inherited from the Tango::DeviceClass class
via the re-definition of a well defined method called device_name_factory()

If none of these two possibilities is used, the tango core classes defined one default device name for each
device pattern implementation. This default device name is NoName. Device definition at the command
line has the highest priority.

9.9.1 Example of device server started without database usage
Without database, you need to start a Tango device server on a pre-defined port, and you must use one of
the underlying ORB option called endPoint like

myserver myinstance_name -ORBendPoint giop:tcp::<port number> -nodb -dlist a/b/c

The following is two examples of starting a device server not using the database when the device_name_factory()
method is not re-defined.

• StepperMotor et -nodb -dlist id11/motor/1,id11/motor/2
This command line starts the device server with two devices named id11/motor/1 and id11/motor/2

• StepperMotor et -nodb
This command line starts a device server with one device named NoName

CHAPTER 9. ADVANCED FEATURES 386

When the device_name_factory() method is re-defined within the StepperMotorClass class.

1 void StepperMotorClass::device_name_factory(vector<string> &list)
2 {
3 list.push_back("sr/cav-tuner/1");
4 list.push_back("sr/cav-tuner/2");
5 }

• StepperMotor et -nodb
This commands starts a device server with two devices named sr/cav-tuner/1 and sr/cav-tuner/2.

• StepperMotor et -nodb -dlist id12/motor/1
Starts a device server with only one device named id12/motor/1

9.9.1.1 Java device server without the database

It is also possible to start a Java device server without the database using exactly the principle described in
the above lines. Nevertheless, a java device server process retrieves its list of device pattern implementation
from the database! Therefore, a add_class() method is defined in the java Util class and the main method
must be updated.

1 package StepperMotor
2
3 import java.util.*;
4 import org.omg.CORBA.*;
5 import fr.esrf.Tango.*;
6 import fr.esrf.TangoDs.*;
7
8 public class StepperMotor extends DeviceImpl implements TangoConst
9 {
10 public static void main(String[] argv)
11 {
12 try
13 {
14
15 Util tg = Util.init(argv,"StepperMotor");
16
17 tg.add_class("StepperMotor");
18 tg.server_init();
19
20 System.out.println("Ready to accept request");
21
22 tg.server_run();
23 }
24 catch (OutOfMemoryError ex)
25 {
26 System.err.println("Can’t allocate memory !!!!");
27 System.err.println("Exiting");
28 }

CHAPTER 9. ADVANCED FEATURES 387

29 catch (UserException ex)
30 {
31 Except.print_exception(ex);
32
33 System.err.println("Received a CORBA user exception");
34 System.err.println("Exiting");
35 }
36 catch (SystemException ex)
37 {
38 Except.print_exception(ex);
39
40 System.err.println("Received a CORBA system exception");
41 System.err.println("Exiting");
42 }
43
44 System.exit(-1);
45
46 }
47 }

The add_class() method is used at line 17 before the device pattern(s) implementation initialization.

9.9.1.2 Start a java device server without database

Without database, you need to start a Tango device server on a pre-defined port, and you must use one of
the underlying ORB option OAPort like

java -DOAPort=<port number> myserver myinstance_name -nodb -dlist id11/motor/1,id11/motor/2

9.9.2 Connecting client to device within a device server started without database
In this case, the host and port on which the device server is running are part of the device name. If the
device name is a/b/c, the host is mycomputer and the port 1234, the device name to be used by client is

mycomputer:1234/a/b/c

See appendix C.1 for all details about Tango object naming.

9.10 Multiple database servers within a Tango control system
Tango uses MySQL as database and allows access to this database via a specific Tango device server. It
is possible for the same Tango control system to have several Tango database servers. The host name and
port number of the database server is known via the TANGO_HOST environment variable. If you want to
start several database servers in order to prevent server crash, use the following TANGO_HOST syntax

TANGO_HOST=<host_1>:<port_1>,<host_2>:<port_2>,<host_3>:<port_3>

All calls to the database server will automatically switch to a running servers in the given list if the one
used dies.

CHAPTER 9. ADVANCED FEATURES 388

9.11 The Tango controlled access system

9.11.1 User rights definition
Within the Tango controlled system, you give rights to a user. User is the name of the user used to log-in
the computer where the application trying to access a device is running. Two kind of users are defined:

1. Users with defined rights

2. Users without any rights defined in the controlled system. These users will have the rights associated
with the pseudo-user called "All Users"

The controlled system manages two kind of rights:

• Write access meaning that all type of requests are allowed on the device

• Read access meaning that only read-like access are allowed (write_attribute, write_read_attribute
and set_attribute_config network calls are forbidden). Executing a command is also forbidden ex-
cept for commands defined as "Allowed commands". Getting a device state or status using the
command_inout call is always allowed. The definition of the allowed commands is done at the de-
vice class level. Therefore, all devices belonging to the same class will have the allowed commands
set.

The rights given to a user is the check result splitted in two levels:

1. At the host level: You define from which hosts the user may have write access to the control system
by specifying the host name. If the request comes from a host which is not defined, the right will
be Read access. If nothing is defined at this level for the user, the rights of the "All Users" user
will be used. It is also possible to specify the host by its IP address. You can define a host family
using wide-card in the IP address (eg. 160.103.11.* meaning any host with IP address starting with
160.103.11). Only IP V4 is supported.

2. At the device level: You define on which device(s) request are allowed using device name. Device
family can be used using widecard in device name like domin/family/*

Therefore, the controlled system is doing the following checks when a client try to access a device:

• Get the user name

• Get the host IP address

• If rights defined at host level for this specific user and this IP address, gives user temporary write
acccess to the control system

• If nothing is specified for this specific user on this host, gives to the user a temporary access right
equal to the host access rights of the "All User" user.

• If the temporary right given to the user is write access to the control system

– If something defined at device level for this specific user

* If there is a right defined for the device to be accessed (or for the device family), give user
the defined right

* Else
· If rights defined for the "All Users" user for this device, give this right to the user
· Else, give user the Read Access for this device

– Else

* If there is a right defined for the device to be accessed (or for the device family) for the
"All User" user, give user this right

CHAPTER 9. ADVANCED FEATURES 389

* Else, give user the Read Access right for this device

• Else, access right will be Read Access

Then, when the client tries to access the device, the following algorithm is used:

• If right is Read Access

– If the call is a write type call, refuse the call

– If the call is a command execution

* If the command is one of the command defined in the "Allowed commands" for the device
class, send the call

* Else, refuse the call

All these checks are done during the DeviceProxy instance constructor except those related to the device
class allowed commands which are checked during the command_inout call.

To simplify the rights management, give the "All Users" user host access right to all hosts ("*.*.*.*")
and read access to all devices ("*/*/*"). With such a set-up for this user, each new user without any rights
defined in the controlled access will have only Read Access to all devices on the control system but from
any hosts. Then, on request, gives Write Access to specific user on specific host (or family) and on specific
device (or family).

The rights managements are done using the Tango Astor[19] tool which has some graphical windows
allowing to grant/revoke user rights and to define device class allowed commands set. The following
window dump shows this Astor window.

CHAPTER 9. ADVANCED FEATURES 390

In this example, the user "taurel" has Write Access to the device "sr/d-ct/1" and to all devices belonging
to the domain "fe" but only from the host "pcantares" He has read access to all other devices but always
only from the host pcantares. The user "verdier" has write access to the device "sys/dev/01" from any host
on the network "160.103.5" and Read Access to all the remaining devices from the same network. All the
other users has only Read Access but from any host.

CHAPTER 9. ADVANCED FEATURES 391

9.11.2 Running a Tango control system with the controlled access
All the users rights are stored in two tables of the Tango database. A dedicated device server called Tan-
goAccessControl access these tables without using the classical Tango database server. This TangoAc-
cessControl device server must be configured with only one device. The property Services belonging to
the free object CtrlSystem is used to run a Tango control system with its controlled access. This property
is an array of string with each string describing the service(s) running in the control system. For controlled
access, the service name is "AccessControl". The service instance name has to be defined as "tango". The
device name associated with this service must be the name of the TangoAccessControl server device. For
instance, if the TangoAccessControl device server device is named sys/access_control/1, one element of
the Services property of the CtrlSystem object has to be set to

AccessControl/tango:sys/access_control/1

If the service is defined but without a valid device name corresponding to the TangoAccessControl
device server, all users from any host will have write access (simulating a Tango control system without
controlled access). Note that this device server connects to the MySQL database and therefore may need the
MySQL connection related environment variables MYSQL_USER and MYSQL_PASSWORD described
in A.12.3.3

Even if a controlled access system is running, it is possible to by-pass it if, in the environment of the
client application, the environment variable SUPER_TANGO is defined to "true". If for one reason or
another, the controlled access server is defined but not accessible, the device right checked at that time will
be Read Access.

Appendix A

Reference part

This chapter is only part of the TANGO device server reference guide. To get reference documen-
tation about the C++ library classes, see [8]. To get reference documentation about the Java classes,
also see [8].

A.1 Device parameter
A black box, a device description field, a device state and status are associated with each TANGO device.

A.1.1 The device black box
The device black box is managed as a circular buffer. It is possible to tune the buffer depth via a device
property. This property name is

device name->blackbox_depth

A default value is hard-coded to 50 if the property is not defined. This black box depth property is retrieved
from the Tango property database during the device creation phase.

A.1.2 The device description field
There are two ways to intialise the device description field.

• At device creation time. Some constructors of the DeviceImpl class supports this field as parameter.
If these constructor are not used, the device description field is set to a default value which is A Tango
device.

• With a property. A description field defines with this method overrides a device description defined
at construction time. The property name is

device name->description

A.1.3 The device state and status
Some constructors of the DeviceImpl class allows the initialisation of device state and/or status or device
creation time. If these fields are not defined, a default value is applied. The default state is Tango::UNKOWN,
the default status is Not Initialised.

A.1.4 The device polling
Seven device properties allow the polling tunning. These properties are described in the following table

392

APPENDIX A. REFERENCE PART 393

Property name property rule default value
poll_ring_depth Polling buffer depth 10

cmd_poll_ring_depth Cmd polling buffer depth
attr_poll_ring_depth Attr polling buffer depth

poll_old_factor "Data too old" factor 4
min_poll_period Minimun polling period

cmd_min_poll_period Min. polling period for cmd
attr_min_poll_period Min. polling period for attr

The rule of the poll_ring_depth property is obvious. It defines the polling ring depth for all the device
polled command(s) and attribute(s). Nevertheless, when filling the polling buffer via the fill_cmd_polling_buffer()
(or fill_attr_polling_buffer()) method, it could be helpfull to define specific polling ring depth for a com-
mand (or an attribute). This is the rule of the cmd_poll_ring_depth and attr_poll_ring_depth properties.
For each polled object with specific polling depth (command or attribute), the syntax of this property is
the object name followed by the ring depth (ie State,20,Status,15). If one of these properties is defined,
for the specific command or attribute, it will overwrite the value set by the poll_ring_depth property. The
poll_old_factor property allows the user to tune how long the data recorded in the polling buffer are valid.
Each time some data are read from the polling buffer, a check is done between the date when the data were
recorded in the polling buffer and the date when the user request these data. If the interval is greater than
the object polling period multiply by the value of the poll_old_factor factory, an exception is returned to
the caller. These two properties are defined at device level and therefore, it is not possible to tune this
parameter for each polled object (command or attribute). The last 3 properties are dedicated to define
a polling period minimum threshold. The property min_poll_period defines in (mS) a device minimum
polling period. Property cmd_min_poll_period defines (in mS) a minimum polling period for a specific
command. The syntax of this property is the command name followed by the minimum polling period
(ie MyCmd,400). Property attr_min_poll_period defines (in mS) a minimum polling period for a specific
attribute. The syntax of this property is the attribute name followed by the minimum polling period (ie
MyAttr,600). These two properties has a higher priority than the min_poll_period property. By default
these three properties are not defined mening that there is no minimun polling period.

Four other properties are used by the Tango core classes to manage the polling thread. These properties
are :

• polled_cmd to memorize the name of the device polled command

• polled_attr to memorize the name of the device polled attribute

• non_auto_polled_cmd to memorize the name of the command which shoule not be polled automati-
cally at the first request

• non_auto_polled_attr to memorize the name of the attribute which should not be polled automatically
at the first request

You don’t have to change these properties values by yourself. They are automatically created/modified/deleted
by Tango core classes.

A.1.5 The device logging
The Tango Logging Service (TLS) uses device properties to control device logging at startup (static con-
figuration). These properties are described in the following table

Property name property rule default value

APPENDIX A. REFERENCE PART 394

logging_level Initial device logging level WARN
logging_target Initial device logging target No default

logging_rft Logging rolling file threshold 2 Mega bytes
logging_path Logging file path /tmp/tango or C:/tango (win32)

• The logging_level property controls the initial logging level of a device. Its set of possible values is:
"OFF", "FATAL", "ERROR", "WARN", "INFO" or "DEBUG". This property is overwritten by the
verbose command line option (-v).

• The logging_target property is a multi-valued property containing the initial target list. Each entry
must have the following format: target_type::target_name (where target_type is one of the supported
target types and target_name, the name of the target). Supported target types are: console, file and
device. For a device target, target_name must contain the name of a log consumer device (as defined
in A.8). For a file target, target_name is the name of the file to log to. If omitted the device’s name
is used to build the file name (domain_family_member.log). Finally, target_name is ignored in the
case of a console target. The TLS does not report any error occurred while trying to setup the initial
targets.

– Logging_target property example :

logging_target = ["console", "file", "file::/home/me/mydevice.log", "device::tmp/log/1"]

In this case, the device will automatically logs to the standard output, to its default file (which
is something like domain_family_member.log), to a file named mydevice.log and located in
/home/me. Finally, the device logs are also sent to a log consumer device named tmp/log/1.

• The logging_rft property specifies the rolling file threshold (rft), of the device’s file targets. This
threshold is expressed in Kb in the range [500, 20480]. When the size of a log file reaches the
so-called rolling-file-threshold (rft), it is backuped as "current_log_file_name" + "_1" and a new
current_log_file_name is opened. Obviously, there is only one backup file at a time (i.e. any existing
backup is destroyed before the current log file is backuped). The default threshold is 2Mb, the
minimum is 500 Kb and the maximum is 20 Mb.

• The logging_path property overwrites the TANGO_LOG_PATH environment variable. This property
can only be applied to a DServer class device and has no effect on other devices.

A.2 Device attribute
Attribute are configured with two kind of parameters: Parameters hard-coded in source code and modifiable
parameters

A.2.1 Hard-coded device attribute parameters
Seven attribute parameters are defined at attribute creation time in the device server source code. Obviously,
these parameters are not modifiable except with a new source code compilation. These parameters are

Parameter name Parameter description

APPENDIX A. REFERENCE PART 395

name Attribute name
data_type Attribute data type

data_format Attribute data format
writable Attribute read/write type

max_dim_x Maximum X dimension
max_dim_y Maximum Y dimension

writable_attr_name Associated write attribute
level Attribute display level

A.2.1.1 The Attribute data type

Eight data types are supported. These data types are

• Tango::DevBoolean

• Tango::DevShort

• Tango::DevLong

• Tango::DevFloat

• Tango::DevDouble

• Tango::DevUChar

• Tango::DevUShort

• Tango::DevString

A.2.1.2 The attribute data format

Three data format are supported for attribute

Format Description
Tango::SCALAR The attribute value is a single number

Tango::SPECTRUM The attribute value is a one dimension number
Tango::IMAGE The attribute value is a two dimension number

A.2.1.3 The max_dim_x and max_dim_y parameters

These two parameters defined the maximum size for attributes of the SPECTRUM and IMAGE data format.

data format max_dim_x max_dim_y
Tango::SCALAR 1 0

Tango::SPECTRUM User Defined 0
Tango::IMAGE User Defined User Defined

APPENDIX A. REFERENCE PART 396

For attribute of the Tango::IMAGE data format, all the data are also returned in a one dimension array.
The first array is value[0],[0], array element X is value[0],[X-1], array element X+1 is value[1][0] and so
forth.

A.2.1.4 The attribute read/write type

Tango supports four kind of read/write attribute which are :

• Tango::READ for read only attribute

• Tango::WRITE for writable attribute

• Tango::READ_WRITE for attribute which can be read and write

• Tango::READ_WITH_WRITE for a readable attribute associated to a writable attribute (For a power
supply device, the current really generated is not the wanted current. To handle this, two attributes are
defined which are generated_current and wanted_current. The wanted_current is a Tango::WRITE
attribute. When the generated_current attribute is read, it is very convenient to also get the wanted_current
attribute. This is exactly what the Tango::READ_WITH_WRITE attribute is doing)

When read, attribute values are always returned within an array even for scalar attribute. The length of this
array and the meaning of its elements is detailed in the following table for scalar attribute.

Name Array length Array[0] Array[1]
Tango::READ 1 Read value
Tango::WRITE 1 Last write value

Tango::READ_WRITE 2 Read value Last write value
Tango::READ_WITH_WRITE 2 Read value Associated attributelast write value

When a spectrum or image attribute is read, it is possible to code the device class in order to send only
some part of the attribute data (For instance only a Region Of Interest for an image) but never more than
what is defined by the attribute configuration parameters max_dim_x and max_dim_y. The number of data
sent is also transferred with the data and is named dim_x and dim_y. When a spectrum or image attribute
is written, it is also possible to send only some of the attribute data but always less than max_dim_x for
spectrum and max_dim_x * max_dim_y for image. The following table describe how data are returned for
spectrum attribute. dim_x is the data size sent by the server when the attribute is read and dim_x_w is the
data size used during the last attribute write call.

Name Array length Array[0->dim_x-1] Array[dim_x -> dim_x + dim_x_w -1]
Tango::READ dim_x Read values
Tango::WRITE dim_x_w Last write values

Tango::READ_WRITE dim_x + dim_x_w Read value Last write values
Tango::READ_WITH_WRITE dim_x + dim_x_w Read value Associated attributelast write values

APPENDIX A. REFERENCE PART 397

The following table describe how data are returned for image attribute. dim_r is the data size sent by the
server when the attribute is read (dim_x * dim_y) and dim_w is the data size used during the last attribute
write call (dim_x_w * dim_y_w).

Name Array length Array[0->dim_r-1] Array[dim_r-> dim_r + dim_w -1]
Tango::READ dim_r Read values
Tango::WRITE dim_w Last write values

Tango::READ_WRITE dim_r + dim_w Read value Last write values
Tango::READ_WITH_WRITE dim_r + dim_w Read value Associated attributelast write values

Until a write operation has been performed, the last write value is initialized to 0 for scalar attribute of
the numeriacal type, to "Not Initialised" for scalar string attribute and to true for scalar boolean attribute.
For spectrum or image attribute, the last write value is initialized to an array of one element set to 0 for
numerical type, to an array of one element set to true for boolean attribute and to an array of one element
set to "Not initialized" for string attribute

A.2.1.5 The associated write attribute parameter

This parameter has a meaning only for attribute with a Tango::READ_WITH_WRITE read/write type.
This is the name of the associated write attribute.

A.2.1.6 The attribute display level parameter

This parameter is only an help for graphical application. It is a C++ enumeration starting at 0 or a final
class for Java. The code associated with each attribute display level is defined in the following table
(Tango::DispLevel).

name Value
Tango::OPERATOR 0

Tango::EXPERT 1

This parameter allows a graphical application to support two types of operation :

• An operator mode for day to day operation

• An expert mode when tuning is necessary

According to this parameter, a graphical application knows if the attribute is for the operator mode or for
the expert mode.

A.2.2 Modifiable attribute parameters
Each attribute has a configuration set of 20 modifiable parameters. These can be grouped in three different
purposes:

1. General purpose parameters

2. Alarm related parameters

APPENDIX A. REFERENCE PART 398

3. Event related parameters

A.2.2.1 General purpose parameters

Eight attribute parameters are modifiable at run-time via a device call or via the property database.

Parameter name Parameter description
description Attribute description

label Attribute label
unit Attribute unit

standard_unit Conversion factor to MKSA unit
display_unit The attribute unit in a printable form

format How to print attribute value
min_value Attribute min value
max_value Attribute max value

The description parameter describes the attribute. The label parameter is used by graphical application
to display a label when this attribute is used in a graphical application. The unit parameter is the attribute
value unit. The standard_unit parameter is the conversion factor to get attribute value in MKSA units.
Even if this parameter is a number, it is returned as a string by the device get_attribute_config call. The
display_unit parameter is the string used by graphical application to display attribute unit to application
user.

A.2.2.1.1 The format attribute parameter This parameter specifies how the attribute value should be
printed. It is not valid for string attribute. This format is a string of C++ streams manipulators separated by
the ; character. The supported manipulators are :

• fixed

• scientific

• uppercase

• showpoint

• showpos

• setprecision()

• setw()

Their definition are the same than for C++ streams. An example of format parameter is

scientific;uppercase;setprecision(3)

. A class called Tango::AttrManip has been written to handle this format string. Once the attribute format
string has been retrieved from the device, its value can be printed with

cout << Tango::AttrManip(format) << value << endl;

.

APPENDIX A. REFERENCE PART 399

A.2.2.1.2 The min_value and max_value parameters These two parameters have a meaning only for
attribute of the Tango::WRITE read/write type and for numeriacal data type. Trying to set the value of an
attribute to something less than or equal to the min_value parameter is an error. Trying to set the value
of the attribute to something more or equal to the max_value parameter is also an error. Even if these
parameters are numbers, they are returned as strings by the device get_attribute_config() call.

A.2.2.2 The alarm related configuration parameters

Six alarm related attribute parameters are modifiable at run-time via a device call or via the property
database.

Parameter name Parameter description
min_alarm Attribute low level alarm
max_alarm Attribute high level alarm

min_warning Attribute low level warning
max_warning Attribute high level warning

delta_t delta time for RDS alarm (mS)
delta_val delta value for RDS alarm (absolute)

A.2.2.2.1 The min_alarm and max_alarm parameters These two parameters have a meaning only
for attribute of the Tango::READ, Tango::READ_WRITE and Tango::READ_WITH_WRITE read/write
type and for numerical data type. When the attribute is read, if its value is something less than or equal
to the min_alarm parameter or if it is something more or equal to the max_alarm parameter, the attribute
quality factor will be set to Tango::ATTR_ALARM and if the device state is Tango::ON, it is switched
to Tango::ALARM. Even if these parameters are numbers, they are returned as strings by the device
get_attribute_config() call.

A.2.2.2.2 The min_warning and max_warning parameters These two parameters have a mean-
ing only for attribute of the Tango::READ, Tango::READ_WRITE and Tango::READ_WITH_WRITE
read/write type and for numerical data type. When the attribute is read, if its value is something less than
or equal to the min_warning parameter or if it is something more or equal to the max_warning parameter,
the attribute quality factor will be set to Tango::ATTR_WARNING and if the device state is Tango::ON, it
is switched to Tango::ALARM. Even if these parameters are numbers, they are returned as strings by the
device get_attribute_config() call.

A.2.2.2.3 The delta_t and delta_val parameters These two parameters have a meaning only for at-
tribute of the Tango::READ_WRITE and Tango::READ_WITH_WRITE read/write type and for numerical
data type. They specify if and how the RDS alarm is used. When the attribute is read, if the difference
between its read value and the last written value is something more than or equal to the delta_val parameter
and if at least delta_val milli seconds occurs since the last write operation, the attribute quality factor will
be set to Tango::ATTR_ALARM and if the device state is Tango::ON, it is switched to Tango::ALARM.
Even if these parameters are numbers, they are returned as strings by the device get_attribute_config() call.

A.2.2.3 The event related configuration parameters

Six event related attribute parameters are modifiable at run-time via a device call or via the property
database.

APPENDIX A. REFERENCE PART 400

Parameter name Parameter description
rel_change Relative change triggering change event
abs_change Absolute change triggering change event

period Period for periodic event
archive_rel_change Relative change for archive event
archive_abs_change Absolute change for archive event

archive_period Period for change archive event

A.2.2.3.1 The rel_change and abs_change parameters Rel_change is an array property with a maxi-
mum of 2 values. It specifies the positive and negative relative change of the attribute value w.r.t. the value
of the previous change event which will trigger the event. If the attribute is a spectrum or an image then
a change event is generated if any one of the attribute value’s satisfies the above criterium. If only one
property is specified then it is used for the positive and negative change.

Abs_change is an array property of maximum 2 values.It specifies the positive and negative absolute
change of the attribute value w.r.t the value of the previous change event which will trigger the event. If
the attribute is a spectrum or an image then a change event is generated if any one of the attribute value’s
satisfies the above criterium. If only one property is specified then it is used for the positive and negative
change. If no properties are specified then the relative change is used.

A.2.2.3.2 The periodic period parameter The minimum time between events (in milliseconds). If no
property is specified then a default value of 1 second is used.

A.2.2.3.3 The archive_rel_change, archive_abs_change and archive_period parameters archive_rel_change
is an array property of maximum 2 values which specifies the positive and negative relative change w.r.t.
the previous attribute value which will trigger the event. If the attribute is a spectrum or an image then
an archive event is generated if any one of the attribute value’s satisfies the above criterium. If only one
property is specified then it is used for the positive and negative change. If no properties are specified then
a default fo +-10% is used

archive_abs_change is an array property of maximum 2 values which specifies the positive and negative
absolute change w.r.t the previous attribute value which will trigger the event. If the attribute is a spectrum
or an image then an archive event is generated if any one of the attribute value’s satisfies the above criterium.
If only one property is specified then it is used for the positive and negative change. If no properties are
specified then the relative change is used.

archive_period is the minimum time between archive events (in milliseconds). If no property is speci-
fied, no periodic archiving events are send.

A.2.3 Setting modifiable attribute parameters
A default value is given to all modifiable attribute parameters by the Tango core classes. Nevertheless,
it is possible to modify these values in source code at attribute creation time or via the database. Values
retrieved from the database have a higher priority than values given at attribute creation time. The default
value set by the Tango core classes are

Parameter type Parameter name Library default value

APPENDIX A. REFERENCE PART 401

description No description
label device name/attribute name
unit No unit

general standard_unit No standard unit
purpose display_unit No display unit

format 6 characters with 2 decimal
min_value Not specified
max_value Not specified
min_alarm Not specified
max_alarm Not specified

alarm min_warning Not specified
parameters max_warning Not specified

delta_t Not specified
delta_val Not specified

rel_change Not specified
abs_change Not specified

event period 1000 (mS)
parameters archive_rel_change Not specified

archive_abs_change Not specified
archive_period Not specified

It is possible to set modifiable parameters via the database at two levels :

1. At class level

2. At device level. Each device attribute have all its modifiable parameters sets to the value defined at
class level. If the setting defined at class level is not correct for one device, it is possible to re-define
it.

If we take the example of a class called BumperPowerSupply with three devices called sr/bump/1, sr/bump/2
and sr/bump/3 and one attribute called wanted_current. For the first two bumpers, the max_value is equal
to 500. For the third one, the max_value is only 400. If the max_value parameter is defined at class level
with the value 500, all devices will have 500 as max_value for the wanted_current attribute. It is necessary
to re-defined this parameter at device level in order to have the max_value for device sr/bump/3 set to 400.

For the description, label, unit, standard_unit, display_unit and format parameters, it is possible to
return them to their default value by setting them to an empty string.

A.3 Device class parameter
A device documentation field is also defined at Tango device class level. It is defined as Tango device class
level because each device belonging to a Tango device class should have the same behaviour and therefore
the same documentation. This field is store in the DeviceClass class. It is possible to set this field via a
class property. This property name is

class name->doc_url

and is retrieved when instance of the DeviceClass object is created. A default value is defined for this field.

A.4 The device black box
This black box is a help tool to ease debugging session for a running device server. The TANGO core
software records every device request in this black box. A tango client is able to retrieve the black box

APPENDIX A. REFERENCE PART 402

contents with a specific CORBA operation availabble for every device. Each black box entry is returned as
a string with the following information :

• The date where the request has been executed by the device. The date format is dd/mm/yyyy
hh24:mi:ss:SS (The last field is the second hundredth number).

• The type of CORBA requests. In case of attributes, the name of the requested attribute is returned.
In case of operation, the operation type is returned. For “command_inout” operation, the command
name is returned.

• The client host name

A.5 Automatically added commands
As already mentionned in this documentation, each Tango device supports at least three commands which
are State, Status and Init. The following array details command input and output data type

Command name Input data type Output data type
State void Tango::DevState
Status void Tango::DevString

Init void void

A.5.1 The State command
This command gets the device state (stored in its device_state data member) and returns it to the caller.
The device state is a variable of the Tango_DevState type (packed into a CORBA Any object when it is
returned by a command)

A.5.2 The Status command
This command gets the device status (stored in its device_status data member) and returns it to the caller.
The device status is a variable of the string type.

A.5.3 The Init command
This commands re-initialise a device keeping the same network connection. After an Init command exe-
cuted on a device, it is not necessary for client to re-connect to the device. This command first calls the
device delete_device() method and then execute its init_device() method. For C++ device server, all the
memory allocated in the init_device() method must be freed in the delete_device() method. The language
device desctructor automatically calls the delete_device() method.

A.6 DServer class device commands
As already explained in 8.1.7.2, each device server process has its own Tango device. This device supports
the three commands previously described plus 27 commands (for C++ device server, only 25 for Java de-
vice server) which are DevRestart, RestartServer, QueryClass, QueryDevice, Kill, QueryWizardClassProp-
erty, QueryWizardDevProperty, QuerySubDevice, the polling related commands which are StartPolling,
StopPolling, AddObjPolling, RemObjPolling, UpdObjPollingPeriod, PolledDevice and DevPollStatus, the

APPENDIX A. REFERENCE PART 403

device locking related commands which are LockDevice, UnLockDevice, ReLockDevices and DevLock-
Status, the event related command called EventSubscriptionChange (only for C++) and finally the logging
related commands which are AddLoggingTarget, RemoveLoggingTarget, GetLoggingTarget, GetLoggin-
gLevel, SetLoggingLevel, StopLogging and StartLogging. The following table give all commands input
and output data types

Command name Input data type Output data type
State void Tango::DevState
Status void Tango::DevString

Init void void
DevRestart Tango::DevString void

RestartServer void void
QueryClass void Tango::DevVarStringArray

QueryDevice void Tango::DevVarStringArray
Kill void void

QueryWizardClassProperty Tango::DevString Tango::DevVarStringArray
QueryWizardDevProperty Tango::DevString Tango::DevVarStringArray

QuerySubDevice void Tango::DevVarStringArray
StartPolling void void
StopPolling void void

AddObjPolling Tango::DevVarLongStringArray void
RemObjPolling Tango::DevVarStringArray void

UpdObjPollingPeriod Tango::DevVarLongStringArray void
PolledDevice void Tango::DevVarStringArray
DevPollStatus Tango::DevString Tango::DevVarStringArray
LockDevice Tango::DevVarLongStringArray void

UnLockDevice Tango::DevVarLongStringArray Tango::DevLong
ReLockDevices Tango::DevVarStringArray void
DevLockStatus Tango::DevString Tango::DevVarLongStringArray

EventSubscribeChange Tango::DevVarStringArray void
AddLoggingTarget Tango::DevVarStringArray void

RemoveLoggingTarget Tango::DevVarStringArray void
GetLoggingTarget Tango::DevString Tango::DevVarStringArray
GetLoggingLevel Tango::DevVarStringArray Tango::DevVarLongStringArray
SetLoggingLevel Tango::DevVarLongStringArray void

StopLogging void void
StartLogging void void

The device description field is set to “A device server device”. Device server started with the -file
command line option also supports a command called QueryEventChannelIOR. This command is used
interanally by the Tango kernel classes when the event system is used with device server using database on
file.

A.6.1 The State command
This device state is always set to ON

APPENDIX A. REFERENCE PART 404

A.6.2 The Status command
This device status is always set to “The device is ON” followed by a new line character and a string
describing polling thread status. This string is either “The polling is OFF” or “The polling is ON” according
to polling state.

A.6.3 The DevRestart command
The DevRestart command restart a device. The name of the device to be re-started is the command input
parameter. The command destroys the device by calling its destructor and re-create it from its constructor.

A.6.4 The RestartServer command
The DevRestartServer command restarts all the device pattern(s) embedded in the device server process.
Therefore, all the devices implemented in the server process are destroyed and re-built1. The network
connection between client(s) and device(s) implemented in the device server process is destroyed and re-
built.

Executing this command allows a complete restart of the device server without stopping the process.

A.6.5 The QueryClass command
This command returns to the client the list of Tango device class(es) embedded in the device server. It
returns only class(es) implemented by the device server programmer. The DServer device class name
(implemented by the TANGO core software) is not returned by this command.

A.6.6 The QueryDevice command
This command returns to the client the list of device name for all the device(s) implemented in the device
server process. Each device name is returned using the following syntax :

<class name>::<device name>

The name of the DServer class device is not returned by this command.

A.6.7 The Kill command
This command stops the device server process. In order that the client receives a last answer from the
server, this command starts a thread which will after a short delay, kills the device server process.

A.6.8 The QueryWizardClassProperty command
This command returns the list of property(ies) defined for a class stored in the device server process prop-
erty wizard. For each property, its name, a description and a default value is returned.

A.6.9 The QueryWizardDevProperty command
This command returns the list of property(ies) defined for a device stored in the device server process
property wizard. For each property, its name, a description and a default value is returned.

1Their black-box is also destroyed and re-built

APPENDIX A. REFERENCE PART 405

A.6.10 The QuerySubDevice command
This command returns the list of sub-device(s) imported by each device within the server. A sub-device is a
device used (to execute command(s) and/or to read/write attribute(s)) by one of the device server process
devices. There is one element in the returned strings array for each sub-device. The syntax of each string is
the device name, a space and the sub-device name. In case of device server process starting threads using
a sub-device, it is not possible to link this sub-device to any process devices. In such a case, the string
contains only the sub-device name

A.6.11 The StartPolling command
This command starts the polling thread

A.6.12 The StopPolling command
This command stops the polling thread

A.6.13 The AddObjPolling command
This command adds a new object in the list of object(s) to be polled. The command input parameters are
embedded within a Tango::DevVarLongStringArray data type with one long data and three strings. The
input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
svalue[1] Object type (“command“ or “attribute“)
svalue[2] Object name
lvalue[0] polling period in mS

The object type string is case independent. The object name string (command name or attribute name)
is case dependant. This command does not start polling if it is stopped. This command is not allowed in
case the device is locked and the command requester is not the lock owner.

A.6.14 The RemObjPolling command
This command removes an object of the list of polled objects. The command input data type is a Tango::DevVarStringArray
with three strings. These strings meaning are :

String Meaning
string[0] Device name
string[1] Object type (“command“ or “attribute“)
string[2] Object name

The object type string is case independent. The object name string (command name or attribute name)
is case dependant. This command is not allowed in case the device is locked and the command requester is
not the lock owner.

APPENDIX A. REFERENCE PART 406

A.6.15 The UpdObjPollingPeriod command
This command changes the polling period for a specified object. The command input parameters are
embedded within a Tango::DevVarLongStringArray data type with one long data and three strings. The
input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
svalue[1] Object type (“command“ or “attribute“)
svalue[2] Object name
lvalue[0] new polling period in mS

The object type string is case independent. The object name string (command name or attribute name)
is case dependant. This command does not start polling if it is stopped. This command is not allowed in
case the device is locked and the command requester is not the lock owner.

A.6.16 The PolledDevice command
This command returns the name of device which are polled. Each string in the Tango::DevVarStringArray
returned by the command is a device name which has at least one command or attribute polled. The list is
alphabetically sorted.

A.6.17 The DevPollStatus command
This command returns a polling status for a specific device. The input parameter is a device name. Each
string in the Tango::DevVarStringArray returned by the command is the polling status for each polled
device objects (command or attribute). For each polled objects, the polling status is :

• The object name

• The object polling period (in mS)

• The object polling ring buffer depth

• The time needed (in mS) for the last command execution or attribute reading

• The time since data in the ring buffer has not been updated. This allows a check of the polling thread

• The delta time between the last records in the ring buffer. This allows checking that the polling
period is respected by the polling thread.

• The exception parameters in case of the last command execution or the last attribute reading failed.

A new line character is inserted between each piece of information.

A.6.18 The LockDevice command
This command locks a device for the calling process. The command input parameters are embedded within
a Tango::DevVarLongStringArray data type with one long data and one string. The input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
lvalue[0] Lock validity

APPENDIX A. REFERENCE PART 407

A.6.19 The UnLockDevice command
This command unlocks a device. The command input parameters are embedded within a Tango::DevVarLongStringArray
data type with one long data and one string. The input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
lvalue[0] Force flag

The force flag parameter allows a client to unlock a device already locked by another process (for admin
usage only)

A.6.20 The ReLockDevices command
This command re-lock devices. The input argument is the list of devices to be re-locked. It’s an error to
re-lock a device which is not already locked.

A.6.21 The DevLockStatus command
This command returns a device locking status to the caller. Its input parameter is the device name. The
output parameters are embedded within a Tango::DevVarLongStringArray data type with three strings and
six long. These data are

Command parameter Parameter meaning
svalue[0] Locking string
svalue[1] CPP client host IP address or "Not defined"
svalue[2] Java VM main class for Java client or "Not defined"
lvalue[0] Lock flag (1 if locked, 0 othterwise)
lvalue[1] CPP client host IP address or 0 for Java locker
lvalue[2] Java locker UUID part 1or 0 for CPP locker
lvalue[3] Java locker UUID part 2 or 0 for CPP locker
lvalue[4] Java locker UUID part 3 or 0 for CPP locker
lvalue[5] Java locker UUID part 4 or 0 for CPP locker

A.6.22 The EventSubscriptionChange command (C++ server only)
This command is used as a piece of the "heartbeat" system between an event client and the device server
generating the event. There is no reason to generate events if there is no client which has subscribed to it.
It is used by the DeviceProxy::subscribe_event() method and the event thread on the client side to inform
the server to keep on generating events for the attribute in question. It reloads the subscription timer with

APPENDIX A. REFERENCE PART 408

the current time. Events are not generated when there are no clients subscribed within the last 10 minutes.
The input parameters are:

Command parameter Parameter meaning
argin[0] Device name
argin[1] Attribute name
argin[2] action ("subscribe" or "unsubsribe")
argin[3] event name ("change", "periodic", "archive","attr_conf")

A.6.23 The AddLoggingTarget command
This command adds one (or more) logging target(s) to the specified device(s). The command input param-
eter is an array of string logically composed of {device_name, target_type::target_name} groups where the
elements have the following semantic:

• device_name is the name of the device which logging behavior is to be controlled. The wildcard "*"
is supported to apply the modification to all devices encapsulated within the device server (e.g. to
ask all devices to log to the same device target).

• target_type::target_name: target_type is one of the supported target types and target_name, the name
of the target. Supported target types are: console, file and device. For a device target, target_name
must contain the name of a log consumer device (as defined in A.8). For a file target, target_name
is the full path to the file to log to. If omitted the device’s name is used to build the file name
(domain_family_member.log). Finally, target_name is ignored in the case of a console target and
can be omitted.

This command is not allowed in case the device is locked and the command requester is not the lock owner.

A.6.24 The RemoveLoggingTarget command
Remove one (or more) logging target(s) from the specified device(s).The command input parameter is an
array of string logically composed of {device_name, target_type::target_name} groups where the elements
have the following semantic:

• device_name: the name of the device which logging behavior is to be controlled. The wildcard "*"
is supported to apply the modification to all devices encapsulated within the device server (e.g. to
ask all devices to stop logging to a given device target).

• target_type::target_name: target_type is one of the supported target types and target_name, the name
of the target. Supported target types are: console, file and device. For a device target, target_name
must contain the name of a log consumer device (as defined in A.8). For a file target, target_name
is the full path to the file to log to. If omitted the device’s name is used to build the file name
(domain_family_member.log). Finally, target_name is ignored in the case of a console target and
can be omitted.

The wildcard "*" is supported for target_name. For instance, RemoveLoggingTarget (["*", "device::*"])
removes all the device targets from all the devices running in the device server. This command is not
allowed in case the device is locked and the command requester is not the lock owner.

APPENDIX A. REFERENCE PART 409

A.6.25 The GetLoggingTarget command
Returns the current target list of the specified device. The command parameter device_name is the name
of the device which logging target list is requested. The list is returned as a DevVarStringArray containing
target_type::target_name elements.

A.6.26 The GetLoggingLevel command
Returns the logging level of the specified devices. The command input parameter device_list contains
the names of the devices which logging target list is requested. The wildcard "*" is supported to get the
logging level of all the devices running within the server. The string part of the result contains the name of
the devices and its long part contains the levels. Obviously, result.lvalue[i] is the current logging level of
the device named result.svalue[i].

A.6.27 The SetLoggingLevel command
Changes the logging level of the specified devices. The string part of the command input parameter contains
the device names while its long part contains the logging levels. The set of possible values for levels is:
0=OFF, 1=FATAL, 2=ERROR, 3=WARNING, 4=INFO, 5=DEBUG.

The wildcard "*" is supported to assign all devices the same logging level. For instance, SetLoggin-
gLevel (["*"] [3]) set the logging level of all the devices running within the server to WARNING. This
command is not allowed in case the device is locked and the command requester is not the lock owner.

A.6.28 The StopLogging command
For all the devices running within the server, StopLogging saves their current logging level and set their
logging level to OFF.

A.6.29 The StartLogging command
For each device running within the server, StartLogging restores their logging level to the value stored
during a previous StopLogging call.

A.7 DServer class device properties
This device has two properties related to polling threads pool management. These properties are described
in the following table

Property name property rule default value
polling_threads_pool_size Max number of thread in the polling pool 1
polling_threads_pool_conf Polling threads pool configuration

The rule of the polling_threads_pool_size is to define the maximun number of thread created for the
polling threads pool size. The rule of the polling_threads_pool_conf is to define which thread in the pool
is in charge of all the polled object(s) of which device. This property is an array of strings with one string
per used thread in the pool. The content of the string is simply a device name list with device name splitted
by a comma. Example of polling_threads_pool_conf property for 3 threads used:

dserver/<ds exec name>/<inst. name>/polling_threads_pool_conf-> the/dev/01

APPENDIX A. REFERENCE PART 410

the/dev/02,the/dev/06
the/dev/03

Thread number 2 is in charge of 2 devices. Note that there is an entry in this list only for the used threads
in the pool.

A.8 Tango log consumer

A.8.1 The available Log Consumer
One implementation of a log consumer associated to a graphical user interface is available within Tango.
It is a standalone java application called LogViewer based on the publicly available chainsaw application
from the log4j package. It supports two way of running which are:

• The static mode: In this mode, LogViewer is started with a parameter which is the name of the log
consumer device implemented by the application. All messages sent by devices with a logging target
type set to device and with a logging target name set to the same device name than the device name
passed as application parameter will be displayed (if the logging level allows it).

• The dynamic mode: In this mode, the name of the log consumer device implemented by the applica-
tion is build at application startup and is dynamic. The user with the help of the graphical interface
chooses device(s) for which he want to see log messages.

A.8.2 The Log Consumer interface
A Tango Log Consumer device is nothing but a tango device supporting the following tango command :

void log (Tango::DevVarStringArray details)

where details is an array of string carrying the log details. Its structure is:

• details[0] : the timestamp in millisecond since epoch (01.01.1970)

• details[1] : the log level

• details[2] : the log source (i.e. device name)

• details[3] : the log message

• details[4] : the log NDC (contextual info) - Not used but reserved

• details[5] : the thread identifier (i.e. the thread from which the log request comes from)

These log details can easily be extended. Any tango device supporting this command can act as a device
target for other devices.

A.9 Control system specific
It is possible to define a few control system parameters. By control system, we mean for each set of
computers having the same database device server (the same TANGO_HOST environment variable)

A.9.1 The device class documentation default value
Each control system may have it’s own default device class documentation value. This is defined via a class
property. The property name is

Default->doc_url

It’s retrieved if the device class itself does not define any doc_url property. If the Default->doc_url property
is also not defined, a hard-coded default value is provided.

APPENDIX A. REFERENCE PART 411

A.9.2 The services definition
The property used to defined control system services is named Services and belongs to the free object
CtrlSystem. This property is an erray of strings. Each string defines a service available within the control
system. The syntax of each service definition is

Service name/Instance name:service device name

A.10 C++ specific

A.10.1 The Tango master include file (tango.h)
Tango has a master include file called

tango.h

This master include file includes the following files :

• C++ language include file : typeinfo

• Tango configuration include file : tango_config.h

• CORBA include file : idl/tango.h

• Some network include files for WIN32 : winsock2.h and mswsock.h

• C++ streams include file :

– iostream, sstream and fstream for Windows NT and Solaris with its natif compiler

– iostream.h, strstream.h, fstream.h and sstream for Linux and Solaris with gcc

• Some standard C++ library include files : string and vector

• The main include file generated by the CORBA IDL compiler : idl/tango.h

• The Tango database and device API include files : dbapi.h and devapi.h

• A list of other Tango include files : tango_const.h, utils.h, device.h, command.h, except.h, se-
qvec.h, device_2.h, log4tango.h, attrmanip.h and dserver.h

A.10.2 Tango specific types
Operating system free type

Some data type used in the TANGO core software are not the same under UNIX like operating system and
Windows NT. In order to have less “#ifdef” in the source code, some Tango types have been defined. They
are described in the following table.

Type name Unix like Windows NT
TangoSys_MemStream strstream stringstream

TangoSys_OMemStream ostrstream ostringstream
TangoSys_Pid pid_t int

TangoSys_Cout _IO_ostream_withassign ostream

APPENDIX A. REFERENCE PART 412

These types are defined in the tango_config.h file

A.10.2.1 Template command model related type

As explained in 8.4.8, command created with the template command model uses static casting. Many type
definition have been written for these casting.

Class name Command allowed method (if any) Command execute method
TemplCommand Tango::StateMethodPtr Tango::CmdMethPtr

TemplCommandIn Tango::StateMethodPtr Tango::CmdMethPtr_xxx
TemplCommandOut Tango::StateMethodPtr Tango::xxx_CmdMethPtr

TemplCommandInOut Tango::StateMethodPtr Tango::xxx_CmdMethPtr_yyy

The Tango::StateMethPtr is a pointer to a method of the DeviceImpl class which returns a boolean
and has one parameter which is a reference to a const CORBA::Any obect.

The Tango::CmdMethPtr is a pointer to a method of the DeviceImpl class which returns nothing and
needs nothing as parameter.

The Tango::CmdMethPtr_xxx is a pointer to a method of the DeviceImpl class which returns nothing
and has one parameter. xxx must be set according to the method parameter type as described in the next
table

Tango type short cut (xxx)
Tango::DevBoolean Bo

Tango::DevShort Sh
Tango::DevLong Lg
Tango::DevFloat Fl

Tango::DevDouble Db
Tango::DevUshort US
Tango::DevULong UL
Tango::DevString Str

Tango::DevVarCharArray ChA
Tango::DevVarShortArray ShA
Tango::DevVarLongArray LgA
Tango::DevVarFloatArray FlA

Tango::DevVarDoubleArray DbA
Tango::DevVarUShortArray USA
Tango::DevVarULongArray ULA
Tango::DevVarStringArray StrA

Tango::DevVarLongStringArray LSA
Tango::DevVarDoubleStringArray DSA

Tango::DevState Sta

For instance, a pointer to a method which takes a Tango::DevVarStringArray as input parameter must
be statically casted to a Tango::CmdMethPtr_StrA, a pointer to a method which takes a Tango::DevLong
data as input parameter must be statically casted to a Tango::CmdMethPtr_Lg.

APPENDIX A. REFERENCE PART 413

The Tango::xxx_CmdMethPtr is a pointer to a method of the DeviceImpl class which returns data of
one of the Tango type and has no input parameter. xxx must be set according to the method return data type
following the same rules than those described in the previous table. For instance, a pointer to a method
which returns a Tango::DevDouble data must be statically casted to a Tango::Db_CmdMethPtr.

The Tango::xxx_CmdMethPtr_yyy is a pointer to a method of the DeviceImpl class which returns
data of one of the Tango type and has one input parameter of one of the Tango data type. xxx and yyy must
be set according to the method return data type and parameter type following the same rules than those
described in the previous table. For instance, a pointer to a method which returns a Tango::DevDouble data
and which takes a Tango::DevVarLongStringArray must be statically casted to a Tango::Db_CmdMethPtr_LSA.

All those type are defined in the tango_const.h file.

A.10.3 Tango device state code
The Tango::DevState type is a C++ enumeration starting at 0. The code associated with each state is defined
in the following table.

State name Value
Tango::ON 0
Tango::OFF 1

Tango::CLOSE 2
Tango::OPEN 3

Tango::INSERT 4
Tango::EXTRACT 5
Tango::MOVING 6

Tango::STANDBY 7
Tango::FAULT 8

Tango::INIT 9
Tango::RUNNING 10
Tango::ALARM 11

Tango::DISABLE 12
Tango::UNKNOWN 13

A strings array called Tango::DevStateName can be used to get the device state as a string. Use the
Tango device state code as index into the array to get the correct string.

A.10.4 Tango data type
A “define” has been created for each Tango data type. This is summarized in the following table

Type name Type code Value
Tango::DevBoolean Tango::DEV_BOOLEAN 1

Tango::DevShort Tango::DEV_SHORT 2
Tango::DevLong Tango::DEV_LONG 3
Tango::DevFloat Tango::DEV_FLOAT 4

Tango::DevDouble Tango::DEV_DOUBLE 5
Tango::DevUShort Tango::DEV_USHORT 6
Tango::DevULong Tango::DEV_ULONG 7

APPENDIX A. REFERENCE PART 414

Tango::DevString Tango::DEV_STRING 8
Tango::DevVarCharArray Tango::DEVVAR_CHARARRAY 9
Tango::DevVarShortArray Tango::DEVVAR_SHORTARRAY 10
Tango::DevVarLongArray Tango::DEVVAR_LONGARRAY 11
Tango::DevVarFloatArray Tango::DEVVAR_FLOATARRAY 12

Tango::DevVarDoubleArray Tango::DEVVAR_DOUBLEARRAY 13
Tango::DevVarUShortArray Tango::DEVVAR_USHORTARRAY 14
Tango::DevVarULongArray Tango::DEVVAR_ULONGARRAY 15
Tango::DevVarStringArray Tango::DEVVAR_STRINGARRAY 16

Tango::DevVarLongStringArray Tango::DEVVAR_LONGSTRINGARRAY 17
Tango::DevVarDoubleStringArray Tango::DEVVAR_DOUBLESTRINGARRAY 18

Tango::DevState Tango::DEV_STATE 19
Tango::ConstDevString Tango::CONST_DEV_STRING 20

Tango::DevVarBooleanArray Tango::DEVVAR_BOOLEANARRAY 21
Tango::DevUChar Tango::DEV_UCHAR 22
Tango::DevLong64 Tango::DEV_LONG64 23

Tango::DevULong64 Tango::DEV_ULONG64 24
Tango::DevVarLong64Array Tango::DEVVAR_LONG64ARRAY 25

Tango::DevVarULong64Array Tango::DEVVAR_ULONG64ARRAY 26
Tango::DevInt Tango::DEV_INT 27

Tango::DevEncoded Tango::DEV_ENCODED 28

For command which do not take input parameter, the type code Tango::DEV_VOID (value = 0) has
been defined.

A strings array called Tango::CmdArgTypeName can be used to get the data type as a string. Use the
Tango data type code as index into the array to get the correct string.

A.10.5 Tango command display level
Like attribute, Tango command has a display level. The Tango::DispLevel type is a C++ enumeration
starting at 0. The code associated with each command display level is already described in page 397

As for attribute, this parameter allows a graphical application to support two types of operation :

• An operator mode for day to day operation

• An expert mode when tuning is necessary

According to this parameter, a graphical application knows if the command is for the operator mode or for
the expert mode.

A.11 Java specific

A.11.1 Packages
All the Tango core classes are bundled in the a Java package called fr.esrf.TangoDs. All the classes
generated by the IDL compiler are bundled in a Java package called fr.esrf.Tango. All the Tango Java
API classes are bundled in Java packages called fr.esrf.TangoApi and fr.esrf.TangoApi.Group. All the
CORBA related classes are stored in a package called org.omg.CORBA. These package Tango, TangoDs,
TangoApi, Group and CORBA are stored in the same jar file called TangORB.jar.

APPENDIX A. REFERENCE PART 415

A.12 Device server process option and environment variables

A.12.1 Classical device server
The synopsis of a device server process is

ds_name instance_name [OPTIONS]

The supported options are :

• -h, -? -help
Print the device server synopsis and a list of instance name defined in the database for this device
server. An instance name in not mandatory in the command line to use this option

• -v[trace level]
Set the verbose level. If no trace level is given, a default value of 4 is used

• -file=<file name path>
Start a device server using an ASCII file instead of the Tango database.

• -nodb
Start a device server without using the database.

• -dlist <device name list>
Give the device name list. This option is supported only with the -nodb option.

• ORB options (started with -ORBxxx)
Options directly passed to the underlying ORB. Should be rarely used except the -ORBendPoint
option for device server not using the database

A.12.2 Device server process as Windows service
When used as a Windows service, a Tango device server supports several new options. These options are :

• -i
Install the service

• -s
Install the service and choose the automatic startup mode

• -u
Un-install the service

• -dbg
Run in console mode to debug service. The service must have been installed prior to use it.

Note that these options must be used after the device server instance name.

A.12.3 Environment variables
A few environment variables can be used to tune a Tango control system. TANGO_HOST is the most
important one but on top it, some Tango features like Tango logging service or controlled access (if used)
can be tuned using environment variable. If these environment variables are not defined, the software
searches in the file $HOME/.tangorc for its value. If the file is not defined or if the environment variable
is also not defined in this file, the software searches in the file /etc/tangorc for its value. For Windows,
the file is $TANGO_ROOT/tangorc TANGO_ROOT being the mandatory environment variable of the
Windows binary distribution.

APPENDIX A. REFERENCE PART 416

A.12.3.1 TANGO_HOST

This environment variable is the anchor of the system. It specifies where the Tango database server is
running. Most of the time, its syntax is

TANGO_HOST=<host>:<port>

host is the name of the computer where the database server is running and port is th eport number on which
it is litenning. If you want to have a Tango control system which has several database servers (but only one
database) in order to survive a database server crashes, use the following syntax

TANGO_HOST=<host_1>:<port_1>,<host_2>:<port_2>,<host_3>:<port_3>

Obviously, host_1 is the name of the computer where the first database server is running, port_1 is the port
number on which this server is listenning. host_2 is the name of the computer where the second database
server is running and port_2 is its port number. All access to database will automatically switch from one
server to another one in the list if the one which was used has died.

A.12.3.2 Tango Logging Service (TANGO_LOG_PATH)

The TANGO_LOG_PATH environment variable can be used to specify the log files location. If not set it
defaults to /tmp/tango under Unix and c:/tango under Windows. For a given device-server, the files are
actually saved into $TANGO_LOG_PATH/{ server_name}/{ server_instance_name}. This means that all
the devices running within the same process log into the same directory.

A.12.3.3 The database and controlled access server (MYSQL_USER and MYSQL_PASSWORD)

The Tango database server and the controlled access server (if used) need to connect to the MySQL
database. They are using two environment variables called MYSQL_USER and MYSQL_PASSWORD
to know which user/password they must use to access the database. If these environment variables are not
defined, they will connect to the DBMS using the "root" login.

A.12.3.4 The controlled access

Even if a controlled access system is running, it is possible to by-pass it if in the environment of the client
application the environment variable SUPER_TANGO is defined to "true".

Appendix B

The TANGO IDL file : Module Tango

The fundamental idea of a device as a network object which has methods and data has been retained for
TANGO. In TANGO objects are real C++/Java objects which can be instantiated and accessed via their
methods and data by the client as if they were local objects. This interface is defined in CORBA IDL. The
fundamental interface is Device. All TANGO control objects will be of this type i.e. they will implement
and offer the Device interface. Some wrapper classes group in an API will hide the calls to the Device
interface from the client so that the client will only see the wrapper classes. All CORBA details will be
hidden from the client as far as possible.

B.1 Aliases
AttributeConfigList

typedef sequence<AttributeConfig> AttributeConfigList;

AttributeConfigList_2

typedef sequence<AttributeConfig_2> AttributeConfigList_2;

AttributeConfigList_3

typedef sequence<AttributeConfig_3> AttributeConfigList_3;

AttributeDimList

typedef sequence<AttributeDim> AttributeDimList;

AttributeValueList

typedef sequence<AttributeValue> AttributeValueList;

AttributeValueList_3

typedef sequence<AttributeValue_3> AttributeValueList_3;

AttributeValueList_4

417

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 418

typedef sequence<AttributeValue_4> AttributeValueList_4;

AttrQualityList

typedef sequence<AttrQuality> AttrQualityList;

CppClntIdent

typedef unsigned long CppClntIdent;

DevAttrHistoryList

typedef sequence<DevAttrHistory> DevAttrHistoryList;

DevAttrHistoryList_3

typedef sequence<DevAttrHistory_3> DevAttrHistoryList_3;

DevBoolean

typedef boolean DevBoolean;

DevCmdHistoryList

typedef sequence<DevCmdHistory> DevCmdHistoryList

DevCmdInfoList

typedef sequence<DevCmdInfo> DevCmdInfoList;

DevCmdInfoList_2

typedef sequence<DevCmdInfo_2> DevCmdInfoList_2;

DevDouble

typedef double DevDouble;

DevErrorList

typedef sequence<DevError> DevErrorList;

DevErrorListList

typedef sequence<DevErrorList> DevErrorListList;

DevFloat

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 419

typedef float DevFloat;

DevLong

typedef long DevLong;

DevShort

typedef short DevShort;

DevString

typedef string DevString;

DevULong

typedef unsigned long DevULong;

DevUShort

typedef unsigned short DevUShort;

DevVarCharArray

typedef sequence<octet> DevVarCharArray;

DevVarDoubleArray

typedef sequence<double> DevVarDoubleArray;

DevVarEncodedArray

typedef sequence<DevEncoded> DevVarEncodedArray;

DevVarFloatArray

typedef sequence<float> DevVarFloatArray;

DevVarLongArray

typedef sequence<long> DevVarLongArray;

DevVarShortArray

typedef sequence<short> DevVarShortArray;

DevVarStateArray
typedef sequence<DevState> DevVarStateArray;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 420

DevVarStringArray

typedef sequence<string> DevVarStringArray;

DevVarULongArray

typedef sequence<unsigned long> DevVarULongArray;

DevVarUShortArray

typedef sequence<unsigned short> DevVarUShortArray;

EltInArrayList

typedef sequence<EltInArray> EltInArrayList;

JavaUUID

typedef unsigned long long JavaUUID[2];

NamedDevErrorList
typedef sequence<NamedDevError> NamedDevErrorList;

TimeValList

typedef sequence<TimeVal> TimeValList;

B.2 Enums
AttrDataFormat

enum AttrDataFormat
{

SCALAR,
SPECTRUM,
IMAGE,
FMT_UNKNOWN

};

AttributeDataType

enum AttributeDataType
{

ATT_BOOL,
ATT_SHORT,
ATT_LONG,
ATT_LONG64,
ATT_FLOAT,
ATT_DOUBLE,
ATT_UCHAR,

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 421

ATT_USHORT,
ATT_ULONG,
ATT_ULONG64,
ATT_STRING,
ATT_STATE,
DEVICE_STATE,
ATT_ENCODED,
NO_DATA

};

AttrQuality

enum AttrQuality
{

ATTR_VALID,
ATTR_INVALID,
ATTR_ALARM,
ATTR_CHANGING,
ATTR_WARNING

};

AttrWriteType

enum AttrWriteType
{

READ,
READ_WITH_WRITE,
WRITE,
READ_WRITE

};

DispLevel

enum DispLevel
{

OPERATOR,
EXPERT

};

DevSource

enum DevSource
{

DEV,
CACHE,
CACHE_DEV

};

DevState

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 422

enum DevState
{

ON,
OFF,
CLOSE,
OPEN,
INSERT,
EXTRACT,
MOVING,
STANDBY,
FAULT,
INIT,
RUNNING,
ALARM,
DISABLE,
UNKNOWN

};

ErrSeverity

enum ErrSeverity
{

WARN,
ERR,
PANIC

};

LockerLanguage

enum LockerLanguage
{

CPP,
JAVA

};

B.3 Structs
ArchiveEventProp

struct ArchiveEventProp
{

string rel_change;
string abs_change;
string period;
DevVarStringArray extensions;

};

AttributeAlarm
struct AttributeAlarm
{

string min_alarm;
string max_alarm;
string min_warning;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 423

string max_warning;
string delta_t;
string delta_val;
DevVarStringArray extensions;

};

AttDataReady
struct AttributeAlarm
{

string name;
long data_type;
long ctr;

};

AttributeConfig
struct AttributeConfig
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
long data_type;
long max_dim_x;
long max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;
string min_value;
string max_value;
string min_alarm;
string max_alarm;
string writable_attr_name;
DevVarStringArray extensions;

};

AttributeConfig_2

struct AttributeConfig_2
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
long data_type;
long max_dim_x;
long max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 424

string min_value;
string max_value;
string min_alarm;
string max_alarm;
string writable_attr_name;
DispLevel level;
DevVarStringArray extensions;

};

AttributeConfig_3

struct AttributeConfig_3
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
long data_type;
long max_dim_x;
long max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;
string min_value;
string max_value;
string writable_attr_name;
DispLevel level;
AttributeAlarm alarm;
EventProperties event_prop;
DevVarStringArray extensions;
DevVarStringArray sys_extensions;

};

AttributeDim

struct AttributeDim
{

long dim_x;
long dim_y;

};

AttributeValue

struct AttributeValue
{

any value;
AttrQuality quality;
TimeVal time;
string name;
long dim_x;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 425

long dim_y;
};

AttributeValue_3

struct AttributeValue_3
{

any value;
AttrQuality quality;
TimeVal time;
string name;
AttributeDim r_dim;
AttributeDim w_dim;
DevErrorList err_list;

};

AttributeValue_4

struct AttributeValue_4
{

AttrValUnion value;
AttrQuality quality;
AttrDataFormat data_format;
TimeVal time;
string name;
AttributeDim r_dim;
AttributeDim w_dim;
DevErrorList err_list;

};

ChangeEventProp

struct ChangeEventProp
{

string rel_change;
string abs_change;
DevVarStringArray extensions;

};

DevAttrHistory

struct DevAttrHistory
{

boolean attr_failed;
AttributeValue value;
DevErrorList errors;

};

DevAttrHistory_3

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 426

struct DevAttrHistory_3
{

boolean attr_failed;
AttributeValue_3 value;

};

DevAttrHistory_4

struct DevAttrHistory_4
{

string name;
TimeValList dates;
any value;
AttrQualityList quals;
EltInArrayList quals_array;
AttributeDimList r_dims;
EltInArrayList r_dims_array;
AttributeDimList w_dims;
EltInArrayList w_dims_array;
DevErrorListList errors;
EltInArrayList errors_array;

};

DevCmdHistory

struct DevCmdHistory
{

TimeVal time;
boolean cmd_failed;
any value;
DevErrorList errors;

};

DevCmdHistory_4

struct DevCmdHistory_4
{

TimeValList dates;
any value;
AttributeDimList dims;
EltInArrayList dims_array;
DevErrorListList errors;
EltInArrayList errors_array;
long cmd_type;

};

DevCmdInfo

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 427

struct DevCmdInfo
{

string cmd_name;
long cmd_tag;
long in_type;
long out_type;
string in_type_desc;
string out_type_desc;

};

DevCmdInfo_2

struct DevCmdInfo_2
{

string cmd_name;
DispLevel level;
long cmd_tag;
long in_type;
long out_type;
string in_type_desc;
string out_type_desc;

};

DevEncoded

struct DevEncoded
{

DevString encoded_format;
DevVarCharArray encoded_data;

};

DevError

struct DevError
{

string reason;
ErrSeverity severity;
string desc;
string origin;

};

DevInfo

struct DevInfo
{

string dev_class;
string server_id;
string server_host;
long server_version;
string doc_url;

};

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 428

DevInfo_3

struct DevInfo_3
{

string dev_class;
string server_id;
string server_host;
long server_version;
string doc_url;
string dev_type;

};

DevVarDoubleStringArray

struct DevVarDoubleStringArray
{

DevVarDoubleArray dvalue;
DevVarStringArray svalue;

};

DevVarLongStringArray

struct DevVarLongStringArray
{

DevVarLongArray lvalue;
DevVarStringArray svalue;

};

EltInArray

struct EltInArray
{

long start;
long nb_elt;

};

EventProperties

struct EventProperties
{

ChangeEventProp ch_event;
PeriodicEventProp per_event;
ArchiveEventProp arch_event;

};

JavaClntIdent

struct JavaClntIdent
{

string MainClass;
JavaUUID uuid;

};

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 429

NamedDevError

struct NamedDevError
{

string name;
long index_in_call;
DevErrorList err_list;

};

PeriodicEventProp

struct PeriodicEventProp
{

string period;
DevVarStringArray extensions;

};

TimeVal

struct TimeVal
{

long tv_sec;
long tv_usec;
long tv_nsec;

};

B.4 Unions
AttrValUnion

union AttrValUnion switch (AttributeDataType)
{
case ATT_BOOL:

DevVarBooleanArray bool_att_value;
case ATT_SHORT:

DevVarShortArray short_att_value;
case ATT_LONG:

DevVarLongArray long_att_value;
case ATT_LONG64:

DevVarLong64Array long64_att_value;
case ATT_FLOAT:

DevVarFloatArray float_att_value;
case ATT_DOUBLE:

DevVarDoubleArray double_att_value;
case ATT_UCHAR

DevVarCharArray uchar_att_value;
case ATT_USHORT:

DevVarUShortArray ushort_att_value;
case ATT_ULONG:

DevVarULongArray ulong_att_value;
case ATT_ULONG64:

DevVarULong64Array ulong64_att_value;
case ATT_STRING:

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 430

DevVarStringArray string_att_value;
case ATT_STATE:

DevVarStateArray state_att_value;
case DEVICE_STATE:

DevState dev_state_att;
case ATT_ENCODED:

DevVarEncodedArray encoded_att_value;
case NO_DATA:

DevBoolean union_no_data;
};

ClntIdent
union ClntIdent switch (LockerLanguage)
{
case CPP:

CppClntIdent cpp_clnt;
case JAVA:

JavaClntIdent java_clnt;
};

B.5 Exceptions
DevFailed

exception DevFailed
{

DevErrorList errors;
};

MultiDevFailed
exception MultiDevFailed
{

NamedDevErrorList errors;
};

B.6 Interface Tango::Device
The fundamental interface for all TANGO objects. Each Device is a network object which can be accessed
locally or via network. The network protocol on the wire will be IIOP. The Device interface implements
all the basic functions needed for doing generic synchronous and asynchronous I/O on a device. A Device
object has data and actions. Data are represented in the form of Attributes. Actions are represented in the
form of Commands. The CORBA Device interface offers attributes and methods to access the attributes
and commands. A client will either use these methods directly from C++ or Java or access them via
wrapper classes implemented in a API. The Device interface describes only the remote network interface.
Implementation features like threads, command security, priority etc. are dealt with in server side of the
device server model.

B.6.1 Attributes
adm_name

readonly attribute string adm_name;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 431

adm_name (readonly) - administrator device unique ascii identifier

description

readonly attribute string description;
description (readonly) - general description of device

name

readonly attribute string name;
name (readonly) - unique ascii identifier

state

readonly attribute DevState state;
state (readonly) - device state

status

readonly attribute string status;
status (readonly) - device state as ascii string

B.6.2 Operations
black_box

DevVarStringArray black_box(in long number)
raises(DevFailed);

read list of last N commands executed by clients

Parameters:
number – of commands to return

Returns:
list of command and clients

command_inout

any command_inout(in string command, in any argin)
raises(DevFailed);

execute a command on a device synchronously with no input parameter and one one output parameter

Parameters:
command – ascii string e.g. "On"
argin – command input parameter e.g. float

Returns:
command result.

command_list_query

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 432

DevCmdInfoList command_list_query()
raises(DevFailed);

query device to see what commands it supports

Returns:
list of commands and their types

command_query

DevCmdInfo command_query(in string command)
raises(DevFailed);

query device to see command argument

Parameters:
command – name

Returns:
command and its types

get_attribute_config

AttributeConfigList get_attribute_config(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute configurations read

info

DevInfo info()
raises(DevFailed);

return general information about object e.g. class, type, ...

Returns:
device info

ping

void ping()
raises(DevFailed);

ping a device to see if it alive

read_attributes

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 433

AttributeValueList read_attributes(in DevVarStringArray names)
raises(DevFailed);

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute values read

set_attribute_config

void set_attribute_config(in AttributeConfigList new_conf)
raises(DevFailed);

set the configuration for a variable list of attributes from the device

Parameters:
new_conf – list of attribute configuration to be set

write_attributes

void write_attributes(in AttributeValueList values)
raises(DevFailed);

write a variable list of attributes to a device

Parameters:
values – list of attribute values to write

B.7 Interface Tango::Device_2
interface Device_2 inherits from Tango::Device

The updated Tango device interface. It inherits from Tango::Device and therefore supports all at-
tribute/operation defined in the Tango::Device interface. Two CORBA operations have been modified to
support more parameters (command_inout_2 and read_attribute_2). Three CORBA operations now retrun
a different data type (command_list_query_2, command_query_2 and get_attribute_config)

B.7.1 Operations
command_inout_2

any command_inout_2(in string command, in any argin, in DevSource source)
raises(DevFailed);

execute a command on a device synchronously with no input parameter and one one output parameter

Parameters:
command – ascii string e.g. "On"
argin – command input parameter
source – data source

Returns:

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 434

command result.

command_inout_history_2

DevCmdHistoryList command_inout_history_2(in string command, in long n)
raises(DevFailed);

Get command result history from polling buffer. Obviously, the command must be polled.

Parameters:
command – ascii string e.g. "On"
n – record number

Returns:
list of command result (or exception parameters if the command failed).

command_list_query_2

DevCmdInfoList_2 command_list_query_2()
raises(DevFailed);

query device to see what commands it supports

Returns:
list of commands and their types

command_query_2

DevCmdInfo_2 command_query_2(in string command)
raises(DevFailed);

query device to see command argument

Parameters:
command – name

Returns:
command and its types

get_attribute_config_2

AttributeConfigList_2 get_attribute_config_2(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute configurations read

read_attributes_2

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 435

AttributeValueList read_attributes_2(in DevVarStringArray names, in DevSource source)
raises(DevFailed)

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute values read

read_attribute_history_2

DevAttrHistoryList read_attributes_history_2(in string name, in long n)
raises(DevFailed)

Get attribute value history from polling buffer. Obviously, the attribute must be polled.

Parameters:
name – Attribute name to read history
n – Record number

Returns:
list of attribute value (or exception parameters if the attribute failed).

B.8 Interface Tango::Device_3
interface Device_3 inherits from Tango::Device_2

The updated Tango device interface for Tango release 5. It inherits from Tango::Device_2 and there-
fore supports all attribute/operation defined in the Tango::Device_2 interface. Six CORBA operations
now return a different data type (read_attributes_3, write_attributes_3, read_attribute_history_3, info_3,
get_attribute_config_3 and set_attribute_config_3)

B.8.1 Operations
read_attributes_3

AttributeValueList_3 read_attributes_3(in DevVarStringArray names, in DevSource source)
raises(DevFailed);

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read
source – data source

Returns:
list of attribute values read

write_attributes_3

void write_attributes_3(in AttributeValueList values)
raises(DevFailed, MultiDevFailed);

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 436

write a variable list of attributes to a device

Parameters:
values – list of attribute values to write

read_attribute_history_3

DevAttrHistoryList_3 read_attributes_history_3(in string name, in long n)
raises(DevFailed)

Get attribute value history from polling buffer. Obviously, the attribute must be polled.

Parameters:
name – Attribute name to read history
n – Record number

Returns:
list of attribute value (or exception parameters if the attribute failed).

info_3

DevInfo_3 info()
raises(DevFailed);

return general information about object e.g. class, type, ...

Returns:
device info

get_attribute_config_3

AttributeConfigList_3 get_attribute_config_3(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute configurations read

set_attribute_config_3

void set_attribute_config_3(in AttributeConfigList_3 new_conf)
raises(DevFailed);

set the configuration for a variable list of attributes from the device

Parameters:
new_conf – list of attribute configuration to be set

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 437

B.9 Interface Tango::Device_4
interface Device_4 inherits from Tango::Device_3

The updated Tango device interface for Tango release 7. It inherits from Tango::Device_3 and therefore
supports all attribute/operation defined in the Tango::Device_3 interface.

B.9.1 Operations
read_attributes_4

AttributeValueList_4 read_attributes_4(in DevVarStringArray names, in DevSource source,in ClntI-
dent cl_ident)

raises(DevFailed);

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read
source – data source
cl_ident – client identificator

Returns:
list of attribute values read

write_attributes_4

void write_attributes_3(in AttributeValueList_4 values, in ClniIdent cl_ident)
raises(DevFailed, MultiDevFailed);

write a variable list of attributes to a device

Parameters:
values – list of attribute values to write
cl_ident – client identificator

command_inout_4

any command_inout_4(in string command, in any argin, in DevSource source, In ClntIdent cl_ident)
raises(DevFailed);

Execute a command on a device synchronously with one input parameter and one one output parameter

Parameters:
command – ascii string e.g. "On"
argin – command input parameter
source – data source
cl_ident – client identificator

Returns:
command result

read_attribute_history_4

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 438

DevAttrHistory_4 read_attributes_history_4(in string name, in long n)
raises(DevFailed)

Get attribute value history from polling buffer. Obviously, the attribute must be polled.

Parameters:
name – Attribute name to read history
n – Record number

Returns:
Attribute value (or exception parameters if the attribute failed) coded in a structure.

command_inout_history_4

DevCmdHistory_4 command_inout_history_4(in string command, in long n)
raises(DevFailed);

Get command value history from polling buffer. Obviously, the command must be polled.

Parameters:
name – Command name to read history
n – Record number

Returns:
Command value (or exception paramteters) coded in a structure

write_read_attribute_4

AttributeValueList_4 write_read_attribute_4(in AttributeValueList_4 values, in ClntIdent cl_ident)
raises(DevFailed,MultiDevFailed);

Write then read a variable list of attributes from a device

Parameters:
values – list of attribute values to write
cl_ident – client identificator

Returns:
list of attribute values read

set_attribute_config_4

void set_attribute_config_4(in AttributeConfigList_3 new_conf, in ClntIdent cl_ident)
raises(DevFailed);

set the configuration for a variable list of attributes from the device

Parameters:
new_conf – list of attribute configuration to be set
cl_ident – client identificator

Appendix C

Tango object naming (device, attribute
and property)

C.1 Device name
A Tango device name is a three fields name. The field separator is the / character. The first field is named
domain, the second field is named family and the last field is named member.A tango device name looks
like

domain/family/member

It is a hierarchical notation. The member specifies which element within a family. The family specifies
which kind of equipment within a domain. The domain groups devices related to which part of the accel-
erator/experiment they belongs to. At ESRF, some of the machine control system domain name are SR for
the storage ring, TL1 for the transfer line 1 or SY for the synchrotron booster. For experiment, ID11 is
the domain name for all devices belonging to the experiment behind insertion device 11. Here are some
examples of Tango device name used at the ESRF :

• sr/d-ct/1 : The current transformer. The domain part is sr for storage ring. The family part is d-ct for
diagnostic/current transformer and the member part is 1

• fe/v-pen/id11-1 : A Penning gauge. The domain part is fe for front-end. The family part is v-pen for
vacuum/penning and the member name is id11-1 to specify that this is the first gauge on the front-end
part after the insertion device 11

C.2 Full object name
The device name as described above is not enough to cover all Tango usage like device server without
database or device access for multi control system. With the naming schema, we must also be able to name
attribute and property. Therefore, the full naming schema is

[protocol://][host:port/]device_name[/attribute][->property][#dbase=xx]

The protocol, host, port, attribute, property and dbase fields are optional. The meaning of these fields are
:

protocol : Specifies which protocol is used (Tango or Taco). Tango is the default

dbase=xx : The supported value for xx is yes and no. This field is used to specify that the device is a
device served by a device server started with or without database usage. The default value is
dbase=yes

439

APPENDIX C. TANGO OBJECT NAMING (DEVICE, ATTRIBUTE AND PROPERTY) 440

host:port : This field has different meaning according to the dbase value. If dbase=yes (the default), the
host is the host where the control system database server is running and port is the database
server port. It has a higher priority than the value defined by the TANGO_HOST environment
variable. If dbase=no, host is the host name where the device server process serving the device
is running and port is the device server process port.

attribute : The attribute name

property : The property name

The host:port and dbase=xx fields are necessary only when creating the DeviceProxy object used to re-
motely access the device. The -> characters are used to specify a property name.

C.2.1 Some examples
C.2.1.1 Full device name examples

• gizmo:20000/sr/d-ct/1 : Device sr/d-ct/1 running in a specified control system with the database
server running on a host called gizmo and using the port number 20000. The TANGO_HOST envi-
ronment variable will not be used.

• tango://freak:2345/id11/rv/1#dbase=no : Device served by a device server started without database.
The server is running on a host called freak and use port number 2345. //freak:2345/id11/rv/1#dbase=no
is also possible for the same device.

• Taco://sy/ps-ki/1 : Taco device sy/ps-ki/1

C.2.1.2 Attribute name examples

• id11/mot/1/Position : Attribute position for device id11/mot/1

• sr/d-ct/1/Lifetime : Attribute lifetime for Tango device sr/d-ct/1

C.2.1.3 Attribute property name

• id11/rv/1/temp->label : Property label for attribute temp for device id11/rv/1.

• sr/d-ct/1/Lifetime->unit : The unit property for the Lifetime attribute of the sr/d-ct/1 device

C.2.1.4 Device property name

• sr/d-ct/1->address : the address property for device sr/d-ct/1

C.2.1.5 Class property name

• Starter->doc_url : The doc_url property for a class called Starter

C.3 Device and attribute name alias
Within Tango, each device or attribute can have an alias name defined in the database. Every time a device
or an attribute name is requested by the API’s, it is possible to use the alias. The alias is simply an open
string stored in the database. The rule of the alias is to give device or attribute name a name more natural
from the physicist point of view. Let’s imagine that for experiment, the sample position is described by
angles called teta and psi in physics book. It is more natural for physicist when they move the motor related
to sample position to use teta and psi rather device name like idxx/mot/1 or idxx/mot/2. An attribute alias is a
synonym for the four fields used to name an attribute. For instance, the attribute Current of a power-supply
device called sr/ps/dipole could have an alias DipoleCurrent. This alias can be used when creating an

APPENDIX C. TANGO OBJECT NAMING (DEVICE, ATTRIBUTE AND PROPERTY) 441

instance of a AttributeProxy class instead of the full attribute name which is sr/ps/dipole/Current. Device
alias name are uniq within a Tango control system. Attribute alias name are also uniq within a Tango
control system.

C.4 Reserved words and characters, limitations
From the naming schema described above, the reserved characters are :,#,/ and the reserved string is : ->.
On top of that, the dbt_update tool (tool to fulfill database from the content of a file) reserved the device
word

The device name, its domain, member and family fields and its alias are stored in the Tango database.
The default maximum size for these items are :

Item max length
device name 255
domain field 85
family field 85

member field 85
device alias name 255

The device name, the command name, the attribute name, the property name, the device alias name and
the device server name are case insensitive.

Appendix D

Starting a Tango control system

D.1 Without database
When used without database, there is no additional process to start. Simply starts device server using the
-nodb option (and eventually the -dlist option) on specific port. See 9.9 to find informations on how to
start/write Tango device server not using the database.

D.2 With database
Starting the Tango control system simply means starting its database device server on a well defined host
using a well defined port. Use the host name and the port number to build the TANGO_HOST environment
variable. See 8.6.2 to find how starting a device server on a specific host. Obviously, the underlying
database software (MySQL) must be started before the Tango database device server. The Tango database
server connects to MySQL using a default logging name set to "root". You can change this behaviour with
the MYSQL_USER and MYSQL_PASSWORD environment variables. Define them before starting the
database server.

If you are using the Tango administration graphical tool called Astor, you also need to start a specific
Tango device server called Starter on each host where Tango device server(s) are running. See [19] for
Astor documentation. This starter device server is able to start even before the Tango database device server
is started. In this case, it will enter a loop in which it periodically tries to access the Tango database device.
The loop exits and the server starts only if the database device access succeed.

D.3 With database and event
On top of what is described in the previous chapter, using event means using CORBA Notification service.
Start one Notification Service daemon on each host where device server(s) used via events are running. The
Notification Service daemon event channel factory IOR has to be registered in the Tango database. This is
done with the notifd2db command. The notification daemon is a process with a high thread number. By
default, Unix like operating systems reserve a big amount of memory for each thread stack (8 MByte for
Linux/Ubuntu and Solaris, 10 MByte for Linux/RedHat 4). If your process has several hundreds of threads,
this could generate a too high memory requirement on virtual memory and even exceed the maximun
allowed memory per process (3 GBytes on Linux for 32 bits computer). The notification service daemon
works very well with a value of only 2 Mybtes for thread stack. The Unix command line "ulimit -s 2048"
asks the operating system to give 2 Mbytes for each thread stack. Example of starting and registering a
Notification Service daemon on a UNIX like operating system

442

APPENDIX D. STARTING A TANGO CONTROL SYSTEM 443

1 ulimit -s 2048
2 notifd -n -DDeadFilterInterval=300 &
3 notifd2db

The Notification Service daemon is started at line 2. Its "-DDeadFilterInterval" option is used to specify
some internal cleaning of dead objects within the notification service. The "-n" option is used to disable
the use of the CORBA Naming Service for registering the default event channel factory. The registration
of the Notification Service daemon in the Tango database is done at line 2.

It differs on a Windows computer

1 notifd -n -DDeadFilterInterval=300 -DFactoryIORFileName=C:\Temp\evfact.ior &
2 notifd2db C:\Temp\evfact.ior

D.4 With file used as database
When used with database on file, there is no additional process to start. Simply starts device server using
the -file option specifying file name port. See 9.8 to find informations on how to start Tango device server
using database on file.

D.5 With file used as database and event
Using event means using CORBA Notification service. Start one Notification Service daemon on the host
where device server(s) using events are running. The Notification Service daemon event channel factory
IOR has to be registered in the file(s) use as database. This is done with the notifd2db command. Example
of starting and registering a Notification Service daemon on a UNIX like operating system

1 notifd -n -DDeadFilterInterval=300 &
2 notifd2db -o /var/myfile.res

The Notification Service daemon is started at line 1. Its "-n" option is used to disable the use of
the CORBA Naming Service for registering the default event channel factory. The registration of the
Notification Service daemon in the file used as database is done at line 2 with its -o command line option.

It differs on a Windows computer because the name of the file used by the CORBA notification service
to store its channel factory IOR must be specified using its -D command line option. This file name has
also to be passed to the notifd2db command.

1 notifd -n -DDeadFilterInterval=300 -DFactoryIORFileName=C:\Temp\evfact.ior &
2 notifd2db C:\Temp\evfact.ior -o C:\Temp\myfile.res

APPENDIX D. STARTING A TANGO CONTROL SYSTEM 444

D.6 With the controlled access
Using the Tango controlled access means starting a specific device server called TangoAccessControl. By
default, this server has to be started with the instance name set to "1" and its device name is "sys/access_control/1".
The command line to start this device server is:

TangoAccessControl 1

This server connects to MySQL using a default logging name set to "root". You can change this behaviour
with the MYSQL_USER and MYSQL_PASSWORD environment variables. Define them before starting
the controlled access device server. This controlled access system uses the Tango database to retrieve user
rights and it is not possible to run it in a Tango control system running without database.

Appendix E

The notifd2db utility

E.1 The notifd2db utility usage
The notifd2db utility is used to pass to Tango the necessary information for the Tango servers or clients to
build connection with the CORBA notification service. Its usage is:

notifd2db [notifd2db_IOR_file] [host] [-o Device_server_database_file_name] [-h]

The [notifd2db_IOR_file] parameter is used to specify the file name used by the notification service
to store its main IOR. This parameter is not mandatoty. Its default value is /tmp/rdfact.ior. The [host]
parameter is ued to specify on which host the notification service should be exported. The default value
is the host on which the command is run. The [-o Device_server_database_file_name] is used in case of
event and device server started with the file as database (the -file device server command line option). The
file name used here must be the file name used by the device server in its -file option. The [-h] option is
just to display an help message. Notifd2db utility usage example:

notifd2db

to register notification service on the current host using the default notifictaion service IOR file name.

notifd C:\Temp\nd.ior

to register a notification service with IOR file named C:\Temp\nd.ior.

notifd -o /var/my_ds_file.res

to register notification service in the /var/my_ds_file.res file used by a device server started with the device
server -file command line option.

445

Appendix F

The property file syntax

F.1 Property file usage
A property file is a file where you store all the property(ies) related to device(s) belonging to a specific
device server process. In this file, one can find:

• Which device(s) has to be created for each Tango class embedded in the device server process

• Device(s) properties

• Device(s) attribute properties

This type of file is not required by a Tango control system. These informations are stored in the Tango
database and having them also in a file could generate some data duplication issues. Nevertheless, in some
cases, it could very very helpful to generate this type of file. These cases are:

1. If you want to run a device server process on a host which does not have access to the Tango control
system database. In such a case, the user can generate the file from the database content and run the
device server process using this file as database (-file option of device server process)

2. In case of massive property changes where no tool will be more adapted than your favorite text editor.
In such a case, the user can generate a file from the database content, change/add/modify file contents
using his favorite tool and then reload file content into the database.

Jive[21] is the tool provided to generate and load a property file. To generate a device server process
properties file, select your device server process in the "Server" tab, right click and select "Save Server
Data". A file selection window pops up allowing you to choose your file name and path. To reload a file in
the Tango database, click on "File" then "Load Property File".

F.2 Property file syntax

1 #---
2 # SERVER TimeoutTest/manu, TimeoutTest device declaration
3 #---
4
5 TimeoutTest/manu/DEVICE/TimeoutTest: "et/to/01",\
6 "et/to/02",\
7 "et/to/03"
8
9

446

APPENDIX F. THE PROPERTY FILE SYNTAX 447

10 # --- et/to/01 properties
11
12 et/to/01->StringProp: Property
13 et/to/01->ArrayProp: 1,\
14 2,\
15 3
16 et/to/01->attr_min_poll_period: TheAttr,\
17 1000
18 et/to/01->AnotherStringProp: "A long string"
19 et/to/01->ArrayStringProp: "the first prop",\
20 "the second prop"
21
22 # --- et/to/01 attribute properties
23
24 et/to/01/TheAttr->display_unit: 1.0
25 et/to/01/TheAttr->event_period: 1000
26 et/to/01/TheAttr->format: %4d
27 et/to/01/TheAttr->min_alarm: -2.0
28 et/to/01/TheAttr->min_value: -5.0
29 et/to/01/TheAttr->standard_unit: 1.0
30 et/to/01/TheAttr->__value: 111
31 et/to/01/BooAttr->event_period: 1000doc_url
32 et/to/01/TestAttr->display_unit: 1.0
33 et/to/01/TestAttr->event_period: 1000
34 et/to/01/TestAttr->format: %4d
35 et/to/01/TestAttr->standard_unit: 1.0
36 et/to/01/DbAttr->abs_change: 1.1
37 et/to/01/DbAttr->event_period: 1000
38
39 CLASS/TimeoutTest->InheritedFrom: Device_4Impl
40 CLASS/TimeoutTest->doc_url: "http://www.esrf.fr/some/path"

Line 1 - 3: Comments. Comment starts with the ’#’ character
Line 4: Blanck line
Line 5 - 7: Devices definition. "DEVICE" is the keyword to declare a device(s) definition sequence.

The general syntax is:

<DS name>/<inst name>/DEVICE/<Class name>: dev1,dev2,dev3

Device(s) name can follow on next line if the last line character is ’\’ (see line 5,6). The ’"’ characters
around device name are generated by the Jive tool and are not mandatory.

Line 12: Device property definition. The general device property syntax is

<device name>-><property name>: <property value>

In case of array, the array element delimiter is the character ’,’. Array definition can be splitted on several
lines if the last line character is ’\’. Allowed characters after the ’:’ delimiter are space, tabulation or
nothing.

Line 13 - 15 and 16 - 17: Device property (array)
Line 18: A device string property with special characters (spaces). The ’"’ character is used to delimit

the string
Line 24 - 37: Device attribute property definition. The general device attribute property syntax is

<device name>/<attribute name>-><property name>: <property value>

APPENDIX F. THE PROPERTY FILE SYNTAX 448

Allowed characters after the ’:’ delimiter are space, tabulation or nothing.
Line 39 - 40: Class property definition. The general class property syntax is

CLASS/<class name>-><property name>: <property value>

"CLASS" is the keyword to declare a class property definition. Allowed characters after the ’:’ delimiter
are space, tabulation or nothing. On line 40, the ’"’ characters around the property value are mandatory
due to the ’/’ character contains in the property value.

List of pictures

• Cover page: From http://www.juliaetandres.com

• on page 26: By O. Chevre from http://www.forteresses.free.fr

• on page 43: From http://www.photo-evasion.com licence "Creative Commons"

• on page 51: By R. STEINMANN © ECK2000

• on page 89: By R. STEINMANN © ECK2000

• on page 271: By R. STEINMANN © ECK2000

• on page 366: By O. Chevre from http://www.forteresses.free.fr

• on page 391: By R. STEINMANN © ECK2000

449

Bibliography

[1] OMG home page - http://www.omg.org

[2] “Advanced CORBA programming with C++” by M.Henning and S.Vinosky (Addison-Wesley 1999)

[3] TANGO home page - http://www.tango-controls.org

[4] ALBA home page - http://www.cells.es

[5] Soleil home page - http://www.synchrotron-soleil.fr

[6] MySQL home page - http://www.mysql.com

[7] “MySQL and mSQL” by Randy Jay Yarger, George Reese and Tim King (O’Reilly 1999)

[8] TANGO device classes on-line documentation - http://www.tango-controls.org/device-servers

[9] “C++ programming language” third edition by Stroustrup (Addison-Wesley)

[10] “Design Patterns” by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (Addison-Wesley
1995)

[11] omniORB home page - http://omniorb.sourceforge.net

[12] The Common Object Request Broker: Architecture and Specification Revision 2.3 available from
OMG home page - http://www.omg.org

[13] Java Pro - June 1999 : Plugging memory leak by Tony Leung

[14] CVS WEB page - http://www.cyclic.com

[15] POGO home page - http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/pogo_doc/index.html

[16] JacORB home page - http://www.jacorb.org

[17] Tango ATK reference on-line documentation - http://www.esrf.eu/computing/cs/tango/tango_doc/atk_doc/index.html

[18] The Notification Service specification available from OMG home page - http://www.omg.org

[19] ASTOR home page - http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/astor_doc/index.html

[20] Elettra home page - http://www.elettra.trieste.it

[21] JIVE home page - http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/jive_doc/index.html

[22] Tango ATK Tutorials - http://www.esrf.eu/computing/cs/tango/tango_doc/atk_tutorial/Tutorials.pdf

450

Index

-WIN32-WINNT, 357
-v, 313
<<, 314

abs-change, 59, 400
AddLoggingTarget, 287, 403, 408
AddObjPolling, 287, 369, 402, 405
adm-name, 286
administration, 47, 286
ALARM, 284, 369, 399
alarm, 278, 284
alarm(), 361
ALBA, 29
alias, 45, 158, 201, 440
allways-executed-hook, 284, 285
always-executed-hook, 276, 280, 284, 332, 337,

343
any, 296–298, 304
ApiUtil, 53
archive, 57, 138
archive-abs-change, 59, 400
archive-period, 59, 400
archive-rel-change, 59, 400
Astor, 442
AsynCall, 247
asynchronous, 54, 58
AsynReplyNotArrived, 247
Attr, 275, 279, 330
ATTR-ALARM, 368, 369, 399
attr-min-poll-period, 371, 393
attr-poll-ring-depth, 393
ATTR-VALID, 336
ATTR-WARNING, 368, 399
AttrConfEventData, 61
AttrConfEventDataList, 61
AttrHistoryStack, 374
attribte-list, 254
Attribute, 275, 278, 335
attribute, 32, 36, 37, 40, 42, 44–46, 48, 56, 80,

83, 275, 277, 278, 284, 310, 325, 326,
335, 336, 341, 394

attribute-factory, 277, 282, 319, 322, 325
AttributeInfo, 163
AttributeInfoEx, 163
AttributeList, 255, 268, 269

AttributeProxy, 53, 56
attributes, 254, 264, 269

black-box, 45, 47, 275, 392, 401, 431

CallBack, 53, 60, 62, 64
callback, 54, 55
change, 56, 137
class-factory, 287, 289, 318
CLASSPATH, 94, 358
cmd-min-poll-period, 371, 393
cmd-poll-ring-depth, 393
CmdArgTypeName, 414
CmdHistoryStack, 374
Command, 273, 275, 276, 281, 298, 327, 328
command, 45, 46, 273, 276, 277, 279, 284, 320,

327, 364
command-factory, 277, 281, 282, 289, 319, 363
command-handler, 46, 277, 284, 327
command-inout, 46, 68, 76, 79, 275, 284, 431
command-inout(), 58
command-inout-4, 437
command-inout-async, 46, 275
command-inout-history-2, 373, 434, 435
command-inout-history-4, 438
command-inout-history-X, 48
command-list, 254
command-list-query, 47, 431
command-query, 47, 432
CommandList, 255, 268, 269
commands, 254, 264, 270
CommunicationFailed, 247
compatibility, 163
compiling, 354
ConnectionFailed, 247
console, 344
consumer, 48, 410
controlled-access, 49, 388
CORBA, 29, 44, 275, 284, 288, 366, 402
core, 254
create-DevVarLongArray, 303
create-DevVarStringArray, 304
CtrlSystem, 391, 411

data-format, 395

451

INDEX 452

data-type, 395
Database, 53
database, 45, 48, 384, 385, 442, 443
DataReadyEventData, 61, 177, 212
DataReadyEventDataList, 61, 177
DbClass, 53, 277
DbData, 53
DbDevice, 53, 276
DbServer, 53
DeadFilterInterval, 443
debug, 312
delet-device, 280
delete-device, 284, 332, 334
delta-t, 369, 399
delta-val, 369, 399
descripition, 398
description, 47, 392
dev-name, 69, 80, 83
dev-state, 280, 332, 337
dev-status, 280, 332, 337
DevEncoded, 190, 382
DevError, 305
DevFailed, 305
DevFloat, 38
device, 254
device-factory, 277, 281, 282, 289, 319, 321, 324
DeviceAttribute, 53
DeviceClass, 273, 277, 280, 282, 319, 320, 323,

327, 361
DeviceData, 53
DeviceImpl, 273, 275, 279, 321, 331, 334, 340,

361
DeviceProxy, 53, 89
DeviceUnlocked, 247, 252
DevLockStatus, 287, 403, 407
DevPollStatus, 287, 370, 402, 406
DevRestart, 286, 402
DevStateName, 413
DevString, 39
DevVarDoubleStringArray, 39
DevVarLongArray, 38
DevVarStringArray, 39
dim-x, 396
dim-y, 396
display-unit, 398
DispLevel, 397
dlist, 385
DLL, 357
documentation, 277, 401
DServer, 286, 288, 402
dvalue, 293

Elettra, 29
enable-exception(), 70, 80

encoded-data, 293
encoded-format, 293
EncodedAttribute, 382
error, 305
ESRF, 28, 29
evebt-subscribe, 62
event, 50, 56, 59, 63, 137, 267, 268, 271, 352,

353, 380, 399
event-loop, 383
event-period, 59
EventData, 60, 64
EventDataList, 61
EventSubscriptionChange, 287, 403, 407
EventSystemFailed, 247
Except, 305, 306, 317
exception, 70, 76, 79, 80, 86, 305
executable, 286, 351
execute, 275–277, 281, 284, 326, 327, 329, 331
exit, 362
ExitInstance, 347, 348
export-device, 321, 325
extract, 277, 298, 328

file, 384
fill-attr-polling-buffer, 374, 393
fill-cmd-polling-buffer, 374, 393
format, 398
forward, 68, 69, 76, 86

gcc, 354
gdb, 354
get-attribute-config, 46, 432
get-device, 68
get-err-stack, 83
get-events, 60, 61
get-faulty-attr-nb, 251
get-group, 68
get-locker, 181
GetLoggingLevel, 287, 403, 409
GetLoggingTarget, 287, 403, 409
GetTraceLevel, 287, 313
GetTraceOutput, 287, 314
graphical, 344, 348
Group, 53
group, 49, 65, 67, 68, 79, 80, 83
GroupAttrReply, 70, 80
GroupAttrReplyList, 80
GroupCmdReply, 68, 70, 80
GroupCmdReplyList, 68, 70
GroupReply, 70, 80

has-failed, 70, 75, 80, 83

IDL, 44, 289

INDEX 453

IMAGE, 395
image, 260
ImageAttr, 275, 279, 331
info, 47, 432, 436
inherit, 362, 363
inheritance, 273, 276, 281, 310, 320, 364
Init, 282, 284, 312, 402
init, 288, 318–320
init-device, 275, 280, 284, 332, 334, 340
InitInstance, 347
insert, 277, 298, 302, 328
instance, 286, 319
INumberScalarListener, 267
IOR, 49
is-allowed, 46, 275–277, 279, 281, 284, 326–

328, 330, 331, 340
is-locked, 180
is-locked-by-me, 181
ITangoArchiveListener, 64, 138
ITangoChangeListener, 64, 138
ITangoPeriodicListener, 64, 138
ITangoQualityChangeListener, 64

jdraw, 263
JPEG, 382

Kill, 286, 402, 404

label, 398
length, 292
level, 395, 397
linking, 355, 356
Linux, 354, 360
listener, 267, 269, 271
local, 366
lock, 180
LockDevice, 287, 403, 406
Locking, 88, 180
locking-status, 180
logger, 352
logging, 48, 307, 313, 346
logging-level, 394
logging-path, 394
logging-rft, 394
logging-target, 394
LogViewer, 307
lvalue, 293

main, 315, 316
max-alarm, 368, 399
max-dim-x, 395
max-dim-y, 395
max-value, 399
max-warning, 368, 399

memorized, 381
memory, 34–36, 297, 301–304
MFC, 347–349, 354
min-alarm, 368, 399
min-poll-period, 371, 393
min-value, 399
min-warning, 368, 399
model, 254, 260, 267
Model-View-Controller, 253
MultiAttribute, 275, 278
MVC, 253
MySQL, 49
MYSQL-PASSWORD, 391, 416, 442, 444
MYSQL-USER, 391, 416, 442, 444

name, 45, 46, 275, 276
NamedDevFailed, 251
NamedDevFailedList, 167, 247, 251
namespace, 289, 315, 318
naming, 273
nodb, 385
NonDbDevice, 247
NonSupportedFeature, 247
notifd2db, 442, 443
Notification Service, 50, 56, 442, 443
NTService, 351, 353
NumberImageViewer, 260
NumberScalarListViewer, 260
NumberSpectrumViewer, 260

obj-name, 69, 80, 83
OMG, 44
omniNotify, 50, 56
omniORB, 355, 357
operation, 44, 45, 275
ORB, 44

package, 94, 289, 315, 323, 329, 340, 358, 360,
414

pattern, 273, 275, 362
period, 400
periodic, 57, 137
ping, 47, 432
Pogo, 32
poll-old-factor, 393
poll-ring-depth, 393
PolledDevice, 287, 370, 402, 406
polling, 47, 54, 369
polling-threads-pool-conf, 371, 409
polling-threads-pool-size, 371, 409
port, 358, 360, 384, 385, 387
print-exception, 305, 317
println, 313
properties, 45, 49, 276–278, 337, 342

INDEX 454

pull, 54
push, 54

QueryClass, 286, 402, 404
QueryDevice, 286, 402, 404
QueryEventChannelIOR, 403
QuerySubDevice, 402, 405
QueryWizardClassProperty, 404
QueryWizardDevProperty, 402, 404
QueyWizardClassProperty, 402

RDS, 368, 399
re-throw-exception, 305, 306
READ, 396
read, 275
read-attr, 42, 341
read-attr-hardware, 37, 42, 276, 285, 335, 341
read-attribute, 80, 331
read-attribute-history-2, 373, 435, 436
read-attribute-history-4, 437
read-attribute-history-X, 48
read-attributes, 37, 42, 46, 276, 284, 432
read-Position, 335
READ-WITH-WRITE, 396
READ-WRITE, 396
reconnection, 89
refresh, 269
refresher, 268
register-signal, 361
rel-change, 59, 400
ReLockDevices, 287, 403, 407
RemObjPolling, 287, 369, 370, 402, 405
remove, 68
RemoveLoggingTarget, 287, 403, 408
resource, 347, 351
RestartServer, 286, 402
RTTI, 357

SCALAR, 395
scalar, 260
ScalarListViewer, 255, 260
sequence, 290–292, 297, 303, 304
serialization, 376, 378
server, 45, 48, 286, 362, 366
server-cleanup, 316
server-init, 288, 316, 344, 349, 351
server-run, 288, 289, 316
server-set-event-loop, 383
service, 351, 353, 415
Services, 391, 411
set-attribute-config, 46, 433, 436
set-attribute-config-4, 438
set-default-properties, 322, 326
set-disp-level, 327, 328, 330

set-in-type-desc, 327, 328
set-main-window-text, 344
set-out-type-desc, 327, 328
set-polling-threads-pool-size, 372
set-server-version, 346
set-transparency-reconnection, 89
set-value, 336
set-value-date-quality, 336
SetLoggingLevel, 287, 403, 409
setModel, 260, 262, 267
SetTraceLevel, 287, 313, 314
SetTraceOutput, 287, 313, 314
signal, 276, 277, 360, 362, 376
signal-handler, 361, 362
SimpleScalarViewer, 260
singleton, 273, 280–282, 287, 320, 323
Solaris, 361
Soleil, 29
SPECTRUM, 395
spectrum, 260
SpectrumAttr, 275, 279, 331
splash, 254
standard-unit, 398
start, 351, 353
Starter, 442
StartLogging, 287, 403, 409
StartPolling, 287, 370, 402, 405
State, 276, 280, 282, 284, 290, 312, 332, 402
state, 46, 47, 275, 276, 284, 312, 392, 413
Status, 276, 280, 282, 284, 312, 332, 402
status, 46, 47, 275, 276, 284, 392
StopLogging, 287, 403, 409
StopPolling, 287, 370, 402, 405
string-alloc, 291
string-dup, 35–37, 291, 297, 304
string-free, 291, 304
subscribe, 268
subscribe-event, 60
SUPER-TANGO, 391, 416
svalue, 293
synchronous, 54
Synoptic, 263, 264
synoptic, 266
SynopticFileViewer, 263, 264

TACO, 29
Tango-Event, 268
TANGO-HOST, 358, 360, 387, 415
TANGO-LOG-PATH, 394, 416
TANGO-ROOT, 415
tango.h, 411
Tango::ConstDevString, 302
Tango::DevEncoded, 293
Tango::DevFloat, 33

INDEX 455

Tango::DevState, 290, 293
Tango::DevString, 34, 291, 302
Tango::DevVarDoubleStringArray, 35, 290, 293,

305
Tango::DevVarLongArray, 33, 292, 302
Tango::DevVarLongStringArray, 290, 293, 305
Tango::DevVarStringArray, 34, 292, 304
TangoAccessControl, 391, 444
TangoArchiveEvent, 139
TangoChangeEvent, 139
TangoConst, 323, 324, 329, 340
TangoEventsAdapter, 64
TangoPeriodicEvent, 139
tangorc, 210, 415
TangoVers, 359
TDSOM, 44, 45
template, 273, 276, 310, 320
TemplCommand, 275, 276, 412
TemplCommandIn, 275, 276, 412
TemplCommandInOut, 275, 276, 321, 324, 334,

340, 412
TemplCommandOut, 275, 276, 412
thread, 55, 360, 376, 379, 383
throw-exception, 305, 306
TimedAttrData, 374
TimedCmdData, 374
tooltip, 264

ulimit, 442
unit, 398
unlock, 180
UnLockDevice, 287, 403, 407
unregister-signal, 361
unsubscribe-event, 61
UpdObjPollingPeriod, 287, 369, 402, 406
URL, 277
Util, 287, 288, 316, 317, 344, 346, 351

verbose, 312, 313, 344
viewer, 254, 260, 267, 271

WAttribute, 275, 278
widget, 254
WIN32, 357
Win32, 349
WIN64, 357
Windows, 344, 356
WinMain, 349, 351
writable, 278, 395
writable-attr-name, 395
WRITE, 396
write, 275
write-attr-hardware, 42
write-attribute, 83, 88

write-attributes, 46, 251, 285, 433
write-read-attribute, 46
WrongData, 247
WrongNameSyntax, 247

