
The TANGO Control System Manual
Version 9.2

The TANGO Team

January 14, 2016

Contents

1 Introduction 12
1.1 Introduction to device server . 12
1.2 Device server history . 13

2 Getting Started 14
2.1 A C++ TANGO client . 14
2.2 A TANGO device server . 15

2.2.1 The commands and attributes code . 15
2.2.1.1 The DevSimple command . 16
2.2.1.2 The DevArray command . 16
2.2.1.3 The DevString command . 17
2.2.1.4 The DevStrArray command . 17
2.2.1.5 The DevStruct command . 18
2.2.1.6 The three attributes . 19

3 The TANGO device server model 22
3.1 Introduction to CORBA . 22
3.2 The model . 23
3.3 The device . 23

3.3.1 The commands . 23
3.3.2 The TANGO attributes . 24
3.3.3 The TANGO pipes . 24
3.3.4 Command, attributes or pipes ? . 25
3.3.5 The CORBA attributes . 25
3.3.6 The remaining CORBA operations . 25
3.3.7 The special case of the device state and status . 26
3.3.8 The device polling . 26

3.4 The server . 26
3.5 The Tango Logging Service . 26
3.6 The database . 27
3.7 The controlled access . 27
3.8 The Application Programmers Interfaces . 27

3.8.1 Rules of the API . 27
3.8.2 Communication between client and server using the API 28
3.8.3 Tango events . 29

4 Writing a TANGO client using TANGO APIs 33
4.1 Introduction . 33
4.2 Getting Started . 33
4.3 Basic Philosophy . 33
4.4 Data types . 33
4.5 Request model . 34

1

CONTENTS 2

4.5.1 Synchronous model . 35
4.5.2 Asynchronous model . 35

4.6 Events . 36
4.6.1 Introduction . 36
4.6.2 Event definition . 36
4.6.3 Event types . 36
4.6.4 Event filtering (Removed in Tango release 8 and above) 38
4.6.5 Application Programmer’s Interface . 39

4.6.5.1 Configuring events . 39
4.6.5.1.1 change . 39
4.6.5.1.2 periodic . 40
4.6.5.1.3 archive . 40

4.6.5.2 C++ Clients . 40
4.6.5.2.1 Subscribing to events . 40
4.6.5.2.2 The CallBack class . 41
4.6.5.2.3 Unsubscribing from an event 42
4.6.5.2.4 Extract buffered event data 42
4.6.5.2.5 Example . 43

4.7 Group . 45
4.7.1 Getting started with Tango group . 45
4.7.2 Forward or not forward? . 47
4.7.3 Executing a command . 47

4.7.3.1 Obtaining command results . 47
4.7.3.2 Case 1: a command, no argument . 48
4.7.3.3 A few words on error handling and data extraction 49
4.7.3.4 Case 2: a command, one argument . 51
4.7.3.5 Case 3: a command, several arguments 52

4.7.4 Reading attribute(s) . 55
4.7.4.1 Obtaining attribute values . 55
4.7.4.2 A few words on error handling and data extraction 55

4.7.5 Writing an attribute . 57
4.7.5.1 Obtaining acknowledgement . 57
4.7.5.2 Case 1: one value for all devices . 57
4.7.5.3 Case 2: a specific value per device . 58

4.8 Reading/Writing device pipe . 60
4.8.1 Reading a pipe . 61

4.8.1.1 Extracting data with pipe content prior knowledge 61
4.8.1.2 Extracting data in a generic way (without prior knowledge) 62
4.8.1.3 Error management . 63

4.8.2 Writing a pipe . 63
4.8.2.1 Error management . 65

4.9 Device locking . 65
4.10 Reconnection and exception . 66
4.11 Thread safety . 66
4.12 Compiling and linking a Tango client . 66

5 TangoATK Programmer’s Guide 68
5.1 Introduction . 68

5.1.1 Assumptions . 68
5.2 The key concepts of TangoATK . 68

5.2.1 Minimize development time . 69
5.2.2 Minimize bugs in applications . 69
5.2.3 Attributes and commands from different devices 69
5.2.4 Avoid code duplication . 69

CONTENTS 3

5.3 The real getting started . 70
5.3.1 Single device applications . 70
5.3.2 Multi device applications . 74
5.3.3 More on displaying attributes . 75

5.3.3.1 Connecting an attribute to a viewer . 75
5.3.3.2 Synoptic viewer . 78

5.3.4 A short note on the relationship between models and viewers 82
5.3.4.1 Listeners . 82

5.4 The key objects of TangoATK . 83
5.4.1 The Refreshers . 83

5.4.1.1 What happens on a refresh . 84
5.4.2 The DeviceFactory . 84
5.4.3 The AttributeFactory and the CommandFactory 84
5.4.4 The AttributeList and the CommandList . 84
5.4.5 The Attributes . 84

5.4.5.1 The hierarchy . 85
5.4.6 The Commands . 85

5.4.6.1 Events and listeners . 86

6 Writing a TANGO device server 88
6.1 The device server framework . 88

6.1.1 Naming convention and programming language 88
6.1.2 The device pattern . 88

6.1.2.1 The Tango base class (DeviceImpl class) 90
6.1.2.1.1 Description . 90
6.1.2.1.2 Contents . 90

6.1.2.2 The DbDevice class . 91
6.1.2.3 The Command class . 91

6.1.2.3.1 Description of the inheritance model 91
6.1.2.3.2 Description of the template model 91
6.1.2.3.3 Contents . 92

6.1.2.4 The DeviceClass class . 92
6.1.2.4.1 Description . 92
6.1.2.4.2 Contents . 92

6.1.2.5 The DbClass class . 93
6.1.2.6 The MultiAttribute class . 93

6.1.2.6.1 Description . 93
6.1.2.6.2 Contents . 93

6.1.2.7 The Attribute class . 93
6.1.2.7.1 Description . 93
6.1.2.7.2 Contents . 93

6.1.2.8 The WAttribute class . 93
6.1.2.8.1 Description . 93
6.1.2.8.2 Contents . 93

6.1.2.9 The Attr class . 94
6.1.2.10 The SpectrumAttr class . 94
6.1.2.11 The ImageAttr class . 94
6.1.2.12 The StepperMotor class . 94

6.1.2.12.1 Description . 94
6.1.2.12.2 Definition . 94

6.1.2.13 The StepperMotorClass class . 95
6.1.2.13.1 Description . 95
6.1.2.13.2 Definition . 95

6.1.2.14 The DevReadPosition class . 96

CONTENTS 4

6.1.2.14.1 Description . 96
6.1.2.14.2 Definition . 96

6.1.2.15 The PositionAttr class . 96
6.1.2.15.1 Description . 96
6.1.2.15.2 Definition . 97

6.1.3 Startup of a device pattern . 97
6.1.4 Command execution sequence . 97
6.1.5 The automatically added commands . 99
6.1.6 Reading/Writing attributes . 99

6.1.6.1 Reading attributes . 99
6.1.6.2 Writing attributes . 100

6.1.7 The device server framework . 101
6.1.7.1 Vocabulary . 101
6.1.7.2 The DServer class . 101
6.1.7.3 The Tango::Util class . 102

6.1.7.3.1 Description . 102
6.1.7.3.2 Contents . 103

6.1.7.4 A complete device server . 103
6.1.7.5 Device server startup sequence . 103

6.2 Exchanging data between client and server . 104
6.2.1 Command / Attribute data types . 104

6.2.1.1 Using data types with C++ . 105
6.2.1.1.1 Basic types . 105
6.2.1.1.2 Strings . 106
6.2.1.1.3 Sequences . 106
6.2.1.1.4 Structures . 108
6.2.1.1.5 The DevState data type . 108

6.2.2 Passing data between client and server . 109
6.2.2.1 C++ mapping for IDL any type . 109

6.2.2.1.1 Inserting/Extracting TANGO basic types 109
6.2.2.1.2 Inserting/Extracting TANGO strings 109
6.2.2.1.3 Inserting/Extracting TANGO sequences 109
6.2.2.1.4 Inserting/Extracting TANGO structures 109
6.2.2.1.5 Inserting/Extracting TANGO enumeration 110

6.2.2.2 The insert and extract methods of the Command class 110
6.2.3 C++ memory management . 112

6.2.3.1 For string . 112
6.2.3.2 For array/sequence . 113
6.2.3.3 For string array/sequence . 114
6.2.3.4 For Tango composed types . 115

6.2.4 Reporting errors . 115
6.2.4.1 Example of throwing exception . 115

6.3 The Tango Logging Service . 116
6.3.1 Logging Targets . 116
6.3.2 Logging Levels . 116
6.3.3 Sending TANGO Logging Messages . 117

6.3.3.1 Logging macros in C++ . 117
6.3.3.2 C++ logging in the name of a device 117

6.4 Writing a device server process . 118
6.4.1 Understanding the device . 119
6.4.2 Defining device commands . 120

6.4.2.1 Standard commands . 120
6.4.3 Choosing device state . 120
6.4.4 Device server utilities to ease coding/debugging 121

CONTENTS 5

6.4.4.1 The device server verbose option . 121
6.4.4.2 C++ utilities to ease device server coding 121

6.4.5 Avoiding name conflicts . 122
6.4.6 The device server main function . 122
6.4.7 The DServer::class_factory method . 123
6.4.8 Writing the StepperMotorClass class . 124

6.4.8.1 The class declaration file . 124
6.4.8.2 The singleton related methods . 125
6.4.8.3 The command_factory method . 126
6.4.8.4 The device_factory method . 127
6.4.8.5 The attribute_factory method . 127

6.4.9 The DevReadPositionCmd class . 128
6.4.9.1 The class declaration file . 128
6.4.9.2 The class constructor . 129
6.4.9.3 The is_allowed method . 129
6.4.9.4 The execute method . 130

6.4.10 The PositionAttr class . 130
6.4.10.1 The class declaration file . 130
6.4.10.2 The class constructor . 131
6.4.10.3 The is_allowed method . 131
6.4.10.4 The read method . 131

6.4.11 The StepperMotor class . 132
6.4.11.1 The class declaration file . 132
6.4.11.2 The constructors . 133
6.4.11.3 The methods used for the DevReadDirection command 135
6.4.11.4 The methods used for the Position attribute 135
6.4.11.5 The methods used for the SetPosition attribute 137
6.4.11.6 Retrieving device properties . 138
6.4.11.7 The remaining methods . 138

6.5 Device server under Windows . 139
6.5.1 The Tango device server graphical interface . 140

6.5.1.1 The device server main window . 140
6.5.1.2 The console window . 141
6.5.1.3 The help window . 141

6.5.2 MFC device server . 142
6.5.2.1 The InitInstance method . 142
6.5.2.2 The ExitInstance method . 143
6.5.2.3 Example of how to build a Windows device server MFC based 144

6.5.3 Win32 application . 144
6.5.4 Device server as service . 146

6.5.4.1 The service class . 146
6.5.4.2 The main function . 147
6.5.4.3 Service options and messages . 148
6.5.4.4 Tango device server using MFC as Windows service 149

6.6 Compiling, linking and executing a TANGO device server process 149
6.6.1 Compiling and linking a C++ device server . 149

6.6.1.1 On UNIX like operating system . 149
6.6.1.1.1 Supported development tools 149
6.6.1.1.2 Compiling . 149
6.6.1.1.3 Linking . 150

6.6.1.2 On Windows using Visual Studio . 151
6.6.2 Running a C++ device server . 152

6.7 Advanced programming techniques . 153
6.7.1 Receiving signal . 153

CONTENTS 6

6.7.1.1 Using signal . 153
6.7.1.2 Exiting a device server gracefully . 155

6.7.2 Inheriting . 155
6.7.2.1 Writing the BClass . 155
6.7.2.2 Writing the B class . 156
6.7.2.3 Writing B class specific command . 156
6.7.2.4 Redefining A class command . 156

6.7.3 Using another device pattern implementation within the same server 157
6.7.4 Device pipe . 157

6.7.4.1 Client reading a pipe . 157
6.7.4.2 Client writing a pipe . 159

7 Advanced features 161
7.1 Attribute alarms . 161

7.1.1 The level alarms . 161
7.1.2 The Read Different than Set (RDS) alarm . 162

7.2 Enumerated attribute . 162
7.2.1 Usage in a Tango class . 162

7.2.1.1 Setting the labels with enumeration compile time knowledge 162
7.2.1.2 Setting the labels without enumeration compile time knowledge 163
7.2.1.3 Setting the attribute value . 164

7.2.2 Usage in a Tango client . 164
7.3 Device polling . 165

7.3.1 Introduction . 165
7.3.2 Configuring the polling system . 165

7.3.2.1 Configuring what has to be polled and how 165
7.3.2.2 Configuring the polling threads pool 167
7.3.2.3 Choosing polling algorithm . 168

7.3.3 Reading data from the polling buffer . 169
7.3.4 Retrieving command/attribute result history . 169
7.3.5 Externally triggered polling . 170
7.3.6 Filling polling buffer . 170
7.3.7 Setting and tuning the polling in a Tango class 172

7.4 Threading . 173
7.4.1 Device server process . 173

7.4.1.1 Serialization model within a device server 174
7.4.1.2 Attribute Serialization model . 175

7.4.2 Client process . 176
7.5 Generating events in a device server . 177
7.6 Using multicast protocol to transfer events . 178

7.6.1 Configuring events to use multicast transport . 178
7.6.2 Default multicast related properties . 180

7.7 Memorized attribute . 180
7.8 Forwarded attribute . 180

7.8.1 Definition . 180
7.8.2 Coding . 181

7.9 Transferring images . 182
7.10 Device server with user defined event loop . 183
7.11 Device server using file as database . 184
7.12 Device server without database . 185

7.12.1 Example of device server started without database usage 186
7.12.2 Connecting client to device within a device server started without database 186

7.13 Multiple database servers within a Tango control system 186
7.14 The Tango controlled access system . 187

CONTENTS 7

7.14.1 User rights definition . 187
7.14.2 Running a Tango control system with the controlled access 190

A Reference part 191
A.1 Device parameter . 191

A.1.1 The device black box . 191
A.1.2 The device description field . 191
A.1.3 The device state and status . 191
A.1.4 The device polling . 191
A.1.5 The device logging . 192

A.2 Device attribute . 193
A.2.1 Hard-coded device attribute parameters . 193

A.2.1.1 The Attribute data type . 194
A.2.1.2 The attribute data format . 194
A.2.1.3 The max_dim_x and max_dim_y parameters 195
A.2.1.4 The attribute read/write type . 195
A.2.1.5 The associated write attribute parameter 196
A.2.1.6 The attribute display level parameter 196
A.2.1.7 The root attribute name parameter . 197

A.2.2 Modifiable attribute parameters . 197
A.2.2.1 General purpose parameters . 197

A.2.2.1.1 The format attribute parameter 197
A.2.2.1.2 The min_value and max_value parameters 198
A.2.2.1.3 The memorized attribute parameter 198

A.2.2.2 The alarm related configuration parameters 198
A.2.2.2.1 The min_alarm and max_alarm parameters 198
A.2.2.2.2 The min_warning and max_warning parameters 199
A.2.2.2.3 The delta_t and delta_val parameters 199

A.2.2.3 The event related configuration parameters 199
A.2.2.3.1 The rel_change and abs_change parameters 199
A.2.2.3.2 The periodic period parameter 200
A.2.2.3.3 The archive_rel_change, archive_abs_change and archive_period

parameters . 200
A.2.3 Setting modifiable attribute parameters . 200
A.2.4 Resetting modifiable attribute parameters . 201

A.3 Device pipe . 202
A.3.1 Hard-coded device pipe parameters . 202

A.3.1.1 The pipe read/write type. 202
A.3.1.2 The pipe display level parameter . 202

A.3.2 Modifiable pipe parameters . 203
A.3.3 Setting modifiable pipe parameters . 203
A.3.4 Resetting modifiable pipe parameters . 203

A.4 Device class parameter . 204
A.5 The device black box . 204
A.6 Automatically added commands . 204

A.6.1 The State command . 204
A.6.2 The Status command . 204
A.6.3 The Init command . 205

A.7 DServer class device commands . 205
A.7.1 The State command . 206
A.7.2 The Status command . 206
A.7.3 The DevRestart command . 206
A.7.4 The RestartServer command . 206
A.7.5 The QueryClass command . 206

CONTENTS 8

A.7.6 The QueryDevice command . 206
A.7.7 The Kill command . 207
A.7.8 The QueryWizardClassProperty command . 207
A.7.9 The QueryWizardDevProperty command . 207
A.7.10 The QuerySubDevice command . 207
A.7.11 The StartPolling command . 207
A.7.12 The StopPolling command . 207
A.7.13 The AddObjPolling command . 207
A.7.14 The RemObjPolling command . 208
A.7.15 The UpdObjPollingPeriod command . 208
A.7.16 The PolledDevice command . 208
A.7.17 The DevPollStatus command . 208
A.7.18 The LockDevice command . 209
A.7.19 The UnLockDevice command . 209
A.7.20 The ReLockDevices command . 209
A.7.21 The DevLockStatus command . 209
A.7.22 The EventSubscriptionChange command (C++ server only) 210
A.7.23 The ZmqEventSubscriptionChange command 210
A.7.24 The EventConfirmSubscription command . 211
A.7.25 The AddLoggingTarget command . 211
A.7.26 The RemoveLoggingTarget command . 212
A.7.27 The GetLoggingTarget command . 212
A.7.28 The GetLoggingLevel command . 212
A.7.29 The SetLoggingLevel command . 212
A.7.30 The StopLogging command . 212
A.7.31 The StartLogging command . 212

A.8 DServer class device properties . 213
A.9 Tango log consumer . 213

A.9.1 The available Log Consumer . 213
A.9.2 The Log Consumer interface . 213

A.10 Control system specific . 214
A.10.1 The device class documentation default value . 214
A.10.2 The services definition . 214
A.10.3 Tuning the event system buffers (HWM) . 214
A.10.4 Allowing NaN when writing attributes (floating point) 215
A.10.5 Tuning multicasting event propagation . 215
A.10.6 Summary of CtrlSystem free object properties . 215

A.11 C++ specific . 215
A.11.1 The Tango master include file (tango.h) . 215
A.11.2 Tango specific pre-processor define . 216
A.11.3 Tango specific types . 216

A.11.3.1 Template command model related type 216
A.11.4 Tango device state code . 217
A.11.5 Tango data type . 218
A.11.6 Tango command display level . 219

A.12 Device server process option and environment variables 219
A.12.1 Classical device server . 219
A.12.2 Device server process as Windows service . 219
A.12.3 Environment variables . 220

A.12.3.1 TANGO_HOST . 220
A.12.3.2 Tango Logging Service (TANGO_LOG_PATH) 220
A.12.3.3 The database and controlled access server (MYSQL_USER, MYSQL_PASSWORD,

MYSQL_HOST and MYSQL_DATABASE) 220
A.12.3.4 The controlled access . 221

CONTENTS 9

A.12.3.5 The event buffer size . 221

B The TANGO IDL file : Module Tango 222
B.1 Aliases . 222
B.2 Enums . 226
B.3 Structs . 228
B.4 Unions . 237
B.5 Exceptions . 238
B.6 Interface Tango::Device . 238

B.6.1 Attributes . 238
B.6.2 Operations . 239

B.7 Interface Tango::Device_2 . 241
B.7.1 Operations . 241

B.8 Interface Tango::Device_3 . 243
B.8.1 Operations . 243

B.9 Interface Tango::Device_4 . 244
B.9.1 Operations . 245

B.10 Interface Tango::Device_5 . 246
B.10.1 operations . 247

C Tango object naming (device, attribute and property) 250
C.1 Device name . 250
C.2 Full object name . 250

C.2.1 Some examples . 251
C.2.1.1 Full device name examples . 251
C.2.1.2 Attribute name examples . 251
C.2.1.3 Attribute property name . 251
C.2.1.4 Device property name . 251
C.2.1.5 Class property name . 251

C.3 Device and attribute name alias . 251
C.4 Reserved words and characters, limitations . 252

D Starting a Tango control system 253
D.1 Without database . 253
D.2 With database . 253
D.3 With database and event . 253

D.3.1 For Tango releases lower than 8 . 253
D.3.2 For release 8 and above . 254

D.4 With file used as database . 254
D.5 With file used as database and event . 254

D.5.1 For Tango releases lower than 8 . 254
D.5.2 For release 8 and above . 255

D.6 With the controlled access . 255

E The notifd2db utility 256
E.1 The notifd2db utility usage (For Tango releases lower than 8) 256

F The property file syntax 257
F.1 Property file usage . 257
F.2 Property file syntax . 257

CONTENTS 10

CONTENTS 11

Are you ready to dance the TANGO ?

Chapter 1

Introduction

1.1 Introduction to device server
Device servers were first developed at the European Synchrotron radiation Facility (ESRF) for controlling
the 6 Gev synchrotron radiation source. This document is a Programmer’s Manual on how to write TANGO
device servers. It will not go into the details of the ESRF, nor its Control System nor any of the specific
device servers in the Control System. The role of this document is to help programmers faced with the task
of writing TANGO device servers.

Device servers have been developed at the ESRF in order to solve the main task of Control Systems
viz provide read and write access to all devices in a distributed system. The problem of distributed device
access is only part of the problem however. The other part of the problem is providing a programming
framework for a large number of devices programmed by a large number of programmers each having
different levels of experience and style.

Device servers have been written at the ESRF for a large variety of different devices. Devices vary
from serial line devices to devices interfaced by field-bus to memory mapped VME cards or PC cards to
entire data acquisition systems. The definition of a device depends very much on the user’s requirements.
In the simple case a device server can be used to hide the serial line protocol required to communicate with
a device. For more complicated devices the device server can be used to hide the entire complexity of the
device timing, configuration and acquisition cycle behind a set of high level commands.

In this manual the process of how to write TANGO client (applications) and device servers will be
treated. The manual has been organized as follows :

• A getting started chapter.

• The TANGO device server model is treated in chapter 3

• Generalities on the Tango Application Programmer Interfaces are given in chapter 4

• Chapter 5 is an a programmer’s guide for the Tango Application ToolKit (TangoATK). This is a Java
toolkit to help Tango Java application developers.

• How to write a TANGO device server is explained in chapter 6

• Chapter 7 describes advanced Tango features

Throughout this manual examples of source code will be given in order to illustrate what is meant. Most
examples have been taken from the StepperMotor class - a simulation of a stepper motor which illustrates
how a typical device server for a stepper motor at the ESRF functions.

12

CHAPTER 1. INTRODUCTION 13

1.2 Device server history
The concept of using device servers to access devices was first proposed at the ESRF in 1989. It has been
successfully used as the heart of the ESRF Control System for the institute accelerator complex. This
Control System has been named TACO1. Then, it has been decided to also used TACO to control devices
in the beam-lines. Today, more than 30 instances of TACO are running at the ESRF. The main technologies
used within TACO are the leading technologies of the 80’s. The Sun Remote Procedure Call (RPC) is used
to communicate over the network between device server and applications, OS-9 is used on the front-end
computers, C is the reference language to write device servers and clients and the device server framework
follows the MIT Widget model. In 1999, a renewal of the control system was started. In June 2002, Soleil
and ESRF offically decide to collaborate to develop this renewal of the old TACO control system. Soleil
is a French synchrotron radiation facility currently under construction in the Paris suburbs. See [5] to get
all information about Soleil. In December 2003, Elettra joins the club. Elettra is an Italian synchrotron
radiation facility located in Trieste. See [20] to get all information about Elettra. Then, beginning of 2005,
ALBA also decided to join. ALBA is a Spanish synchrotron radiation facility located in Barcelona. See
[4] to get all information about ALBA. The new version of the Alba/Elettra/ESRF/Soleil control system is
named TANGO2 and is based on the 21 century technologies :

• CORBA3 and ZMQ[23] to communicate between device server and clients

• C++, Python and Java as reference programming languages

• Linux and Windows as operating systems

• Modern object oriented design patterns

1TACO stands for Telescope and Accelerator Controlled with Objects
2TANGO stands for TAco Next Generation Object
3CORBA stands for Common Object Request Broker Architecture

Chapter 2

Getting Started

2.1 A C++ TANGO client
The quickest way of getting started is by studying this example :

/*
* example of a client using the TANGO C++ api.

*/
#include <tango.h>
using namespace Tango;
int main(unsigned int argc, char **argv)
{

try
{

//
// create a connection to a TANGO device
//

DeviceProxy *device = new DeviceProxy(“sys/database/2”);

//
// Ping the device
//

device->ping();

//
// Execute a command on the device and extract the reply as a string
//

string db_info;
DeviceData cmd_reply;
cmd_reply = device->command_inout(“DbInfo”);
cmd_reply >> db_info;
cout << “Command reply “ << db_info << endl;

//
// Read a device attribute (string data type)

14

CHAPTER 2. GETTING STARTED 15

//

string spr;
DeviceAttribute att_reply;
att_reply = device->read_attribute(“StoredProcedureRelease”);
att_reply >> spr;
cout << “Database device stored procedure release: “ << spr << endl;

}
catch (DevFailed &e)
{

Except::print_exception(e);
exit(-1);

}
}

Modify this example to fit your device server or client’s needs, compile it and link with the library -ltango.
Forget about those painful early TANGO days when you had to learn CORBA and manipulate Any’s. Life’s
going to easy and fun from now on !

2.2 A TANGO device server
The code given in this chapter as example has been generated using POGO. Pogo is a code generator for
Tango device server. See [15] for more information about POGO. The following examples briefly describe
how to write device class with commands which receives and return different kind of Tango data types
and also how to write device attributes The device class implements 5 commands and 3 attributes. The
commands are :

• The command DevSimple deals with simple Tango data type

• The command DevString deals with Tango strings

• DevArray receive and return an array of simple Tango data type

• DevStrArray which does not receive any data but which returns an array of strings

• DevStruct which also does not receive data but which returns one of the two Tango composed types
(DevVarDoubleStringArray)

For all these commands, the default behavior of the state machine (command always allowed) is acceptable.
The attributes are :

• A spectrum type attribute of the Tango string type called StrAttr

• A readable attribute of the Tango::DevLong type called LongRdAttr. This attribute is linked with
the following writable attribute

• A writable attribute also of the Tango::DevLong type called LongWrAttr.

Since release 9, a Tango device also supports pipe. This is an advanced feature reserved for some specific
cases. Therefore, there is no device pipe example in this "Getting started" chapter.

2.2.1 The commands and attributes code
For each command called DevXxxx, pogo generates in the device class a method named dev_xxx which
will be executed when the command is requested by a client. In this chapter, the name of the device class
is DocDs

CHAPTER 2. GETTING STARTED 16

2.2.1.1 The DevSimple command

This method receives a Tango::DevFloat type and also returns a data of the Tango::DevFloat type which is
simply the double of the input value. The code for the method executed by this command is the following:

1 Tango::DevFloat DocDs::dev_simple(Tango::DevFloat argin)
2 {
3 Tango::DevFloat argout ;
4 DEBUG_STREAM << "DocDs::dev_simple(): entering... !" << endl;
5
6 // Add your own code to control device here
7
8 argout = argin * 2;
9 return argout;

10 }

This method is fairly simple. The received data is passed to the method as its argument. It is
doubled at line 8 and the method simply returns the result.

2.2.1.2 The DevArray command

This method receives a data of the Tango::DevVarLongArray type and also returns a data of the Tango::DevVarLongArray
type. Each element of the array is doubled. The code for the method executed by the command is the fol-
lowing :

1 Tango::DevVarLongArray *DocDs::dev_array(const Tango::DevVarLongArray *argin)
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevVarLongArray *argout = new Tango::DevVarLongArray();
9

10 DEBUG_STREAM << "DocDs::dev_array(): entering... !" << endl;
11
12 // Add your own code to control device here
13
14 long argin_length = argin->length();
15 argout->length(argin_length);
16 for (int i = 0;i < argin_length;i++)
17 (*argout)[i] = (*argin)[i] * 2;
18
19 return argout;
20 }

CHAPTER 2. GETTING STARTED 17

The argout data array is created at line 8. Its length is set at line 15 from the input argument length.
The array is populated at line 16,17 and returned. This method allocates memory for the argout array. This
memory is freed by the Tango core classes after the data have been sent to the caller (no delete is needed).
It is also possible to return data from a statically allocated array without copying. Look at chapter 6.2 for
all the details.

2.2.1.3 The DevString command

This method receives a data of the Tango::DevString type and also returns a data of the Tango::DevString
type. The command simply displays the content of the input string and returns a hard-coded string. The
code for the method executed by the command is the following :

1 Tango::DevString DocDs::dev_string(Tango::DevString argin)
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevString argout;
9 DEBUG_STREAM << "DocDs::dev_string(): entering... !" << endl;

10
11 // Add your own code to control device here
12
13 cout << "the received string is " << argin << endl;
14
15 string str("Am I a good Tango dancer ?");
16 argout = new char[str.size() + 1];
17 strcpy(argout,str.c_str());
18
19 return argout;
20 }

The argout string is created at line 8. Internally, this method is using a standard C++ string. Memory
for the returned data is allocated at line 16 and is initialized at line 17. This method allocates memory for
the argout string. This memory is freed by the Tango core classes after the data have been sent to the caller
(no delete is needed). It is also possible to return data from a statically allocated string without copying.
Look at chapter 6.2 for all the details.

2.2.1.4 The DevStrArray command

This method does not receive input data but returns an array of strings (Tango::DevVarStringArray type).
The code for the method executed by this command is the following:

1 Tango::DevVarStringArray *DocDs::dev_str_array()
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,

CHAPTER 2. GETTING STARTED 18

5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevVarStringArray *argout = new Tango::DevVarStringArray();
9

10 DEBUG_STREAM << "DocDs::dev_str_array(): entering... !" << endl;
11
12 // Add your own code to control device here
13
14 argout->length(3);
15 (*argout)[0] = CORBA::string_dup("Rumba");
16 (*argout)[1] = CORBA::string_dup("Waltz");
17 string str("Jerck");
18 (*argout)[2] = CORBA::string_dup(str.c_str());
19 return argout;
20 }

The argout data array is created at line 8. Its length is set at line 14. The array is populated at line
15,16 and 18. The last array element is initialized from a standard C++ string created at line 17. Note the
usage of the string_dup function of the CORBA namespace. This is necessary for strings array due to the
CORBA memory allocation schema.

2.2.1.5 The DevStruct command

This method does not receive input data but returns a structure of the Tango::DevVarDoubleStringArray
type. This type is a composed type with an array of double and an array of strings. The code for the method
executed by this command is the following:

1 Tango::DevVarDoubleStringArray *DocDs::dev_struct()
2 {
3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"
6 // (chapter x.x)
7 //--
8 Tango::DevVarDoubleStringArray *argout = new Tango::DevVarDoubleStringArray();
9

10 DEBUG_STREAM << "DocDs::dev_struct(): entering... !" << endl;
11
12 // Add your own code to control device here
13
14 argout->dvalue.length(3);
15 argout->dvalue[0] = 0.0;
16 argout->dvalue[1] = 11.11;
17 argout->dvalue[2] = 22.22;
18
19 argout->svalue.length(2);
20 argout->svalue[0] = CORBA::string_dup("Be Bop");
21 string str("Smurf");
22 argout->svalue[1] = CORBA::string_dup(str.c_str());
23

CHAPTER 2. GETTING STARTED 19

24 return argout;
25 }

The argout data structure is created at line 8. The length of the double array in the output structure is
set at line 14. The array is populated between lines 15 and 17. The length of the string array in the output
structure is set at line 19. This string array is populated between lines 20 an 22 from a hard-coded string
and from a standard C++ string. This method allocates memory for the argout data. This memory is freed
by the Tango core classes after the data have been sent to the caller (no delete is needed). Note the usage of
the string_dup function of the CORBA namespace. This is necessary for strings array due to the CORBA
memory allocation schema.

2.2.1.6 The three attributes

Some data have been added to the definition of the device class in order to store attributes value. These
data are (part of the class definition) :

1
2
3 protected :
4 // Add your own data members here
5 //---
6 Tango::DevString attr_str_array[5];
7 Tango::DevLong attr_rd;
8 Tango::DevLong attr_wr;

One data has been created for each attribute. As the StrAttr attribute is of type spectrum with a maxi-
mum X dimension of 5, an array of length 5 has been reserved.

Several methods are necessary to implement these attributes. One method to read the hardware which
is common to all "readable" attributes plus one "read" method for each readable attribute and one "write"
method for each writable attribute. The code for these methods is the following :

1 void DocDs::read_attr_hardware(vector<long> &attr_list)
2 {
3 DEBUG_STREAM << "DocDs::read_attr_hardware(vector<long> &attr_list) entering... "<< endl;
4 // Add your own code here
5
6 string att_name;
7 for (long i = 0;i < attr_list.size();i++)
8 {
9 att_name = dev_attr->get_attr_by_ind(attr_list[i]).get_name();
10
11 if (att_name == "LongRdAttr")
12 {
13 attr_rd = 5;
14 }
15 }
16 }
17

CHAPTER 2. GETTING STARTED 20

18 void DocDs::read_LongRdAttr(Tango::Attribute &attr)
19 {
20 DEBUG_STREAM << "DocDs::read_LongRdAttr(Tango::Attribute &attr) entering... "<< endl;
21
22 attr.set_value(&attr_rd);
23 }
24
25 void DocDs::read_LongWrAttr(Tango::Attribute &attr)
26 {
27 DEBUG_STREAM << "DocDs::read_LongWrAttr(Tango::Attribute &attr) entering... "<< endl;
28
29 attr.set_value(&attr_wr);
30 }
31
32 void DocDs::write_LongWrAttr(Tango::WAttribute &attr)
33 {
34 DEBUG_STREAM << "DocDs::write_LongWrAttr(Tango::WAttribute &attr) entering... "<< endl;
35
36 attr.get_write_value(attr_wr);
37 DEBUG_STREAM << "Value to be written = " << attr_wr << endl;
38 }
39
40 void DocDs::read_StrAttr(Tango::Attribute &attr)
41 {
42 DEBUG_STREAM << "DocDs::read_StrAttr(Tango::Attribute &attr) entering... "<< endl;
43
44 attr_str_array[0] = const_cast<char *>("Rock");
45 attr_str_array[1] = const_cast<char *>("Samba");
46
47 attr_set_value(attr_str_array, 2);
48 }

The read_attr_hardware() method is executed once when a client execute the read_attributes CORBA
request whatever the number of attribute to be read is. The rule of this method is to read the hardware and to
store the read values somewhere in the device object. In our example, only the LongRdAttr attribute internal
value is set by this method at line 13. The method read_LongRdAttr() is executed by the read_attributes
CORBA call when the LongRdAttr attribute is read but after the read_attr_hardware() method has been
executed. Its rule is to set the attribute value in the TANGO core classes object representing the attribute.
This is done at line 22. The method read_LongWrAttr() will be executed when the LongWrAttr attribute is
read (after the read_attr_hardware() method). The attribute value is set at line 29. In the same manner, the
method called read_StrAttr() will be executed when the attribute StrAttr is read. Its value is initialized in
this method at line 44 and 45 with the string_dup Tango function. There are several ways to code spectrum
or image attribute of the DevString data type. A HowTo related to this topic is available on the Tango
control system Web site. The write_LongWrAttr() method is executed when the LongWrAttr attribute
value is set by a client. The new attribute value coming from the client is stored in the object data at line
36.

Pogo also generates a file called "DocDsStateMachine.cpp" (for a Tango device server class called
DocDs). This file is used to store methods coding the device state machine. By default a allways allowed
state machine is provided. For more information about coding the state machine, refer to the chapter
"Writing a device server".

CHAPTER 2. GETTING STARTED 21

Chapter 3

The TANGO device server model

This chapter will present the TANGO device server object model hereafter referred as TDSOM. First, it
will introduce CORBA. Then, it will describe each of the basic features of the TDSOM and their function.
The TDSOM can be divided into the following basic elements - the device, the server, the database and
the application programmers interface. This chapter will treat each of the above elements separately.

3.1 Introduction to CORBA
CORBA is a definition of how to write object request brokers (ORB). The definition is managed by the
Object Management Group (OMG [1]). Various commercial and non-commercial implementations exist
for CORBA for all the mainstream operating systems. CORBA uses a programming language independent
definition language (called IDL) to defined network object interfaces. Language mappings are defined
from IDL to the main programming languages e.g. C++, Java, C, COBOL, Smalltalk and ADA. Within
an interface, CORBA defines two kinds of actions available to the outside world. These actions are called
attributes and operations.

Operations are all the actions offered by an interface. For instance, within an interface for a Thermostat
class, operations could be the action to read the temperature or to set the nominal temperature. An attribute
defines a pair of operations a client can call to send or receive a value. For instance, the position of a motor
can be defined as an attribute because it is a data that you only set or get. A read only attribute defines a
single operation the client can call to receives a value. In case of error, an operation is able to throw an
exception to the client, attributes cannot raises exception except system exception (du to network fault for
instance).

Intuitively, IDL interface correspond to C++ classes and IDL operations correspond to C++ member
functions and attributes as a way to read/write public member variable. Nevertheless, IDL defines only the
interface to an object and say nothing about the object implementation. IDL is only a descriptive language.
Once the interface is fully described in the IDL language, a compiler (from IDL to C++, from IDL to
Java...) generates code to implement this interface. Obviously, you still have to write how operations are
implemented.

The act of invoking an operation on an interface causes the ORB to send a message to the correspond-
ing object implementation. If the target object is in another address space, the ORB run time sends a
remote procedure call to the implementation. If the target object is in the same address space as the caller,
the invocation is accomplished as an ordinary function call to avoid the overhead of using a networking
protocol.

For an excellent reference on CORBA with C++ refer to [2]. The complete TANGO IDL file can be
found in the TANGO web page[3] or at the end of this document in the appendix 2 chapter.

22

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 23

3.2 The model
The basic idea of the TDSOM is to treat each device as an object. Each device is a separate entity which
has its own data and behavior. Each device has a unique name which identifies it in network name space.
Devices are organized according to classes, each device belonging to a class. All classes are derived from
one root class thus allowing some common behavior for all devices. Four kind of requests can be sent to a
device (locally i.e. in the same process, or remotely i.e. across the network) :

• Execute actions via commands

• Read/Set data specific to each device belonging to a class via TANGO attributes

• Read/Set data specific to each device belonging to a class via TANGO pipes

• Read some basic device data available for all devices via CORBA attributes.

• Execute a predefined set of actions available for every devices via CORBA operations

Each device is stored in a process called a device server. Devices are configured at runtime via properties
which are stored in a database.

3.3 The device
The device is the heart of the TDSOM. A device is an abstract concept defined by the TDSOM. In reality, it
can be a piece of hardware (an interlock bit) a collection of hardware (a screen attached to a stepper motor)
a logical device (a taper) or a combination of all these (an accelerator). Each device has a unique name
in the control system and eventually one alias. Within Tango, a four field name space has been adopted
consisting of

[//FACILITY/]DOMAIN/CLASS/MEMBER

Facility refers to the control system instance, domain refers to the sub-system, class the class and member
the instance of the device. Device name alias(es) must also be unique within a control system. There is no
predefined syntax for device name alias.

Each device belongs to a class. The device class contains a complete description and implementation
of the behavior of all members of that class. New device classes can be constructed out of existing device
classes. This way a new hierarchy of classes can be built up in a short time. Device classes can use existing
devices as sub-classes or as sub-objects. The practice of reusing existing classes is classical for Object
Oriented Programming and is one of its main advantages.

All device classes are derived from the same class (the device root class) and implement the same
CORBA interface. All devices implementing the same CORBA interface ensures all control object support
the same set of CORBA operations and attributes. The device root class contains part of the common device
code. By inheriting from this class, all devices shared a common behavior. This also makes maintenance
and improvements to the TDSOM easy to carry out.

All devices also support a black box where client requests for attributes or operations are recorded.
This feature allows easier debugging session for device already installed in a running control system.

3.3.1 The commands
Each device class implements a list of commands. Commands are very important because they are the
client’s major dials and knobs for controlling a device. Commands have a fixed calling syntax - consisting
of one input argument and one output argument. Arguments type must be chosen in a fixed set of data types:
All simple types (boolean, short, long (32 bits), long (64 bits), float, double, unsigned short, unsigned long
(32 bits), unsigned long (64 bits) and string) and arrays of simple types plus array of strings and longs and
array of strings and doubles). Commands can execute any sequence of actions. Commands can be executed

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 24

synchronously (the requester is blocked until the command ended) or asynchronously (the requester send
the request and is called back when the command ended).

Commands are executed using two CORBA operations named command_inout for synchronous com-
mands and command_inout_async for asynchronous commands. These two operations called a special
method implemented in the device root class - the command_handler method. The command_handler calls
an is_allowed method implemented in the device class before calling the command itself. The is_allowed
method is specific to each command1. It checks to see whether the command to be executed is compatible
with the present device state. The command function is executed only if the is_allowed method allows it.
Otherwise, an exception is sent to the client.

3.3.2 The TANGO attributes
In addition to commands, TANGO devices also support normalized data types called attributes2. Com-
mands are device specific and the data they transport are not normalized i.e. they can be any one of the
TANGO data types with no restriction on what each byte means. This means that it is difficult to interpret
the output of a command in terms of what kind of value(s) it represents. Generic display programs need
to know what the data returned represents, in what units it is, plus additional information like minimum,
maximum, quality etc. Tango attributes solve this problem.

TANGO attributes are zero, one or two dimensional data which have a fix set of properties e.g. quality,
minimum and maximum, alarm low and high. They are transferred in a specialized TANGO type and can
be read, write or read-write. A device can support a list of attributes. Clients can read one or more attributes
from one or more devices. To read TANGO attributes, the client uses the read_attributes operation. To
write TANGO attributes, a client uses the write_attributes operation. To write then read TANGO attributes
within the same network request, the client uses the write_read_attributes operation. To query a device
for all the attributes it supports, a client uses the get_attribute_config operation. A client is also able
to modify some of parameters defining an attribute with the set_attribute_config operation. These five
operations are defined in the device CORBA interface.

TANGO support thirteen data types for attributes (and arrays of for one or two dimensional data) which
are: boolean, short, long (32 bits), long (64 bits), float, double, unsigned char, unsigned short, unsigned
long (32 bits), unsigned long (64 bits), string, a specific data type for Tango device state and finally another
specific data type to transfer data as an array of unsigned char with a string describing the coding of these
data.

3.3.3 The TANGO pipes
Since release 9, in addition to commands and attributes, TANGO devices also support pipes.

In some cases, it is required to exchange data between client and device of varrying data type. This is
for instance the case of data gathered during a scan on one experiment. Because the number of actuators
and sensors involved in the scan may change from one scan to another, it is not possible to use a well
defined data type. TANGO pipes have been designed for such cases. A TANGO pipe is basically a pipe
dedicated to transfer data between client and device. A pipe has a set of two properties which are the pipe
label and its description. A pipe can be read or read-write. A device can support a list of pipes. Clients can
read one or more pipes from one or more devices. To read a TANGO pipe, the client uses the read_pipe
operation. To write a TANGO pipe, a client uses the write_pipe operation. To write then read a TANGO
pipe within the same network request, the client uses the write_read_pipe operation. To query a device
for all the pipes it supports, a client uses the get_pipe_config operation. A client is also able to modify
some of parameters defining a pipe with the set_pipe_config operation. These five operations are defined
in the device CORBA interface.

In contrary of commands or attributes, a TANGO pipe does not have a pre-defined data type. Data
transferred through pipes may be of any basic Tango data type (or array of) and this may change every time
a pipe is read or written.

1In contrary to the state_handler method of the TACO device server model which is not specific to each command.
2TANGO attributes were known as signals in the TACO device server model

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 25

3.3.4 Command, attributes or pipes ?
There are no strict rules concerning what should be returned as command result and what should be im-
plemented as an attribute or as a pipe. Nevertheless, attributes are more adapted to return physical value
which have a kind of time consistency. Attribute also have more properties which help the client to pre-
cisely know what it represents. For instance, the state and the status of a power supply are not physical
values and are returned as command result. The current generated by the power supply is a physical value
and is implemented as an attribute. The attribute properties allow a client to know its unit, its label and
some other informations which are related to a physical value. Command are well adapted to send order
to a device like switching from one mode of operation to another mode of operation. For a power supply,
the switch from a STANDBY mode to a ON mode is typically done via a command. Finally pipe is well
adapted when the kind and number of data exchanged between the client and the device change with time.

3.3.5 The CORBA attributes
Some key data implemented for each device can be read without the need to call a command or read an
attribute. These data are :

• The device state

• The device status

• The device name

• The administration device name called adm_name

• The device description

The device state is a number representing its state. A set of predefined states are defined in the TDSOM.
The device status is a string describing in plain text the device state and any additional useful information
of the device as a formatted ascii string. The device name is its name as defined in 3.3. For each set of
devices grouped within the same server, an administration device is automatically added. This adm_name
is the name of the administration device. The device description is also an ascii string describing the device
rule.

These five CORBA attributes are implemented in the device root class and therefore do not need any
coding from the device class programmer. As explained in 3.1, the CORBA attributes are not allowed to
raise exceptions whereas command (which are implemented using CORBA operations) can.

3.3.6 The remaining CORBA operations
The TDSOM also supports a list of actions defined as CORBA operations in the device interface and
implemented in the device root class. Therefore, these actions are implemented automatically for every
TANGO device. These operations are :

ping to ping a device to check if the device is alive. Obviously, it checks only the
connection from a client to the device and not all the device functionalities

command_list_query request a list of all the commands supported by a device with their input and
output types and description

command_query request information about a specific command which are its input and output type
and description

info request general information on the device like its name, the host where the device
server hosting the device is running...

black_box read the device black-box as an array of strings

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 26

3.3.7 The special case of the device state and status
Device state and status are the most important key device informations. Nearly all client software dealing
with Tango device needs device(s) state and/or status. In order to simplify client software developper work,
it is possible to get these two piece of information in three different manners :

1. Using the appropriate CORBA attribute (state or status)

2. Using command on the device. The command are called State or Status

3. Using attribute. Even if the state and status are not real attribute, it is possible to get their value using
the read_attributes operation. Nevertheless, it is not possible to set the attribute configuration for
state and status. An error is reported by the server if a client try to do so.

3.3.8 The device polling
Within the Tango framework, it is also possible to force executing command(s) or reading attribute(s) at a
fixed frequency. It is called device polling. This is automatically handled by Tango core software with a
polling threads pool. The command result or attribute value are stored in circular buffers. When a client
want to read attribute value (or command result) for a polled attribute (or a polled command), he has the
choice to get the attribute value (or command result) with a real access to the device of from the last value
stored in the device ring buffer. This is a great advantage for “slow” devices. Getting data from the buffer
is much faster than accessing the device itself. The technical disadvantage is the time shift between the
data returned from the polling buffer and the time of the request. Polling a command is only possible for
command without input arguments. It is not possible to poll a device pipe.

Two other CORBA operations called command_inout_history_X and read_attribute _history_X allow
a client to retrieve the history of polled command or attribute stored in the polling buffers. Obviously, this
history is limited to the depth of the polling buffer.

The whole polling system is available only since Tango release 2.x and above in CPP and since Tan-
gORB release 3.7.x and above in Java.

3.4 The server
Another integral part of the TDSOM is the server concept. The server (also referred as device server) is a
process whose main task is to offer one or more services to one or more clients. To do this, the server has
to spend most of its time in a wait loop waiting for clients to connect to it. The devices are hosted in the
server process. A server is able to host several classes of devices. In the TDSOM, a device of the DServer
class is automatically hosted by each device server. This class of device supports commands which enable
remote device server process administration.

TANGO supports device server process on two families of operating system : Linux and Windows.

3.5 The Tango Logging Service
During software life, it is always convenient to print miscellaneous informations which help to:

• Debug the software

• Report on error

• Give regular information to user

This is classically done using cout (or C printf) in C++ or println method in Java language. In a highly
distributed control system, it is difficult to get all these informations coming from a high number of different
processes running on a large number of computers. Since its release 3, Tango has incorporated a Logging
Service called the Tango Logging Service (TLS) which allows print messages to be:

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 27

• Displayed on a console (the classical way)

• Sent to a file

• Sent to specific Tango device called log consumer. Tango package has an implementation of log con-
sumer where every consumer device is associated to a graphical interface. This graphical interface
display messages but could also be used to sort messages, to filter messages... Using this feature, it
is possible to centralise display of these messages coming from different devices embedded within
different processes. These log consumers can be:

– Statically configured meaning that it memorizes the list of Tango devices for which it will get
and display messages.

– Dynamically configured. The user, with the help of the graphical interface, chooses devices
from which he want to see messages.

3.6 The database
To achieve complete device independence, it is necessary however to supplement device classes with a
possibility for configuring device dependencies at runtime. The utility which does this in the TDSOM is
the property database. Properties3 are identified by an ascii string and the device name. TANGO attributes
are also configured using properties. This database is also used to store device network addresses (CORBA
IOR’s), list of classes hosted by a device server process and list of devices for each class in a device server
process. The database ensure the uniqueness of device name and of alias. It also links device name and it
list of aliases.

TANGO uses MySQL[6] as its database. MySQL is a relational database which implements the SQL
language. However, this is largely enough to implement all the functionalities needed by the TDSOM. The
database is accessed via a classical TANGO device hosted in a device server. Therefore, client access the
database via TANGO commands requested on the database device. For a good reference on MySQL refer
to [7]

3.7 The controlled access
Tango also provides a controlled access system. It’s a simple controlled access system. It does not provide
encrypted communication or sophisticated authentification. It simply defines which user (based on com-
puter loggin authentification) is allowed to do which command (or write attribute) on which device and
from which host. The information used to configure this controlled access feature are stored in the Tango
database and accessed by a specific Tango device server which is not the classsical Tango database device
server described in the previous section. Two access levels are defined:

• Everything is allowed for this user from this host

• The write-like calls on the device are forbidden and according to configuration, a command subset is
also forbidden for this user from this host

This feature is precisely described in the chapter "Advanced features"

3.8 The Application Programmers Interfaces

3.8.1 Rules of the API
While it is true TANGO clients can be programmed using only the CORBA API, CORBA knows nothing
about TANGO. This means client have to know all the details of retrieving IORs from the TANGO database,

3Properties were known as resources in the TACO device server model

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 28

additional information to send on the wire, TANGO version control etc. These details can and should be
wrapped in TANGO Application Programmer Interface (API). The API is implemented as a library in C++
and as a package in Java. The API is what makes TANGO clients easy to write. The API’s consists the
following basic classes :

• DeviceProxy which is a proxy to the real device

• DeviceData to encapsulate data send/receive from/to device via commands

• DeviceAttribute to encapsulate data send/receive from/to device via attributes

• Group which is a proxy to a group of devices

In addition to these main classes, many other classes allows a full interface to TANGO features. The
following figure is a drawing of a typical client/server application using TANGO.

Client

Database

TANGO

TANGO

ServerTANGO

Cmd Attrib

CORBA

attrib

CORBA

opera

API

API

Devices

CORBA

CORBACORBA

The database is used during server and client startup phase to establish connection between client and
server.

3.8.2 Communication between client and server using the API
With the API, it is possible to request command to be executed on a device or to read/write device at-
tribute(s) using one of the two communication models implemented. These two models are:

1. The synchronous model where client waits (and is blocked) for the server to send the answer or until
the timeout is reached

2. The asynchronous model. In this model, the clients send the request and immediately returns. It is
not blocked. It is free to do whatever it has to do like updating a graphical user interface. The client
has the choice to retrieve the server answer by checking if the reply is arrived by calling an API
specific call or by requesting that a call-back method is executed when the client receives the server
answer.

The asynchronous model is available with Tango release 3 and above.

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 29

3.8.3 Tango events
On top of the two communication model previously described, TANGO offers an "event system". The
standard TANGO communication paradigm is a synchronou/asynchronous two-way call. In this paradigm
the call is initiated by the client who contacts the server. The server handles the client’s request and sends
the answer to the client or throws an exception which the client catches. This paradigm involves two calls
to receive a single answer and requires the client to be active in initiating the request. If the client has a
permanent interest in a value he is obliged to poll the server for an update in a value every time. This is not
efficient in terms of network bandwidth nor in terms of client programming.

For clients who are permanently interested in values the event-driven communication paradigm is a
more efficient and natural way of programming. In this paradigm the client registers his interest once in
an event (value). After that the server informs the client every time the event has occurred. This paradigm
avoids the client polling, frees it for doing other things, is fast and makes efficient use of the network.

Before TANGO release 8, TANGO used the CORBA OMG COS Notification Service to generates
events. TANGO uses the omniNotify implementation of the Notification service. omniNotify was devel-
oped in conjunction with the omniORB CORBA implementation also used by TANGO. The heart of the
Notification Service is the notification daemon. The omniNotify daemons are the processes which receive
events from device servers and distribute them to all clients which are subscribed. In order to distribute the
load of the events there is one notification daemon per host. Servers send their events to the daemon on the
local host. Clients and servers get the IOR for the host from the TANGO database.

The following figure is a schematic of the Tango event system for Tango releases before Tango 8.

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 30

notify daemon

device server #2

client #1

client #2

client #3

database server events table:

notifd/host: IOR

server/name: IOR

event subscription

event filter

event(s)

event(s)

event(s)

IOR

IOR

IOR

event channel

event channel

Schematic of TANGO Events system

device server #1

Starting with Tango 8, a new design of the event system has been implemented. This new design is
based on the ZMQ library. ZMQ is a library allowing users to create communicating system. It implements
several well known communication pattern including the Publish/Subscribe pattern which is the basic of
the new Tango event system. Using this library, a separate notification service is not needed anymore and
event communiction is available with only client and server processes which simplifies the overall design.
Starting with Tango 8.1, the event propagation between devices and clients could be done using a multi-
casting protocol. The aim of this is to reduce both the network bandwidth use and the CPU consumption
on the device server side. See chapter on Advanced Features to get all the details on this feature.

The following figure is a schematic of the Tango event system for Tango releases starting with Tango
release 8.

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 31

Device

server #2

server #1

Device

Client #1

Client #2

Client #3

Event(s)

Event(s)

Event(s)

Event(s)

Schematic of event system for TANGO release 8 and more

CHAPTER 3. THE TANGO DEVICE SERVER MODEL 32

Chapter 4

Writing a TANGO client using TANGO
APIs

4.1 Introduction
TANGO devices and database are implemented using the TANGO device server model. To access them
the user has the CORBA interface e.g. command_inout(), write_attributes() etc. defined by the idl file.
These methods are very low-level and assume a good working knowledge of CORBA. In order to simplify
this access, high-level api has been implemented which hides all CORBA aspects of TANGO. In addition
the api hides details like how to connect to a device via the database, how to reconnect after a device has
been restarted, how to correctly pack and unpack attributes and so on by implementing these in a manner
transparent to the user. The api provides a unified error handling for all TANGO and CORBA errors.
Unlike the CORBA C++ bindings the TANGO api supports native C++ data types e.g. strings and vectors.

This chapter describes how to use these API’s. It is not a reference guide. Reference documentation is
available as Web pages in the Tango Web site

4.2 Getting Started
Refer to the chapter "Getting Started" for an example on getting start with the C++ or Java api.

4.3 Basic Philosophy
The basic philosophy is to have high level classes to deal with Tango devices. To communicate with Tango
device, uses the DeviceProxy class. To send/receive data to/from Tango device, uses the DeviceData,
DeviceAttribute or DevicePipe classes. To communicate with a group of devices, use the Group class.
If you are interested only in some attributes provided by a Tango device, uses the AttributeProxy class.
Even if the Tango database is implemented as any other devices (and therefore accessible with one instance
of a DeviceProxy class), specific high level classes have been developped to query it. Uses the Database,
DbDevice, DbClass, DbServer or DbData classes when interfacing the Tango database. Callback for
asynchronous requests or events are implemented via a CallBack class. An utility class called ApiUtil is
also available.

4.4 Data types
The definition of the basic data type you can transfert using Tango is:

33

http://www.tango-controls.org

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 34

Tango type name C++ equivalent type
DevBoolean boolean

DevShort short
DevEnum enumeration (only for attribute / See chapter on advanced features)
DevLong int (always 32 bits data)

DevLong64 long long on 32 bits chip or long on 64 bits chip
always 64 bits data

DevFloat float
DevDouble double
DevString char *

DevEncoded structure with 2 fields: a string and an array of unsigned char
DevUChar unsigned char
DevUShort unsigned short
DevULong unsigned int (always 32 bits data)

DevULong64 unsigned long long on 32 bits chip or unsigned long on 64 bits chip
always 64 bits data

DevState Tango specific data type

Using commands, you are able to transfert all these data types, array of these basic types and two other
Tango specific data types called DevVarLongStringArray and DevVarDoubleStringArray. See chapter 6.2
to get details about them. You are also able to create attributes using any of these basic data types to transfer
data between clients and servers.

4.5 Request model
For the most important API remote calls (command_inout, read_attribute(s) and write_attribute(s)), Tango
supports two kind of requests which are the synchronous model and the asynchronous model. Synchronous
model means that the client wait (and is blocked) for the server to send an answer. Asynchronous model
means that the client does not wait for the server to send an answer. The client sends the request and
immediately returns allowing the CPU to do anything else (like updating a graphical user interface). Device
pipe supports only the synchronous model. Within Tango, there are two ways to retrieve the server answer
when using asynchronous model. They are:

1. The polling mode

2. The callback mode

In polling mode, the client executes a specific call to check if the answer is arrived. If this is not the case,
an exception is thrown. If the reply is there, it is returned to the caller and if the reply was an exception, it
is re-thrown. There are two calls to check if the reply is arrived:

• Call which does not wait before the server answer is returned to the caller.

• Call which wait with timeout before returning the server answer to the caller (or throw the exception)
if the answer is not arrived.

In callback model, the caller must supply a callback method which will be executed when the command
returns. They are two sub-modes:

1. The pull callback mode

2. The push callback mode

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 35

In the pull callback mode, the callback is triggered if the server answer is arrived when the client decide
it by calling a synchronization method (The client pull-out the answer). In push mode, the callback is
executed as soon as the reply arrives in a separate thread (The server pushes the answer to the client).

4.5.1 Synchronous model
Synchronous access to Tango device are provided using the DeviceProxy or AttributeProxy class. For the
DeviceProxy class, the main synchronous call methods are :

• command_inout() to execute a Tango device command

• read_attribute() or read_attributes() to read a Tango device attribute(s)

• write_attribute() or write_attributes() to write a Tango device attribute(s)

• write_read_attribute() or write_read_attributes() to write then read Tango device attribute(s)

• read_pipe() to read a Tango device pipe

• write_pipe() to write a Tango device pipe

• write_read_pipe() to write then read Tango device pipe

For commands, data are send/received to/from device using the DeviceData class. For attributes, data are
send/received to/from device attribute using the DeviceAttribute class. For pipes, data are send/receive
to/from device pipe using the DevicePipe and DevicePipeBlob classes.

In some cases, only attributes provided by a Tango device are interesting for the application. You can
use the AttributeProxy class. Its main synchronous methods are :

• read() to read the attribute value

• write() to write the attribute value

• write_read() to write then read the attribute value

Data are transmitted using the DeviceAttribute class.

4.5.2 Asynchronous model
Asynchronous access to Tango device are provided using DeviceProxy or AttributeProxy, CallBack and
ApiUtil classes methods. The main asynchronous call methods and used classes are :

• To execute a command on a device

– DeviceProxy::command_inout_asynch() and DeviceProxy::command_inout_reply() in polling
model.

– DeviceProxy::command_inout_asynch(), DeviceProxy::get_asynch_replies() and CallBack class
in callback pull model

– DeviceProxy::command_inout_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack
class in callback push model

• To read a device attribute

– DeviceProxy::read_attribute_asynch() and DeviceProxy::read_attribute_reply() in polling model

– DeviceProxy::read_attribute_asynch(), DeviceProxy::get_asynch_replies() and CallBack class
in callback pull model.

– DeviceProxy::read_attribute_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack class
in callback push model

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 36

• To write a device attribute

– DeviceProxy::write_attribute_asynch() in polling model

– DeviceProxy::write_attribute_asynch() and CallBack class in callback pull model

– DeviceProxy::write_attribute_asynch(), ApiUtil::set_asynch_cb_sub_model() and CallBack class
in callback push model

For commands, data are send/received to/from device using the DeviceData class. For attributes, data
are send/received to/from device attribute using the DeviceAttribute class. It is also possible to generate
asynchronous request(s) using the AttributeProxy class following the same schema than above. Methods to
use are :

• read_asynch() and read_reply() to asynchronously read the attribute value

• write_asynch() and write_reply() to asynchronously write the attribute value

4.6 Events

4.6.1 Introduction
Events are a critical part of any distributed control system. Their aim is to provide a communication
mechanism which is fast and efficient.

The standard CORBA communication paradigm is a synchronous or asynchronous two-way call. In
this paradigm the call is initiated by the client who contacts the server. The server handles the client’s
request and sends the answer to the client or throws an exception which the client catches. This paradigm
involves two calls to receive a single answer and requires the client to be active in initiating the request. If
the client has a permanent interest in a value he is obliged to poll the server for an update in a value every
time. This is not efficient in terms of network bandwidth nor in terms of client programming.

For clients who are permanently interested in values the event-driven communication paradigm is a
more efficient and natural way of programming. In this paradigm the client registers her interest once in
an event (value). After that the server informs the client every time the event has occurred. This paradigm
avoids the client polling, frees it for doing other things, is fast and makes efficient use of the network.

The rest of this chapter explains how the TANGO events are implemented and the application program-
mer’s interface.

4.6.2 Event definition
TANGO events represent an alternative channel for reading TANGO device attributes. Device attributes
values are sent to all subscribed clients when an event occurs. Events can be an attribute value change,
a change in the data quality or a periodically send event. The clients continue receiving events as long
as they stay subscribed. Most of the time, the device server polling thread detects the event and then
pushes the device attribute value to all clients. Nevertheless, in some cases, the delay introduced by the
polling thread in the event propagation is detrimental. For such cases, some API calls directly push the
event. Until TANGO release 8, the omniNotify implementation of the CORBA Notification service was
used to dispatch events. Starting with TANGO 8, this CORBA Notification service has been replaced by
the ZMQ library which implements a Publish/Subscribe communication model well adapted to TANGO
events communication.

4.6.3 Event types
The following eight event types have been implemented in TANGO :

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 37

1. change - an event is triggered and the attribute value is sent when the attribute value changes signif-
icantly. The exact meaning of significant is device attribute dependent. For analog and digital values
this is a delta fixed per attribute, for string values this is any non-zero change i.e. if the new attribute
value is not equal to the previous attribute value. The delta can either be specified as a relative or
absolute change. The delta is the same for all clients unless a filter is specified (see below). To easily
write applications using the change event, it is also triggered in the following case :

(a) When a spectrum or image attribute size changes.

(b) At event subscription time

(c) When the polling thread receives an exception during attribute reading

(d) When the polling thread detects that the attribute quality factor has changed.

(e) The first good reading of the attribute after the polling thread has received exception when
trying to read the attribute

(f) The first time the polling thread detects that the attribute quality factor has changed from IN-
VALID to something else

(g) When a change event is pushed manually from the device server code. (DeviceImpl::push_change_event()).

(h) By the methods Attribute::set_quality() and Attribute::set_value_date_quality() if a client has
subscribed to the change event on the attribute. This has been implemented for cases where the
delay introduced by the polling thread in the event propagation is not authorized.

2. periodic - an event is sent at a fixed periodic interval. The frequency of this event is determined by
the event_period property of the attribute and the polling frequency. The polling frequency deter-
mines the highest frequency at which the attribute is read. The event_period determines the highest
frequency at which the periodic event is sent. Note if the event_period is not an integral number of
the polling period there will be a beating of the two frequencies1. Clients can reduce the frequency
at which they receive periodic events by specifying a filter on the periodic event counter.

3. archive - an event is sent if one of the archiving conditions is satisfied. Archiving conditions are
defined via properties in the database. These can be a mixture of delta_change and periodic. Archive
events can be send from the polling thread or can be manually pushed from the device server code
(DeviceImpl::push_archive_event()).

4. attribute configuration - an event is sent if the attribute configuration is changed.

5. data ready - This event is sent when coded by the device server programmer who uses a specific
method of one of the Tango device server class to fire the event (DeviceImpl::push_data_ready_event()).
The rule of this event is to inform a client that it is now possible to read an attribute. This could be
useful in case of attribute with many data.

6. user - The criteria and configuration of these user events are managed by the device server pro-
grammer who uses a specific method of one of the Tango device server class to fire the event (Devi-
ceImpl::push_event()).

7. device interface change - This event is sent when the device interface changes. Using Tango, it is
possible to dynamically add/remove attribute/command to a device. This event is the way to inform
client(s) that attribute/command has been added/removed from a device. Note that this type of event
is attached to a device and not to one attribute (like all other event types). This event is triggered in
the following case :

(a) A dynamic attribute or command is added or removed. The event is sent after a small delay
(50 mS) in order to eliminate the risk of events storm in case several attributes/commands are
added/removed in a loop

1note: the polling is not synchronized is currently not synchronized on the hour

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 38

(b) At the end of admin device RestartServer or DevRestart command

(c) After a re-connection due to a device server restart. Because the device interface is not memo-
rized, the event is sent even if it is highly possible that the device interface has not changed. A
flag in the data propagated with the event inform listening applications that the device interface
change is not guaranteed.

(d) At event re-connection time. This case is similar to the previous one (device interface change
not guaranteed)

8. pipe - This is the kind of event which has to be used when the user want to push data through a pipe.
This kind of event is only sent by the user code by using a specific method (DeviceImpl::push_pipe_event()).
There is no way to ask the Tango kernel to automatically push this kind of event.

The first three above events are automatically generated by the TANGO library or fired by the user code.
Events number 4 and 7 are only automatically sent by the library and events 5, 6 and 8 are fired only by the
user code.

4.6.4 Event filtering (Removed in Tango release 8 and above)
Please, note that this feature is available only for Tango releases older than Tango 8. The CORBA Notifi-
cation Service allows event filtering. This means that a client can ask the Notification Service to send the
event only if some filter is evaluated to true. Within the Tango control system, some pre-defined fields can
be used as filter. These fields depend on the event type.

Event type Filterable field name Filterable field value type
delta_change_rel Relative change (in %) since last event double
delta_change_abs Absolute change since last event double

change quality Is set to 1 when the attribute quality factor has double
changed, otherwise it is 0

forced_event Is set to 1 when the event was fired on exception double
or a quality factor set to invalid

periodic counter Incremented each time the event is sent long
delta_change_rel Relative change (in %) since last event double
delta_change_abs Absolute change since last event double

quality Is set to 1 when the attribute quality factor has double
changed, otherwise it is 0

archive Incremented each time the event is sent
counter for periodic reason. Set to -1 if event long

sent for change reason
forced_event Is set to 1 when the event was fired on exception double

or a quality factor set to invalid
delta_event Number of milli-seconds since previous event double

Filter are defined as a string following a grammar defined by CORBA. It is defined in [18]. The
following example shows you the most common use of these filters in the Tango world :

• To receive periodic event one out of every three, the filter must be

"$counter % 3 == 0"

• To receive change event only if the relative change is greater than 20 % (positive and negative), the
filter must be

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 39

"$delta_change_rel >= 20 or $delta_change_rel <= -20"

• To receive a change event only on quality change, the filter must be

"$quality == 1"

For user events, the filter field name(s) and their value are defined by the device server programmer.

4.6.5 Application Programmer’s Interface
How to setup and use the TANGO events ? The interfaces described here are intended as user friendly inter-
faces to the underlying CORBA calls. The interface is modeled after the asynchronous command_inout()
interface so as to maintain coherency. The event system supports push callback model as well as the pull
callback model.

The two event reception modes are:

• Push callback model : On event reception a callbacks method gets immediately executed.

• Pull callback model : The event will be buffered the client until the client is ready to receive the
event data. The client triggers the execution of the callback method.

The event reception buffer in the pull callback model, is implemented as a round robin buffer. The client
can choose the size when subscribing for the event. This way the client can set-up different ways to receive
events.

• Event reception buffer size = 1 : The client is interested only in the value of the last event received.
All other events that have been received since the last reading are discarded.

• Event reception buffer size > 1 : The client has chosen to keep an event history of a given size. When
more events arrive since the last reading, older events will be discarded.

• Event reception buffer size = ALL_EVENTS : The client buffers all received events. The buffer size
is unlimited and only restricted by the available memory for the client.

4.6.5.1 Configuring events

The attribute configuration set is used to configure under what conditions events are generated. A set of
standard attribute properties (part of the standard attribute configuration) are read from the database at
device startup time and used to configure the event engine. If there are no properties defined then default
values specified in the code are used.

4.6.5.1.1 change The attribute properties and their default values for the "change" event are :

1. rel_change - a property of maximum 2 values. It specifies the positive and negative relative change
of the attribute value w.r.t. the value of the previous change event which will trigger the event. If
the attribute is a spectrum or an image then a change event is generated if any one of the attribute
value’s satisfies the above criterium. If only one property is specified then it is used for the positive
and negative change. If no property is specified, no events are generated.

2. abs_change - a property of maximum 2 values.It specifies the positive and negative absolute change
of the attribute value w.r.t the value of the previous change event which will trigger the event. If
the attribute is a spectrum or an image then a change event is generated if any one of the attribute
value’s satisfies the above criterium. If only one property is specified then it is used for the positive
and negative change. If no properties are specified then the relative change is used.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 40

4.6.5.1.2 periodic The attribute properties and their default values for the "periodic" event are :

1. event_period - the minimum time between events (in milliseconds). If no property is specified then
a default value of 1 second is used.

4.6.5.1.3 archive The attribute properties and their default values for the "archive" event are :

1. archive_rel_change - a property of maximum 2 values which specifies the positive and negative
relative change w.r.t. the previous attribute value which will trigger the event. If the attribute is a
spectrum or an image then an archive event is generated if any one of the attribute value’s satisfies
the above criterium. If only one property is specified then it is used for the positive and negative
change. If no properties are specified then no events are generate.

2. archive_abs_change - a property of maximum 2 values which specifies the positive and negative
absolute change w.r.t the previous attribute value which will trigger the event. If the attribute is a
spectrum or an image then an archive event is generated if any one of the attribute value’s satisfies
the above criterium. If only one property is specified then it is used for the positive and negative
change. If no properties are specified then the relative change is used.

3. archive_period - the minimum time between archive events (in milliseconds). If no property is
specified, no periodic archiving events are send.

4.6.5.2 C++ Clients

This is the interface for clients who want to receive events. The main action of the client is to subscribe
and unsubscribe to events. Once the client has subscribed to one or more events the events are received in
a separate thread by the client.

Two reception modes are possible:

• On event reception a callbacks method gets immediately executed.

• The event will be buffered until the client until the client is ready to receive the event data.

The mode to be used has to be chosen when subscribing for the event.

4.6.5.2.1 Subscribing to events The client call to subscribe to an event is named DeviceProxy::subscribe_event()
. During the event subscription the client has to choose the event reception mode to use.

Push model:

int DeviceProxy::subscribe_event(
const string &attribute,
Tango::EventType event,
Tango::CallBack *callback,
bool stateless = false);

The client implements a callback method which is triggered when the event is received. Note that this call-
back method will be executed by a thread started by the underlying ORB. This thread is not the application
main thread. For Tango releases before 8, a similar call with one extra parameter for event filtering is also
available.

Pull model:

int DeviceProxy::subscribe_event(
const string &attribute,
Tango::EventType event,
int event_queue_size,
bool stateless = false);

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 41

The client chooses the size of the round robin event reception buffer. Arriving events will be buffered until
the client uses DeviceProxy::get_events() to extract the event data. For Tango releases before 8, a similar
call with one extra parameter for event filtering is also available.

On top of the user filter defined by the filters parameter, basic filtering is done based on the reason
specified and the event type. For example when reading the state and the reason specified is "change"
the event will be fired only when the state changes. Events consist of an attribute name and the event
reason. A standard set of reasons are implemented by the system, additional device specific reasons can be
implemented by device servers programmers.

The stateless flag = false indicates that the event subscription will only succeed when the given attribute
is known and available in the Tango system. Setting stateless = true will make the subscription succeed,
even if an attribute of this name was never known. The real event subscription will happen when the given
attribute will be available in the Tango system.

Note that in this model, the callback method will be executed by the thread doing the DeviceProxy::get_events()
call.

4.6.5.2.2 The CallBack class In C++, the client has to implement a class inheriting from the Tango
CallBack class and pass this to the DeviceProxy::subscribe_event() method. The CallBack class is the
same class as the one proposed for the TANGO asynchronous call. This is as follows for events :

class MyCallback : public Tango::CallBack
{

.

.

.
virtual push_event(Tango::EventData *);
virtual push_event(Tango::AttrConfEventData *);
virtual push_event(Tango::DataReadyEventData *);
virtual push_event(Tango::DevIntrChangeEventData *);
virtual push_event(Tango::PipeEventData *);

}

where EventData is defined as follows :

class EventData
{

DeviceProxy *device;
string attr_name;
string event;
DeviceAttribute *attr_value;
bool err;
DevErrorList errors;

}

AttrConfEventData is defined as follows :

class AttrConfEventData
{

DeviceProxy *device;
string attr_name;
string event;
AttributeInfoEx *attr_conf;
bool err;
DevErrorList errors;

}

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 42

DataReadyEventData is defined as follows :

class DataReadyEventData
{

DeviceProxy *device;
string attr_name;
string event;
int attr_data_type;
int ctr;
bool err;
DevErrorList errors;

}

DevIntrChangeEventData is defined as follows :

class DevIntrChangeEventData
{

DeviceProxy device;
string event;
string device_name;
CommandInfoList cmd_list;
AttributeInfoListEx att_list;
bool dev_started;
bool err;
DevErrorList errors;

}

and PipeEventData is defined as follows :

class PipeEventData
{

DeviceProxy *device;
string pipe_name;
string event;
DevicePipe *pipe_value;
bool err;
DevErrorList errors;

}

In push model, there are some cases (same callback used for events coming from different devices hosted in
device server process running on different hosts) where the callback method could be executed concurently
by different threads started by the ORB. The user has to code his callback method in a thread safe manner.

4.6.5.2.3 Unsubscribing from an event Unsubscribe a client from receiving the event specified by
event_id is done by calling the DeviceProxy::unsubscribe_event() method :

void DeviceProxy::unsubscribe_event(int event_id);

4.6.5.2.4 Extract buffered event data When the pull model was chosen during the event subscription,
the received event data can be extracted with DeviceProxy::get_events(). Two possibilities are available for
data extraction. Either a callback method can be executed for every event in the buffer when using

int DeviceProxy::get_events(
int event_id,
CallBack *cb);

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 43

Or all the event data can be directly extracted as EventDataList, AttrConfEventDataList , DataReadyEvent-
DataList, DevIntrChangeEventDataList or PipeEventDataList when using

int DeviceProxy::get_events(
int event_id,
EventDataList &event_list);

int DeviceProxy::get_events(
int event_id,
AttrConfEventDataList &event_list);

int DeviceProxy::get_events(
int event_id,
DataReadyEventDataList &event_list);

int DeviceProxy::get_events(
int event_id,
DevIntrChangeEventDataList &event_list);

int DeviceProxy::get_events(
int event_id,
PipeEventDataList &event_list);

The event data lists are vectors of EventData, AttrConfEventData, DataReadyEventData or PipeEventData
pointers with special destructor and clean-up methods to ease the memory handling.

class EventDataList:public vector<EventData *>
class AttrConfEventDataList:public vector<AttrConfEventData *>
class DataReadyEventDataList:public vector<DataReadyEventData *>
class DevIntrChangeEventDataList:public vector<DevIntrChangeEventData *>
class PipeEventDataList:public vector<PipeEventData *>

4.6.5.2.5 Example Here is a typical code example of a client to register and receive events. First, you
have to define a callback method as follows:

class DoubleEventCallBack : public Tango::CallBack
{

void push_event(Tango::EventData*);
};

void DoubleEventCallBack::push_event(Tango::EventData *myevent)
{

Tango::DevVarDoubleArray *double_value;
try
{

cout << "DoubleEventCallBack::push_event(): called attribute "
<< myevent->attr_name
<< " event "
<< myevent->event
<< " (err="
<< myevent->err
<< ")" << endl;

if (!myevent->err)
{

*(myevent->attr_value) >> double_value;
cout << "double value "

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 44

<< (*double_value)[0]
<< endl;

delete double_value;
}

}
catch (...)
{

cout << "DoubleEventCallBack::push_event(): could not extract data !\n";
}

}

Then the main code must subscribe to the event and choose the push or the pull model for event recep-
tion.

Push model:

DoubleEventCallBack *double_callback = new DoubleEventCallBack;

Tango::DeviceProxy *mydevice = new Tango::DeviceProxy("my/device/1");

int event_id;
const string attr_name("current");
event_id = mydevice->subscribe_event(attr_name,

Tango::CHANGE_EVENT,
double_callback);

cout << "event_client() id = " << event_id << endl;
// The callback methods are executed by the Tango event reception thread.
// The main thread is not concerned of event reception.
// Whatch out with synchronisation and data access in a multi threaded environment!
sleep(1000); // wait for events

mydevice->unsubscribe_event(event_id);

Pull model:

DoubleEventCallBack *double_callback = new DoubleEventCallBack;
int event_queue_size = 100; // keep the last 100 events

Tango::DeviceProxy *mydevice = new Tango::DeviceProxy("my/device/1");

int event_id;
const string attr_name("current");
event_id = mydevice->subscribe_event(attr_name,

Tango::CHANGE_EVENT,
event_queue_size);

cout << "event_client() id = " << event_id << endl;

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 45

// Check every 3 seconds whether new events have arrived and trigger the callback method
// for the new events.
for (int i=0; i < 100; i++)
{

sleep (3);

// Read the stored event data from the queue and call the callback method for every event.
mydevice->get_events(event_id, double_callback);

}

event_test->unsubscribe_event(event_id);

4.7 Group
A Tango Group provides the user with a single point of control for a collection of devices. By analogy,
one could see a Tango Group as a proxy for a collection of devices. For instance, the Tango Group API
supplies a command_inout() method to execute the same command on all the elements of a group.

A Tango Group is also a hierarchical object. In other words, it is possible to build a group of both
groups and individual devices. This feature allows creating logical views of the control system - each view
representing a hierarchical family of devices or a sub-system.

In this chapter, we will use the term hierarchy to refer to a group and its sub-groups. The term Group
designates to the local set of devices attached to a specific Group.

4.7.1 Getting started with Tango group
The quickest way of getting started is to study an example. . .

Imagine we are vacuum engineers who need to monitor and control hundreds of gauges distributed
over the 16 cells of a large-scale instrument. Each cell contains several penning and pirani gauges. It also
contains one "strange" gauge. Our main requirement is to be able to control the whole set of gauges, a
family of gauges located into a particular cell (e.g. all the penning gauges of the 6th cell) or a single gauge
(e.g. the strange gauge of the 7th cell). Using a Tango Group, such features are quite straightforward to
obtain.

Reading the description of the problem, the device hierarchy becomes obvious. Our "gauges" group
will have the following structure:

-> gauges
| -> cell-01
| |-> inst-c01/vac-gauge/strange
| |-> penning
| | |-> inst-c01/vac-gauge/penning-01
| | |-> inst-c01/vac-gauge/penning-02
| | |- ...
| | |-> inst-c01/vac-gauge/penning-xx
| |-> pirani
| |-> inst-c01/vac-gauge/pirani-01
| |-> ...
| |-> inst-c01/vac-gauge/pirani-xx
| -> cell-02
| |-> inst-c02/vac-gauge/strange
| |-> penning
| | |-> inst-c02/vac-gauge/penning-01
| | |-> ...

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 46

| |
| |-> pirani
| | |-> ...
| -> cell-03
| |-> ...
| | -> ...

In the C++, such a hierarchy can be build as follows (basic version):

//- step0: create the root group
Tango::Group *gauges = new Tango::Group("gauges");

//- step1: create a group for the n-th cell
Tango::Group *cell = new Tango::Group("cell-01");

//- step2: make the cell a sub-group of the root group
gauges->add(cell);

//- step3: create a "penning" group
Tango::Group *gauge_family = new Tango::Group("penning");

//- step4: add all penning gauges located into the cell (note the wildcard)
gauge_family->add("inst-c01/vac-gauge/penning*");

//- step5: add the penning gauges to the cell
cell->add(gauge_family);

//- step6: create a "pirani" group
gauge_family = new Tango::Group("pirani");

//- step7: add all pirani gauges located into the cell (note the wildcard)
gauge_family->add("inst-c01/vac-gauge/pirani*");

//- step8: add the pirani gauges to the cell
cell->add(gauge_family);

//- step9: add the "strange" gauge to the cell
cell->add("inst-c01/vac-gauge/strange");

//- repeat step 1 to 9 for the remaining cells
cell = new Tango::Group("cell-02");
...

Important note: There is no particular order to create the hierarchy. However, the insertion order of
the devices is conserved throughout the lifecycle of the Group and cannot be changed. That way, the Group
implementation can guarantee the order in which results are returned (see below).

Keeping a reference to the root group is enough to manage the whole hierarchy (i.e. there no need to
keep trace of the sub-groups or individual devices). The Group interface provides methods to retrieve a
sub-group or an individual device.

Be aware that a C++ group allways gets the ownership of its children and deletes them when it is
itself deleted. Therefore, never try to delete a Group (respectively a DeviceProxy) returned by a call to

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 47

Tango::Group::get_group() (respectively to Tango::Group::get_device()). Use the Tango::Group::remove()
method instead (see the Tango Group class API documentation for details).

We can now perform any action on any element of our "gauges" group. For instance, let’s ping the
whole hierarchy to be sure that all devices are alive.

//- ping the whole hierarchy
if (gauges->ping() == true)
{

std::cout << "all devices alive" << std::endl;
}
else
{

std::cout << "at least one dead/busy/locked/... device" << std::endl;
}

4.7.2 Forward or not forward?
Since a Tango Group is a hierarchical object, any action performed on a group can be forwarded to its
sub-groups. Most of the methods in the Group interface have a so-called forward option controlling this
propagation. When set to false, the action is only performed on the local set of devices. Otherwise, the
action is also forwarded to the sub-groups, in other words, propagated along the hierarchy. In C++ , the
forward option defaults to true (thanks to the C++ default argument value). There is no such mechanism in
Java and the forward option must be systematically specified.

4.7.3 Executing a command
As a proxy for a collection of devices, the Tango Group provides an interface similar to the Device-
Proxy’s. For the execution of a command, the Group interface contains several implementations of the
command_inout method. Both synchronous and asynchronous forms are supported.

4.7.3.1 Obtaining command results

Command results are returned using a Tango::GroupCmdReplyList. This is nothing but a vector containing
a Tango::GroupCmdReply for each device in the group. The Tango::GroupCmdReply contains the actual
data (i.e. the Tango::DeviceData). By inheritance, it may also contain any error occurred during the
execution of the command (in which case the data is invalid).

We previously indicated that the Tango Group implementation guarantees that the command results
are returned in the order in which its elements were attached to the group. For instance, if g1 is a group
containing three devices attached in the following order:

g1->add("my/device/01");
g1->add("my/device/03");
g1->add("my/device/02");

the results of

Tango::GroupCmdReplyList crl = g1->command_inout("Status");

will be organized as follows:
crl[0] contains the status of my/device/01

crl[1] contains the status of my/device/03
crl[2] contains the status of my/device/02

Things get more complicated if sub-groups are added "between" devices.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 48

g2->add("my/device/04");
g2->add("my/device/05");

g4->add("my/device/08");
g4->add("my/device/09");

g3->add("my/device/06");
g3->add(g4);
g3->add("my/device/07");

g1->add("my/device/01");
g1->add(g2);
g1->add("my/device/03");
g1->add(g3);
g1->add("my/device/02");

The result order in the Tango::GroupCmdReplyList depends on the value of the forward option. If set to
true, the results will be organized as follows:

Tango::GroupCmdReplyList crl = g1->command_inout("Status", true);

crl[0] contains the status of my/device/01 which belongs to g1
crl[1] contains the status of my/device/04 which belongs to g1.g2
crl[2] contains the status of my/device/05 which belongs to g1.g2
crl[3] contains the status of my/device/03 which belongs to g1
crl[4] contains the status of my/device/06 which belongs to g1.g3
crl[5] contains the status of my/device/08 which belongs to g1.g3.g4
crl[6] contains the status of my/device/09 which belongs to g1.g3.g
crl[7] contains the status of my/device/07 which belongs to g1.g3
crl[8] contains the status of my/device/02 which belongs to g1

If the forward option is set to false, the results are:

Tango::GroupCmdReplyList crl = g1->command_inout("Status", false);

crl[0] contains the status of my/device/01 which belongs to g
crl[1] contains the status of my/device/03 which belongs to g1
crl[2] contains the status of my/device/02 which belongs to g1

The Tango::GroupCmdReply contains some public members allowing the identification of both the
device (Tango::GroupCmdReply::dev_name) and the command (Tango::GroupCmdReply::obj_name). It
means that, depending of your application, you can associate a response with its source using its position
in the response list or using the Tango::GroupCmdReply::dev_name member.

4.7.3.2 Case 1: a command, no argument

As an example, we execute the Status command on the whole hierarchy synchronously.

Tango::GroupCmdReplyList crl = gauges->command_inout("Status");

As a first step in the results processing, it could be interesting to check value returned by the has_failed()
method of the GroupCmdReplyList. If it is set to true, it means that at least one error occurred during the
execution of the command (i.e. at least one device gave error).

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 49

if (crl.has_failed())
{

cout << "at least one error occurred" << endl;
}
else
{

cout << "no error " << endl;
}

Now, we have to process each "individual response" in the list.

4.7.3.3 A few words on error handling and data extraction

Depending of the application and/or the developer’s programming habits, each individual error can be han-
dle by the C++ (or Java) exception mechanism or using the dedicated has_failed() method. The GroupRe-
ply class - which is the mother class of both GroupCmdReply and GroupAttrReply - contains a static
method to enable (or disable) exceptions called enable_exception(). By default, exceptions are disabled.
The following example is proposed with both exceptions enable and disable.

In C++, data can be extracted directly from an individual reply. The GroupCmdReply interface con-
tains a template operator >> allowing the extraction of any supported Tango type (in fact the actual data
extraction is delegated to DeviceData::operator >>). One dedicated extract method is also provided in order
to extract DevVarLongStringArray and DevVarDoubleStringArray types to std::vectors.

Error and data handling C++ example:

//---
//- synch. group command example with exception enabled
//---
//- enable exceptions and save current mode
bool last_mode = GroupReply::enable_exception(true);
//- process each response in the list ...
for (int r = 0; r < crl.size(); r++)
{
//- enter a try/catch block

try
{

//- try to extract the data from the r-th reply
//- suppose data contains a double

double ans;
crl[r] >> ans;
cout << crl[r].dev_name()

<< "::"
<< crl[r].obj_name()
<< " returned "
<< ans
<< endl;

}
catch (const DevFailed& df)
{

//- DevFailed caught while trying to extract the data from reply
for (int err = 0; err < df.errors.length(); err++)
{

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 50

cout << "error: " << df.errors[err].desc.in() << endl;
}

//- alternatively, one can use crl[r].get_err_stack() see below
}
catch (...)
{

cout << "unknown exception caught";
}

}
//- restore last exception mode (if needed)
GroupReply::enable_exception(last_mode);
//- Clear the response list (if reused later in the code)
crl.reset();

//---
//- synch. group command example with exception disabled
//---
//- disable exceptions and save current mode bool
last_mode = GroupReply::enable_exception(false);
//- process each response in the list ...
for (int r = 0; r < crl.size(); r++)
{
//- did the r-th device give error?

if (crl[r].has_failed() == true)
{

//- printout error description
cout << "an error occurred while executing "

<< crl[r].obj_name()
<< " on "
<< crl[r].dev_name() << endl;

//- dump error stack
const DevErrorList& el = crl[r].get_err_stack();
for (int err = 0; err < el.size(); err++)
{

cout << el[err].desc.in();
}

}
else
{

//- no error (suppose data contains a double)
double ans;
bool result = crl[r] >> ans;
if (result == false)
{

cout << "could not extract double from "
<< crl[r].dev_name()
<< " reply"
<< endl;

}
else
{

cout << crl[r].dev_name()
<< "::"
<< crl[r].obj_name()

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 51

<< " returned "
<< ans
<< endl;

}
}

}
//- restore last exception mode (if needed)
GroupReply::enable_exception(last_mode);
//- Clear the response list (if reused later in the code)
crl.reset();

Now execute the same command asynchronously. C++ example:

//---
//- asynch. group command example (C++ example)
//---
long request_id = gauges->command_inout_asynch("Status");
//- do some work
do_some_work();

//- get results
crl = gauges->command_inout_reply(request_id);
//- process responses as previously describe in the synch. implementation
for (int r = 0; r < crl.size(); r++)
{
//- data processing and error handling goes here
//- copy/paste code from previous example
. . .
}
//- clear the response list (if reused later in the code)
crl.reset();

4.7.3.4 Case 2: a command, one argument

Here, we give an example in which the same input argument is applied to all devices in the group (or its
sub-groups).

In C++:

//- the argument value
double d = 0.1;
//- insert it into the TANGO generic container for command: DeviceData
Tango::DeviceData dd;
dd << d;
//- execute the command: Dev_Void SetDummyFactor (Dev_Double)
Tango::GroupCmdReplyList crl = gauges->command_inout("SetDummyFactor", dd);

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 52

Since the SetDummyFactor command does not return any value, the individual replies (i.e. the GroupCm-
dReply) do not contain any data. However, we have to check their has_failed() method returned value to
be sure that the command completed successfully on each device (acknowledgement). Note that in such a
case, exceptions are useless since we never try to extract data from the replies.

In C++ we should have something like:

//- no need to process the results if no error occurred (Dev_Void command)
if (crl.has_failed())
{
//- at least one error occurred

for (int r = 0; r < crl.size(); r++)
{

//- handle errors here (see previous C++ examples)
}

}
//- clear the response list (if reused later in the code)
crl.reset();

See case 1 for an example of asynchronous command.

4.7.3.5 Case 3: a command, several arguments

Here, we give an example in which a specific input argument is applied to each device in the hierarchy. In
order to use this form of command_inout, the user must have an "a priori" and "perfect" knowledge of the
devices order in the hierarchy. In such a case, command arguments are passed in an "array" (with one entry
for each device in the hierarchy).

The C++ implementation provides a template method which accepts a std::vector of "C++ type for
command argument". This allows passing any kind of data using a single method.

The size of this vector must equal the number of device in the hierarchy (respectively the number of
device in the group) if the forward option is set to true (respectively set to false). Otherwise, an exception
is thrown.

The first item in the vector is applied to the first device in the hierarchy, the second to the second device
in the hierarchy, and so on. . . That’s why the user must have a "perfect" knowledge of the devices order in
the hierarchy.

Assuming that gauges are ordered by name, the SetDummyFactor command can be executed on group
"cell-01" (and its sub-groups) as follows:

Remember, "cell-01" has the following internal structure:

-> gauges
| -> cell-01
| |-> inst-c01/vac-gauge/strange
| |-> penning
| | |-> inst-c01/vac-gauge/penning-01
| | |-> inst-c01/vac-gauge/penning-02
| | |-> ...
| | |-> inst-c01/vac-gauge/penning-xx
| |-> pirani
| |-> inst-c01/vac-gauge/pirani-01
| |-> ...
| |-> inst-c01/vac-gauge/pirani-xx

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 53

Passing a specific argument to each device in C++:

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the hierarchy (starting at cell-01)
long n_dev = g->get_size(true);
//- Build argin list
std::vector<double> argins(n_dev);
//- argument for inst-c01/vac-gauge/strange
argins[0] = 0.0;
//- argument for inst-c01/vac-gauge/penning-01
argins[1] = 0.1;
//- argument for inst-c01/vac-gauge/penning-02
argins[2] = 0.2;
//- argument for remaining devices in cell-01.penning
. . .
//- argument for devices in cell-01.pirani
. . .
//- the reply list
Tango::GroupCmdReplyList crl;
//- enter a try/catch block (see below)
try
{
//- execute the command

crl = g->command_inout("SetDummyFactor", argins, true);
if (crl.has_failed())
{

//- error handling goes here (see case 1)
}

}
catch (const DevFailed& df)
{
//- see below
}
crl.reset();

If we want to execute the command locally on "cell-01" (i.e. not on its sub-groups), we should write
the following C++ code:

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the group (starting at cell-01)
long n_dev = g->get_size(false);
//- Build argin list
std::vector<double> argins(n_dev);
//- argins for inst-c01/vac-gauge/penning-01
argins[0] = 0.1;
//- argins for inst-c01/vac-gauge/penning-02
argins[1] = 0.2;

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 54

//- argins for remaining devices in cell-01.penning
. . .
//- the reply list
Tango::GroupCmdReplyList crl;
//- enter a try/catch block (see below)
try
{
//- execute the command

crl = g->command_inout("SetDummyFactor", argins, false);
if (crl.has_failed())
{

//- error handling goes here (see case 1)
}

}
catch (const DevFailed& df)
{
//- see below
}
crl.reset();

Note: if we want to execute the command locally on "cell-01" (i.e. not on its sub-groups), we should
write the following code:

//- get a reference to the target group
Group g = gauges.get_group("cell-01");
//- get pre-build arguments list for the group (starting@cell-01)
DeviceData[] argins = g.get_command_specific_argument_list(false);
//- argins for inst-c01/vac-gauge/penning-01
argins[0].insert(0.1);
//- argins for inst-c01/vac-gauge/penning-02
argins[1].insert(0.2);
//- argins for remaining devices in cell-01.penning
. . .
//- the reply list
GroupCmdReplyList crl;
//- enter a try/catch block (see below)
try
{
//- execute the command

crl = g.command_inout("SetDummyFactor", argins, false, false);
if (crl.has_failed())
{

//- error handling goes here (see case 1)
}

}
catch (DevFailed d)
{
//- see below
}

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 55

This form of command_inout (the one that accepts an array of value as its input argument), may throw
an exception before executing the command if the number of elements in the input array does not match
the number of individual devices in the group or in the hierarchy (depending on the forward option).

An asynchronous version of this method is also available. See case 1 for an example of asynchronous
command.

4.7.4 Reading attribute(s)
In order to read attribute(s), the Group interface contains several implementations of the read_attribute()
and read_attributes() methods. Both synchronous and asynchronous forms are supported. Reading several
attributes is very similar to reading a single attribute. Simply replace the std::string used for attribute name
by a vector of std::string with one element for each attribute name. In case of read_attributes() call, the
order of attribute value returned in the GroupAttrReplyList is all attributes for first element in the group
followed by all attributes for the second group element and so on.

4.7.4.1 Obtaining attribute values

Attribute values are returned using a GroupAttrReplyList. This is nothing but an array containing a
GroupAttrReply for each device in the group. The GroupAttrReply contains the actual data (i.e. the De-
viceAttribute). By inheritance, it may also contain any error occurred during the execution of the command
(in which case the data is invalid).

Here again, the Tango Group implementation guarantees that the attribute values are returned in the
order in which its elements were attached to the group. See Obtaining command results for details.

The GroupAttrReply contains some public methods allowing the identification of both the device
(GroupAttrReply::dev_name) and the attribute (GroupAttrReply::obj_name). It means that, depending of
your application, you can associate a response with its source using its position in the response list or using
the Tango::GroupAttrReply::dev_name member.

4.7.4.2 A few words on error handling and data extraction

Here again, depending of the application and/or the developer’s programming habits, each individual er-
ror can be handle by the C++ exception mechanism or using the dedicated has_failed() method. The
GroupReply class - which is the mother class of both GroupCmdReply and GroupAttrReply - contains
a static method to enable (or disable) exceptions called enable_exception(). By default, exceptions are
disabled. The following example is proposed with both exceptions enable and disable.

In C++, data can be extracted directly from an individual reply. The GroupAttrReply interface contains
a template operator>> allowing the extraction of any supported Tango type (in fact the actual data extraction
is delegated to DeviceAttribute::operator>>).

Reading an attribute is very similar to executing a command.
Reading an attribute in C++:

//---
//- synch. read "vacuum" attribute on each device in the hierarchy
//- with exceptions enabled - C++ example
//---
//- enable exceptions and save current mode
bool last_mode = GroupReply::enable_exception(true);
//- read attribute
Tango::GroupAttrReplyList arl = gauges->read_attribute("vacuum");
//- for each response in the list ...
for (int r = 0; r < arl.size(); r++)
{

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 56

//- enter a try/catch block
try
{

//- try to extract the data from the r-th reply
//- suppose data contains a double

double ans;
arl[r] >> ans;
cout << arl[r].dev_name()

<< "::"
<< arl[r].obj_name()
<< " value is "
<< ans << endl;

}
catch (const DevFailed& df)
{

//- DevFailed caught while trying to extract the data from reply
for (int err = 0; err < df.errors.length(); err++)
{

cout << "error: " << df.errors[err].desc.in() << endl;
}

//- alternatively, one can use arl[r].get_err_stack() see below
}
catch (...)
{

cout << "unknown exception caught";
}

}
//- restore last exception mode (if needed)
GroupReply::enable_exception(last_mode);
//- clear the reply list (if reused later in the code)
arl.reset();

In C++, an asynchronous version of the previous example could be:

//- read the attribute asynchronously
long request_id = gauges->read_attribute_asynch("vacuum");
//- do some work
do_some_work();

//- get results
Tango::GroupAttrReplyList arl = gauges->read_attribute_reply(request_id);
//- process replies as previously described in the synch. implementation
for (int r = 0; r < arl.size(); r++)
{
//- data processing and/or error handling goes here
...
}
//- clear the reply list (if reused later in the code)
arl.reset();

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 57

4.7.5 Writing an attribute
The Group interface contains several implementations of the write_attribute() method. Both synchronous
and asynchronous forms are supported. However, writing more than one attribute at a time is not supported.

4.7.5.1 Obtaining acknowledgement

Acknowledgements are returned using a GroupReplyList. This is nothing but an array containing a GroupRe-
ply for each device in the group. The GroupReply may contain any error occurred during the execution of
the command. The return value of the has_failed() method indicates whether an error occurred or not. If
this flag is set to true, the GroupReply::get_err_stack() method gives error details.

Here again, the Tango Group implementation guarantees that the attribute values are returned in the
order in which its elements were attached to the group. See Obtaining command results for details.

The GroupReply contains some public members allowing the identification of both the device (GroupRe-
ply::dev_name) and the attribute (GroupReply::obj_name). It means that, depending of your application,
you can associate a response with its source using its position in the response list or using the GroupRe-
ply::dev_name member.

4.7.5.2 Case 1: one value for all devices

Here, we give an example in which the same attribute value is written on all devices in the group (or its
sub-groups). Exceptions are supposed to be disabled.

Writing an attribute in C++:

//---
//- synch. write "dummy" attribute on each device in the hierarchy
//---
//- assume each device support a "dummy" writable attribute
//- insert the value to be written into a generic container
Tango::DeviceAttribute value(std::string("dummy"), 3.14159);
//- write the attribute
Tango::GroupReplyList rl = gauges->write_attribute(value);
//- any error?
if (rl.has_failed() == false)
{

cout << "no error" << endl;
}
else
{

cout << "at least one error occurred" << endl;
//- for each response in the list ...

for (int r = 0; r < rl.size(); r++)
{

//- did the r-th device give error?
if (rl[r].has_failed() == true)
{

//- printout error description
cout << "an error occurred while reading "

<< rl[r].obj_name()
<< " on "
<< rl[r].dev_name()
<< endl;

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 58

//- dump error stack
const DevErrorList& el = rl[r].get_err_stack();
for (int err = 0; err < el.size(); err++)
{

cout << el[err].desc.in();
}

}
}

}
//- clear the reply list (if reused later in the code)
rl.reset();

Here is a C++ asynchronous version:

//- insert the value to be written into a generic container
Tango::DeviceAttribute value(std::string("dummy"), 3.14159);
//- write the attribute asynchronously
long request_id = gauges.write_attribute_asynch(value);
//- do some work
do_some_work();

//- get results
Tango::GroupReplyList rl = gauges->write_attribute_reply(request_id);
//- process replies as previously describe in the synch. implementation ...

4.7.5.3 Case 2: a specific value per device

Here, we give an example in which a specific attribute value is applied to each device in the hierarchy. In
order to use this form of write_attribute(), the user must have an "a priori" and "perfect" knowledge of the
devices order in the hierarchy.

The C++ implementation provides a template method which accepts a std::vector of "C++ type for
command argument". This allows passing any kind of data using a single method.

The size of this vector must equal the number of device in the hierarchy (respectively the number of
device in the group) if the forward option is set to true (respectively set to false). Otherwise, an exception
is thrown.

The first item in the vector is applied to the first device in the group, the second to the second device
in the group, and so on. . . That’s why the user must have a "perfect" knowledge of the devices order in the
group.

Assuming that gauges are ordered by name, the dummy attribute can be written as follows on group
"cell-01" (and its sub-groups) as follows:

Remember, "cell-01" has the following internal structure:

-> gauges
| -> cell-01
| |-> inst-c01/vac-gauge/strange
| |-> penning
| | |-> inst-c01/vac-gauge/penning-01
| | |-> inst-c01/vac-gauge/penning-02

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 59

| | |-> ...
| | |-> inst-c01/vac-gauge/penning-xx
| |-> pirani
| |-> inst-c01/vac-gauge/pirani-01
| |-> ...
| |-> inst-c01/vac-gauge/pirani-xx

C++ version:

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the hierarchy (starting at cell-01)
long n_dev = g->get_size(true);
//- Build value list
std::vector<double> values(n_dev);
//- value for inst-c01/vac-gauge/strange
values[0] = 3.14159;
//- value for inst-c01/vac-gauge/penning-01
values[1] = 2 * 3.14159;
//- value for inst-c01/vac-gauge/penning-02
values[2] = 3 * 3.14159;
//- value for remaining devices in cell-01.penning
. . .
//- value for devices in cell-01.pirani
. . .
//- the reply list
Tango::GroupReplyList rl;
//- enter a try/catch block (see below)
try
{
//- write the "dummy" attribute

rl = g->write_attribute("dummy", values, true);
if (rl.has_failed())
{

//- error handling (see previous cases)
}

}
catch (const DevFailed& df)
{
//- see below
}
rl.reset();

Note: if we want to execute the command locally on "cell-01" (i.e. not on its sub-groups), we should
write the following code

//- get a reference to the target group
Tango::Group *g = gauges->get_group("cell-01");
//- get number of device in the group

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 60

long n_dev = g->get_size(false);
//- Build value list
std::vector<double> values(n_dev);
//- value for inst-c01/vac-gauge/penning-01
values[0] = 2 * 3.14159;
//- value for inst-c01/vac-gauge/penning-02
values[1] = 3 * 3.14159;
//- value for remaining devices in cell-01.penning
. . .
//- the reply list
Tango::GroupReplyList rl;
//- enter a try/catch block (see below)
try
{
//- write the "dummy" attribute

rl = g->write_attribute("dummy", values, false);
if (rl.has_failed())
{

//- error handling (see previous cases)
}

}
catch (const DevFailed& df)
{
//- see below
}
rl.reset();

This form of write_attribute() (the one that accepts an array of value as its input argument), may throw
an exception before executing the command if the number of elements in the input array does not match
the number of individual devices in the group or in the hierarchy (depending on the forward option).

An asynchronous version of this method is also available.

4.8 Reading/Writing device pipe
Reading or writing device pipe is made possible using DeviceProxy class methods. To read a pipe,
you have to use the method read_pipe(). To write a pipe, use the write_pipe() method. A method
write_read_pipe() is also provided in case you need to write then read a pipe in a non-interuptible way.
All these calls generate synchronous request and support only reading or writing a single pipe at a time.
Those pipe related DeviceProxy class methods (read_pipe, write_pipe,...) use DevicePipe class instances.
A DevicePipe instance is nothing more than a string for the pipe name and a DevicePipeBlob instance
called the root blob. In a DevicePipeBlob instance, you have:

• The blob name

• One array of DataElement. Each instance of this DataElement class has:

– A name

– A value which can be either

* Scalar or array of any basic Tango type

* Another DevicePipeBlob

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 61

Therefore, this is a recursive data structure and you may have DevicePipeBlob in DevicePipeBlob. There
is no limit on the depth of this recursivity even if it is not recommended to have a too large depth. The
following figure summarizes DevicePipe data structure

Pipe name

DevicePipeBlob

DevicePipeBlob

name

value

blob name

name

name

name

value

value

value

DataElement value

Data
or

DataElement

DataElement

DataElement

DataElement

 root blob
DevicePipeBlob

DevicePipe

Figure 4.1: DevicePipe data structure

Many methods to insert/extract data into/from a DevicePipe are available. In the DevicePipe class,
these methods simply forward their action to the DevicePipe root blob. The same methods are available in
the DevicePipeBlob in case you need to use the recursivity provided by this data structure.

4.8.1 Reading a pipe
When you read a pipe, you have to extract data received from the pipe. Because data transferred through a
pipe can change at any moment, two differents cases are possible:

1. The client has a prior knowledge of what should be transferred through the pipe

2. The client does not know at all what has been received through the pipe

Those two cases are detailed in the following sub-chapters.

4.8.1.1 Extracting data with pipe content prior knowledge

To extract data from a DevicePipe object (or from a DevicePipeBlob object), you have to use its extraction
operator ">>". Let’s suppose that we already know (prior knowledge) that the pipe contains 3 data elements
with a Tango long, an array of double and finally an array of unsigned short. The code you need to extract
these data is (Without error case treatment detailed in a next sub-chapter)

1 DevicePipe dp = mydev.read_pipe("MyPipe");
2
3 DevLong dl;
4 vector<double> v_db;
5 DevVarUShortArray *dvush = new DevVarUShortArray();

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 62

6
7 dp >> dl >> v_db >> dvush;
8
9 delete dvush;

The pipe is read at line 1. Pipe (or root blob) data extracttion is at line 7. As you can see, it is just
a matter of chaining extraction operator (">>") into local data (declared line 3 to 5). In this example, the
transported array of double is extracted into a C++ vector while the unsigned short array is extracted in
a Tango sequence data type. When you extract data into a vector, there is a unavoidable memory copy
between the DevicePipe object and the vector. When you extract data in a Tango sequence data type, there
is no memory copy but the extraction method consumes the memory and it is therefore caller responsability
to delete the memory. This is the rule of line 9. If there is a DevicePipeBlob inside the DevicePipe, simply
extract it into one instance of the DevicePipeBlob class.

You may notice that the pipe root blob data elements name are lost in the previous example. The Tango
API also has a DataElement class which allows you to retrieve/set data element name. The following code
is how you can extract pipe data and retrieve data element name (same pipe then previously)

1 DevicePipe dp = mydev.read_pipe("MyPipe");
2
3 DataElement<DevLong> de_dl;
4 DataElement<vector<double> > de_v_db;
5 DataElement<DevVarUShortArray *> de_dvush(new DevVarUShortArray());
6
7 dp >> de_dl >> de_v_db >> de_dvush;
8
9 delete de_dvush.value;

The extraction line (number 7) is similar to the previous case but local data are instances of DataElement
class. This is template class and instances are created at lines 4 to 6. Each DataElement instance has only
two elements which are:

1. The data element name (a C++ string): name

2. The data element value (One instance of the template parameter): value

4.8.1.2 Extracting data in a generic way (without prior knowledge)

Due to the dynamicity of the data transferred through a pipe, the API alows to extract data from a pipe with-
out any prior knowledge of its content. This is achived with methods get_data_elt_nb(), get_data_elt_type(),
get_data_elt_name() and the extraction operator ">>". These methods belong to the DevicePipeBlob class
but they also exist on the DevicePipe class for its root blob. Here is one example of how you use them:

1 DevicePipe dp = mydev.read_pipe("MyPipe");
2
3 size_t nb_de = dp.get_data_elt_nb();
4 for (size_t loop = 0;loop < nb;loop++)
5 {
6 int data_type = dp.get_data_elt_type(loop);

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 63

7 string de_name = dp.get_data_elt_name(loop);
8 switch(data_type)
9 {
10 case DEV_LONG:
11 {
12 DevLong lg;
13 dp >> lg;
14 }
15 break;
16
17 case DEVVAR_DOUBLEARRAY:
18 {
19 vector<double> v_db;
20 dp >> v_db;
21 }
22 break;
23
24 }
25 ...
26 }

The number of data element in the pipe root blob is retrieve at line 3. Then a loop for each data element
is coded. For each data element, its value data type and its name are retrieved at lines 6 and 7. Then,
according to the data element value data type, the data are extracted using the classical extraction operator
(lines 13 or 20)

4.8.1.3 Error management

By default, in case of error, the DevicePipe object throws different kind of exceptions according to the error
kind. It is possible to disable exception throwing. If you do so, the code has to test the DevicePipe state
after extraction. The possible error cases are:

• DevicePipe object is empty

• Wrong data type for extraction (For instance extraction into a double data while the DataElement
contains a string)

• Wrong number of DataElement (Extraction code extract 5 data element while the pipe contains only
four)

• Mix of extraction (or insertion) method kind (classical operators << or >>) and [] operator.

Methods exceptions() and reset_exceptions() of the DevicePipe and DevicePipeBlob classes allow the
user to select which kind of error he is interested in. For error treatment without exceptions, methods
has_failed() and state() has to be used. See reference documentation for details about these methods.

4.8.2 Writing a pipe
Writing data into a DevicePipe or a DevicePipeBlob is similar to reading data from a pipe. The main
method is the insertion operator "<<". Let’s have a look at a first example if you want to write a pipe with
a Tango long, a vector of double and finally an array of unsigned short.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 64

1 DevicePipe dp("MyPipe");
2
3 vector<string> de_names {"FirstDE","SecondDE","ThirdDE"};
4 db.set_data_elt_names(de_names);
5
6 DevLong dl = 666;
7 vector<double> v_db {1.11,2.22};
8 unsigned short *array = new unsigned short [100];
9 DevVarUShortArray *dvush = create_DevVarUShortArray(array,100);
10
11 try
12 {
12 dp << dl << v_db << dvush;
13 mydev.write_pipe(dp);
14 }
15 catch (DevFailed &e)
16 {
17 cout << "DevicePipeBlob insertion failed" << endl;
18
19 }

Insertion into the DevicePipe is done at line 12 with the insert operators. The main difference with
extracting data from the pipe is at line 3 and 4. When inserting data into a pipe, you need to FIRST define
its number od name of data elements. In our example, the device pipe is initialized to carry three data
element and the names of these data elements is defined at line 4. This is a mandatory requirement. If
you don’t define data element number, exception will be thrown during the use of insertion methods. The
population of the array used for the third pipe data element is not represented here.

It’s also possible to use DataElement class instances to set the pipe data element. Here is the previous
example modified to use DataElement class.

1 DevicePipe dp("MyPipe");
2
3 DataElement<DevLong> de_dl("FirstElt",666);
4 vector<double> v_db {1.11,2.22};
5 DataElement<vector<double> > de_v_db("SecondElt,v_db);
6
7 unsigned short *array = new unsigned short [100];
8 DevVarUShortArray *dvush = create_DevVarUShortArray(array,100);
9 DataElement<DevVarUShortArray *> de_dvush("ThirdDE",array);
10
11 try
12 {
12 dp << de_dl << de_v_db << de_dvush;
13 mydev.write_pipe(dp);
14 }
15 catch (DevFailed &e)
16 {
17 cout << "DevicePipeBlob insertion failed" << endl;
18
19 }

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 65

The population of the array used for the third pipe data element is not represented here. Finally, there
is a third way to insert data into a device pipe. You have to defined number and names of the data element
within the pipe (similar to first insertion method) but you are able to insert data into the data element in
any order using the "[]" operator overwritten for the DevicePipe and DevicePipeBlob classes. Look at the
following example:

1 DevicePipe dp("MyPipe");
2
3 vector<string> de_names {"FirstDE","SecondDE","ThirdDE"};
4 db.set_data_elt_names(de_names);
5
6 DevLong dl = 666;
7 vector<double> v_db = {1.11,2.22};
8 unsigned short *array = new unsigned short [100];
9 DevVarUShortArray *dvush = create_DevVarUShortArray(array,100);
10
11 dp["SecondDE"] << v_db;
12 dp["FirstDE"] << dl;
13 dp["ThirdDE"] << dvush;

Insertion into the device pipe is now done at lines 11 to 13. The population of the array used for the
third pipe data element is not represented here. Note that the data element name is case insensitive.

4.8.2.1 Error management

When inserting data into a DevicePipe or a DevicePipeBlob, error management is very similar to reading
data from from a DevicePipe or a DevicePipeBlob. The difference is that there is one moer case which
could trigger one exception during the insertion. This case is

• Insertion into the DevicePipe (or DevicePipeBlob) if its data element number have not been set.

4.9 Device locking
Starting with Tango release 7 (and device inheriting from Device_4Impl), device locking is supported. For
instance, this feature could be used by an application doing a scan on a synchrotron beam line. In such a
case, you want to move an actuator then read a sensor, move the actuator again, read the sensor...You don’t
want the actuator to be moved by another client while the application is doing the scan. If the application
doing the scan locks the actuator device, it will be sure that this device is "reserved" for the application
doing the scan and other client will not be able to move it until the scan application un-locks this actuator.

A locked device is protected against:

• command_inout call except for device state and status requested via command and for the set of
commands defined as allowed following the definition of allowed command in the Tango control
access schema.

• write_attribute and write_pipe call

• write_read_attribute, write_read_attributes and write_read_pipe call

• set_attribute_config and set_pipe_config call

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 66

• polling and logging commands related to the locked device

Other clients trying to do one of these calls on a locked device will get a DevFailed exception. In case of
application with locked device crashed, the lock will be automatically release after a defined interval. The
API provides a set of methods for application code to lock/unlock device. These methods are:

• DeviceProxy::lock() and DeviceProxy::unlock() to lock/unlock device

• DeviceProxy::locking_status(), DeviceProxy::is_locked(), DeviceProxy::is_locked_by_me() and De-
viceProxy::get_locker() to get locking information

These methods are precisely described in the API reference chapters.

4.10 Reconnection and exception
The Tango API automatically manages re-connection between client and server in case of communi-
cation error during a network access between a client and a server. By default, when a communica-
tion error occurs, an exception is returned to the caller and the connection is internally marked as bad.
On the next try to contact the device, the API will try to re-build the network connection. With the
set_transparency_reconnection() method of the DeviceProxy class, it is even possible not to have any
exception thrown in case of communication error. The API will try to re-build the network connection as
soon as it is detected as bad. This is the default mode. See ?? for more details on this subject.

4.11 Thread safety
Starting with Tango 7.2, some classes of the C++ API has been made thread safe. These classes are:

• DeviceProxy

• Database

• Group

• ApiUtil

• AttributeProxy

This means that it is possible to share between threads a pointer to a DeviceProxy instance. It is safe to
execute a call on this DeviceProxy instance while another thread is also doing a call to the same Device-
Proxy instance. Obviously, this also means that it is possible to create thread local DeviceProxy instances
and to execute method calls on these instances. Nevertheless, data local to a DeviceProxy instance like its
timeout are not managed on a per thread basis. For a DeviceProxy instance shared between two threads, if
thread 1 changes the instance timeout, thread 2 will also see this change.

4.12 Compiling and linking a Tango client
Compiling and linking a Tango client is similar to compiling and linking a Tango device server. Please,
refer to chapter "Compiling, Linking and executing a Tango device server process" (6.6) to get all the
details.

CHAPTER 4. WRITING A TANGO CLIENT USING TANGO APIS 67

Chapter 5

TangoATK Programmer’s Guide

This chapter is only a brief Tango ATK (Application ToolKit) programmer’s guide. You can find a reference
guide with a full description of TangoATK classes and methods in the ATK JavaDoc [17].

A tutorial document [22] is also provided and includes the detailed description of the ATK architecture
and the ATK components. In the ATK Tutorial [22] you can find some code examples and also Flash
Demos which explain how to start using Tango ATK.

5.1 Introduction
This document describes how to develop applications using the Tango Application Toolkit, TangoATK for
short. It will start with a brief description of the main concepts behind the toolkit, and then continue with
more practical, real-life examples to explain key parts.

5.1.1 Assumptions
The author assumes that the reader has a good knowledge of the Java programming language, and a thor-
ough understanding of object-oriented programming. Also, it is expected that the reader is fluent in all
aspects regarding Tango devices, attributes, and commands.

5.2 The key concepts of TangoATK
TangoATK was developed with these goals in mind

• TangoATK should help minimize development time

• TangoATK should help minimize bugs in applications

• TangoATK should support applications that contain attributes and commands from several different
devices.

• TangoATK should help avoid code duplication.

Since most Tango-applications were foreseen to be displayed on some sort of graphic terminal, TangoATK
needed to provide support for some sort of graphic building blocks. To enable this, and since the toolkit
was to be written in Java, we looked to Swing to figure out how to do this.

Swing is developed using a variant over a design-pattern the Model-View-Controller (MVC) pattern
called model-delegate, where the view and the controller of the MVC-pattern are merged into one object.

68

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 69

Core Widget

State
viewer

Attribute
viewer

Command
Viewer

Error
viewer

Command
list

Attribute
list

Device

This pattern made the choice of labor division quite easy: all non-graphic parts of TangoATK reside in
the packages beneath fr.esrf.tangoatk.core, and anything remotely graphic are located beneath
fr.esrf.tangoatk.widget. More on the content and organization of this will follow.

The communication between the non-graphic and graphic objects are done by having the graphic object
registering itself as a listener to the non-graphic object, and the non-graphic object emmiting events telling
the listeners that its state has changed.

5.2.1 Minimize development time
For TangoATK to help minimize the development time of graphic applications, the toolkit has been devel-
oped along two lines of thought

• Things that are needed in most applications are included, eg Splash, a splash window which gives
a graphical way for the application to show the progress of a long operation. The splash window is
moslty used in the startup phase of the application.

• Building blocks provided by TangoATK should be easy to use and follow certain patterns, eg every
graphic widget has a setModel method which is used to connect the widget with its non-graphic
model.

In addition to this, TangoATK provides a framework for error handling, something that is often a time
consuming task.

5.2.2 Minimize bugs in applications
Together with the Tango API, TangoATK takes care of most of the hard things related to programming
with Tango. Using TangoATK the developer can focus on developing her application, not on understanding
Tango.

5.2.3 Attributes and commands from different devices
To be able to create applications with attributes and commands from different devices, it was decided that
the central objects of TangoATK were not to be the device, but rather the attributes and the commands.
This will certainly feel a bit awkward at first, but trust me, the design holds.

For this design to be feasible, a structure was needed to keep track of the commands and attributes,
so the command-list and the attribute-list was introduced. These two objects can hold commands and
attributes from any number of devices.

5.2.4 Avoid code duplication
When writing applications for a control-system without a framework much code is duplicated. Anything
from simple widgets for showing numeric values to error handling has to be implemented each time. Tan-
goATK supplies a number of frequently used widgets along with a framework for connecting these widgets
with their non-graphic counterparts. Because of this, the developer only needs to write the glue - the code
which connects these objects in a manner that suits the specified application.

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 70

5.3 The real getting started
Generally there are two kinds of end-user applications: Applications that only know how to treat one
device, and applications that treat many devices.

5.3.1 Single device applications
Single device applications are quite easy to write, even with a gui. The following steps are required

1. Instantiate an AttributeList and fill it with the attributes you want.

2. Instantiate a CommandList and fill it with the commands you want.

3. Connect the whole AttributeList with a list viewer and / or each individual attribute with an attribute
viewer.

4. Connect the whole CommandList to a command list viewer and / or connect each individual command
in the command list with a command viewer.

Refresher

Attribute

Error...

5.98

modify

3.14159

Events

Panel Attribute
list

The following program (FirstApplication) shows an implementation of the list mentioned above. It
should be rather self-explanatory with the comments.

package examples;

import javax.swing.JFrame;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;
import javax.swing.JMenu;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderLayout;

import fr.esrf.tangoatk.core.AttributeList;
import fr.esrf.tangoatk.core.ConnectionException;

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 71

import fr.esrf.tangoatk.core.CommandList;
import fr.esrf.tangoatk.widget.util.ErrorHistory;
import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
import fr.esrf.tangoatk.widget.attribute.ScalarListViewer;
import fr.esrf.tangoatk.widget.command.CommandComboViewer;

public class FirstApplication extends JFrame
{
JMenuBar menu; // So that our application looks

// halfway decent.
AttributeList attributes; // The list that will contain our

// attributes
CommandList commands; // The list that will contain our

// commands
ErrorHistory errorHistory; // A window that displays errors
ScalarListViewer sListViewer; // A viewer which knows how to

// display a list of scalar attributes.
// If you want to display other types
// than scalars, you’ll have to wait
// for the next example.

CommandComboViewer commandViewer; // A viewer which knows how to display
// a combobox of commands and execute
// them.

String device; // The name of our device.

public FirstApplication()
{

// The swing stuff to create the menu bar and its pulldown menus
menu = new JMenuBar();
JMenu fileMenu = new JMenu();
fileMenu.setText("File");
JMenu viewMenu = new JMenu();
viewMenu.setText("View");
JMenuItem quitItem = new JMenuItem();
quitItem.setText("Quit");
quitItem.addActionListener(new

java.awt.event.ActionListener()
{
public void
actionPerformed(ActionEvent evt)
{quitItemActionPerformed(evt);}

});
fileMenu.add(quitItem);
JMenuItem errorHistItem = new JMenuItem();
errorHistItem.setText("Error History");
errorHistItem.addActionListener(new

java.awt.event.ActionListener()
{
public void
actionPerformed(ActionEvent evt)
{errHistItemActionPerformed(evt);}

});
viewMenu.add(errorHistItem);

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 72

menu.add(fileMenu);
menu.add(viewMenu);
//
// Here we create ATK objects to handle attributes, commands and errors.
//
attributes = new AttributeList();
commands = new CommandList();
errorHistory = new ErrorHistory();
device = "id14/eh3_mirror/1";
sListViewer = new ScalarListViewer();
commandViewer = new CommandComboViewer();

//
// A feature of the command and attribute list is that if you
// supply an errorlistener to these lists, they’ll add that
// errorlistener to all subsequently created attributes or
// commands. So it is important to do this _before_ you
// start adding attributes or commands.
//

attributes.addErrorListener(errorHistory);
commands.addErrorListener(errorHistory);

//
// Sometimes we’re out of luck and the device or the attributes
// are not available. In that case a ConnectionException is thrown.
// This is why we add the attributes in a try/catch
//

try
{

//
// Another feature of the attribute and command list is that they
// can add wildcard names, currently only ‘*’ is supported.
// When using a wildcard, the lists will add all commands or
// attributes available on the device.
//

attributes.add(device + "/*");
}
catch (ConnectionException ce)
{

System.out.println("Error fetching " +
"attributes from " +
device + " " + ce);

}

//
// See the comments for attributelist
//

try
{

commands.add(device + "/*");
}

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 73

catch (ConnectionException ce)
{

System.out.println("Error fetching " +
"commands from " +
device + " " + ce);

}

//
// Here we tell the scalarViewer what it’s to show. The
// ScalarListViewer loops through the attribute-list and picks out
// the ones which are scalars and show them.
//

sListViewer.setModel(attributes);

//
// This is where the CommandComboViewer is told what it’s to
// show. It knows how to show and execute most commands.
//

commandViewer.setModel(commands);

//
// add the menubar to the frame
//

setJMenuBar(menu);

//
// Make the layout nice.
//

getContentPane().setLayout(new BorderLayout());
getContentPane().add(commandViewer, BorderLayout.NORTH);
getContentPane().add(sListViewer, BorderLayout.SOUTH);

//
// A third feature of the attributelist is that it knows how
// to refresh its attributes.
//

attributes.startRefresher();

//
// JFrame stuff to make the thing show.
//

pack();
ATKGraphicsUtils.centerFrameOnScreen(this); //ATK utility to center window
setVisible(true);
}

public static void main(String [] args)
{

new FirstApplication();

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 74

}
public void quitItemActionPerformed(ActionEvent evt)
{

System.exit(0);
}
public void errHistItemActionPerformed(ActionEvent evt)
{

errorHistory.setVisible(true);
}

}

The program should look something like this (depending on your platform and your device)

5.3.2 Multi device applications
Multi device applications are quite similar to the single device applications, the only difference is that it
does not suffice to add the attributes by wildcard, you need to add them explicitly, like this:

try
{

// a StringScalar attribute from the device one
attributes.add("jlp/test/1/att_cinq");
// a NumberSpectrum attribute from the device one
attributes.add("jlp/test/1/att_spectrum");
// a NumberImage attribute from the device two
attributes.add("sr/d-ipc/id25-1n/Image");

}
catch (ConnectionException ce)
{

System.out.println("Error fetching " +
"attributes" + ce);

}

The same goes for commands.

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 75

5.3.3 More on displaying attributes
So far, we’ve only considered scalar attributes, and not only that, we’ve also cheated quite a bit since we just
passed the attribute list to the fr.esrf.tangoatk.widget.attribute.ScalarListViewer
and let it do all the magic. The attribute list viewers are only available for scalar attributes (Number-
ScalarListViewer and ScalarListViewer). If you have one or several spectrum or image attributes you must
connect each spectrum or image attribute to it’s corresponding attribute viewer individually. So let’s take a
look at how you can connect individual attributes (and not a whole attribute list) to an individual attribute
viewer (and not to an attribute list viewer).

5.3.3.1 Connecting an attribute to a viewer

Generally it is done in the following way:

1. You retrieve the attribute from the attribute list

2. You instantiate the viewer

3. Your call the setModel method on the viewer with the attribute as argument.

4. You add your viewer to some panel

The following example (SecondApplication), is a Multi-device application. Since this application uses
individual attribute viewers and not an attribute list viewer, it shows an implementation of the list mentioned
above.

package examples;

import javax.swing.JFrame;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;
import javax.swing.JMenu;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderLayout;
import java.awt.Color;

import fr.esrf.tangoatk.core.AttributeList;
import fr.esrf.tangoatk.core.ConnectionException;

import fr.esrf.tangoatk.core.IStringScalar;
import fr.esrf.tangoatk.core.INumberSpectrum;
import fr.esrf.tangoatk.core.INumberImage;
import fr.esrf.tangoatk.widget.util.ErrorHistory;
import fr.esrf.tangoatk.widget.util.Gradient;
import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
import fr.esrf.tangoatk.widget.attribute.NumberImageViewer;
import fr.esrf.tangoatk.widget.attribute.NumberSpectrumViewer;
import fr.esrf.tangoatk.widget.attribute.SimpleScalarViewer;
public class SecondApplication extends JFrame
{

JMenuBar menu;
AttributeList attributes; // The list that will contain our attributes
ErrorHistory errorHistory; // A window that displays errors

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 76

IStringScalar ssAtt;
INumberSpectrum nsAtt;
INumberImage niAtt;
public SecondApplication()
{

// Swing stuff to create the menu bar and its pulldown menus
menu = new JMenuBar();
JMenu fileMenu = new JMenu();
fileMenu.setText("File");
JMenu viewMenu = new JMenu();
viewMenu.setText("View");
JMenuItem quitItem = new JMenuItem();
quitItem.setText("Quit");
quitItem.addActionListener(new java.awt.event.ActionListener()

{
public void actionPerformed(ActionEvent evt)
{quitItemActionPerformed(evt);}
});

fileMenu.add(quitItem);
JMenuItem errorHistItem = new JMenuItem();
errorHistItem.setText("Error History");
errorHistItem.addActionListener(new java.awt.event.ActionListener()

{
public void actionPerformed(ActionEvent evt)
{errHistItemActionPerformed(evt);}

});
viewMenu.add(errorHistItem);
menu.add(fileMenu);
menu.add(viewMenu);

//
// Here we create TangoATK objects to view attributes and errors.
//

attributes = new AttributeList();
errorHistory = new ErrorHistory();

//
// We create a SimpleScalarViewer, a NumberSpectrumViewer and
// a NumberImageViewer, since we already knew that we were
// playing with a scalar attribute, a number spectrum attribute
// and a number image attribute this time.
//
SimpleScalarViewer ssViewer = new SimpleScalarViewer();

NumberSpectrumViewer nSpectViewer = new NumberSpectrumViewer();
NumberImageViewer nImageViewer = new NumberImageViewer();
attributes.addErrorListener(errorHistory);

//
// The attribute (and command) list has the feature of returning the last
// attribute that was added to it. Just remember that it is returned as an
// IEntity object, so you need to cast it into a more specific object, like
// IStringScalar, which is the interface which defines a string scalar
//

try
{

ssAtt = (IStringScalar) attributes.add("jlp/test/1/att_cinq");
nsAtt = (INumberSpectrum) attributes.add("jlp/test/1/att_spectrum");

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 77

niAtt = (INumberImage) attributes.add("sr/d-ipc/id25-1n/Image");
}
catch (ConnectionException ce)
{

System.out.println("Error fetching one of the attributes "+" " + ce);
System.out.println("Application Aborted.");
System.exit(0);

}
//
// Pay close attention to the following three lines!! This is how it’s done!
// This is how it’s always done! The setModel method of any viewer takes care
// of connecting the viewer to the attribute (model) it’s in charge of displaying.
// This is the way to tell each viewer what (which attribute) it has to show.
// Note that we use a viewer adapted to each type of attribute
//
ssViewer.setModel(ssAtt);
nSpectViewer.setModel(nsAtt);
nImageViewer.setModel(niAtt);

//
nSpectViewer.setPreferredSize(new java.awt.Dimension(400, 300));
nImageViewer.setPreferredSize(new java.awt.Dimension(500, 300));
Gradient g = new Gradient();
g.buidColorGradient();
g.setColorAt(0,Color.black);
nImageViewer.setGradient(g);
nImageViewer.setBestFit(true);
//
// Add the viewers into the frame to show them
//
getContentPane().setLayout(new BorderLayout());
getContentPane().add(ssViewer, BorderLayout.SOUTH);
getContentPane().add(nSpectViewer, BorderLayout.CENTER);
getContentPane().add(nImageViewer, BorderLayout.EAST);
//
// To have the attributes values refreshed we should start the
// attribute list’s refresher.
//
attributes.startRefresher();
//
// add the menubar to the frame
//
setJMenuBar(menu);
//
// JFrame stuff to make the thing show.
//
pack();
ATKGraphicsUtils.centerFrameOnScreen(this); //ATK utility to center window
setVisible(true);

}
public static void main(String [] args)
{

new SecondApplication();
}
public void quitItemActionPerformed(ActionEvent evt)

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 78

{
System.exit(0);

}
public void errHistItemActionPerformed(ActionEvent evt)
{

errorHistory.setVisible(true);
}

}

This program (SeondApplication) should look something like this (depending on your platform and
your device attributes)

5.3.3.2 Synoptic viewer

TangoATK provides a generic class to view and to animate the synoptics. The name of this class is
fr.esrf.tangoatk.widget.jdraw.SynopticFileViewer. This class is based on a “home-made” graphical layer
called jdraw. The jdraw package is also included inside TangoATK distribution.

SynopticFileViewer is a sub-class of the class TangoSynopticHandler. All the work for connection to
tango devices and run time animation is done inside the TangoSynopticHandler.

The recipe for using the TangoATK synoptic viewer is the following

1. You use Jdraw graphical editor to draw your synoptic

2. During drawing phase don’t forget to associate parts of the drawing to tango attributes or commands.
Use the “name” in the property window to do this

3. During drawing phase you can also aasociate a class (frequently a “specific panel” class) which
will be displayed when the user clicks on some part of the drawing. Use the “extension” tab in the
property window to do this.

4. Test the run-time behaviour of your synoptic. Use “Tango Synoptic view” command in the “views”
pulldown menu to do this.

5. Save the drawing file.

6. There is a simple synoptic application (SynopticAppli) which is provided ready to use. If this generic
application is enough for you, you can forget about the step 7.

7. You can now develop a specific TangoATK based application which instantiates the SynopticFile-
Viewer. To load the synoptic file in the SynopticFileViewer you have the choice : either you load it
by giving the absolute path name of the synoptic file or you load the synoptic file using Java input
streams. The second solution is used when the synoptic file is included inside the application jarfile.

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 79

The SynopticFilerViewer will browse the objects in the synoptic file at run time. It discovers if some parts
of the drawing is associated with an attribute or a command. In this case it will automatically connect to the
corresponding attribute or command. Once the connection is successfull SynopticFileViewer will animate
the synoptic according to the default behaviour described below :

• For tango state attributes : the colour of the drawing object reflects the value of the state. A mouse
click on the drawing object associated with the tango state attribute will instantiate and display the
class specified during the drawing phase. If no class is specified the atkpanel generic device panel is
displayed.

• For tango attributes : the current value of the attribute is displayed through the drawing object

• For tango commands : the mouse click on the drawing object associated with the command will
launch the device command.

• If the tooltip property is set to “name” when the mouse enters any tango object (attribute or com-
mand), inside the synoptic drawing the name of the tango object is displayed in a tooltip.

The following example (ThirdApplication), is a Synoptic application. We assume that the synoptic has
already been drawn using Jdraw graphical editor.

package examples;
import java.io.*;
import java.util.*;
import javax.swing.JFrame;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;
import javax.swing.JMenu;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.BorderLayout;
import fr.esrf.tangoatk.widget.util.ErrorHistory;
import fr.esrf.tangoatk.widget.util.ATKGraphicsUtils;
import fr.esrf.tangoatk.widget.jdraw.SynopticFileViewer;
import fr.esrf.tangoatk.widget.jdraw.TangoSynopticHandler;
public class ThirdApplication extends JFrame
{

JMenuBar menu;
ErrorHistory errorHistory; // A window that displays errors
SynopticFileViewer sfv; // TangoATK generic synoptic viewer

public ThirdApplication()
{

// Swing stuff to create the menu bar and its pulldown menus
menu = new JMenuBar();
JMenu fileMenu = new JMenu();
fileMenu.setText("File");
JMenu viewMenu = new JMenu();
viewMenu.setText("View");
JMenuItem quitItem = new JMenuItem();
quitItem.setText("Quit");
quitItem.addActionListener(new java.awt.event.ActionListener()

{

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 80

public void actionPerformed(ActionEvent evt)
{quitItemActionPerformed(evt);}
});

fileMenu.add(quitItem);
JMenuItem errorHistItem = new JMenuItem();
errorHistItem.setText("Error History");
errorHistItem.addActionListener(new java.awt.event.ActionListener()

{
public void actionPerformed(ActionEvent evt)
{errHistItemActionPerformed(evt);}

});
viewMenu.add(errorHistItem);
menu.add(fileMenu);
menu.add(viewMenu);
//
// Here we create TangoATK synoptic viewer and error window.
//
errorHistory = new ErrorHistory();
sfv = new SynopticFileViewer();
try
{

sfv.setErrorWindow(errorHistory);
}
catch (Exception setErrwExcept)
{

System.out.println("Cannot set Error History Window");
}
//
// Here we define the name of the synoptic file to show and the tooltip mode to use
//
try
{

sfv.setJdrawFileName("/users/poncet/ATK_OLD/jdraw_files/id14.jdw");
sfv.setToolTipMode (TangoSynopticHandler.TOOL_TIP_NAME);

}
catch (FileNotFoundException fnfEx)
{

javax.swing.JOptionPane.showMessageDialog(
null, "Cannot find the synoptic file : id14.jdw.\n"

+ "Check the file name you entered;"
+ " Application will abort ...\n"
+ fnfEx,
"No such file",
javax.swing.JOptionPane.ERROR_MESSAGE);

System.exit(-1);
}
catch (IllegalArgumentException illEx)
{

javax.swing.JOptionPane.showMessageDialog(
null, "Cannot parse the synoptic file : id14.jdw.\n"

+ "Check if the file is a Jdraw file."
+ " Application will abort ...\n"
+ illEx,
"Cannot parse the file",

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 81

javax.swing.JOptionPane.ERROR_MESSAGE);
System.exit(-1);

}
catch (MissingResourceException mrEx)
{

javax.swing.JOptionPane.showMessageDialog(
null, "Cannot parse the synoptic file : id14.jdw.\n"

+ " Application will abort ...\n"
+ mrEx,
"Cannot parse the file",
javax.swing.JOptionPane.ERROR_MESSAGE);

System.exit(-1);
}
//
// Add the viewers into the frame to show them
//
getContentPane().setLayout(new BorderLayout());
getContentPane().add(sfv, BorderLayout.CENTER);
//
// add the menubar to the frame
//
setJMenuBar(menu);
//
// JFrame stuff to make the thing show.
//
pack();
ATKGraphicsUtils.centerFrameOnScreen(this); //TangoATK utility to center window
setVisible(true);

}
public static void main(String [] args)
{

new ThirdApplication();
}
public void quitItemActionPerformed(ActionEvent evt)
{

System.exit(0);
}
public void errHistItemActionPerformed(ActionEvent evt)
{

errorHistory.setVisible(true);
}

}

The synoptic application (ThirdApplication) should look something like this (depending on your synoptic
drawing file)

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 82

5.3.4 A short note on the relationship between models and viewers
As seen in the examples above, the connection between a model and its viewer is generally done by calling
setModel(model) on the viewer, it is never explained what happens behind the scenes when this is
done.

5.3.4.1 Listeners

Most of the viewers implement some sort of listener interface, eg INumberScalarListener. An object
implementing such a listener interface has the capability of receiving and treating events from a model
which emits events.

// this is the setModel of a SimpleScalarViewer
public void setModel(INumberScalar scalar) {

clearModel();
if (scalar != null) {

format = scalar.getProperty("format").getPresentation();
numberModel = scalar;

// this is where the viewer connects itself to the
// model. After this the viewer will (hopefully) receive
// events through its numberScalarChange() method
numberModel.addNumberScalarListener(this);

numberModel.getProperty("format").addPresentationListener(this);
numberModel.getProperty("unit").addPresentationListener(this);

}
}

// Each time the model of this viewer (the numberscalar attribute) decides it is time, it
// calls the numberScalarChange method of all its registered listeners
// with a NumberScalarEvent object which contains the
// the new value of the numberscalar attribute.
//

public void numberScalarChange(NumberScalarEvent evt) {
String val;
val = getDisplayString(evt);
if (unitVisible) {

setText(val + " " + numberModel.getUnit());
} else {

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 83

setText(val);
}

}

All listeners in TangoATK implement the IErrorListener interface which specifies the errorChange(ErrorEvent
e) method. This means that all listeners are forced to handle errors in some way or another.

5.4 The key objects of TangoATK
As seen from the examples above, the key objects of TangoATK are the CommandList and the AttributeList.
These two classes inherit from the abstract class AEntityList which implements all of the common
functionality between the two lists. These lists use the functionality of the CommandFactory, the
AttributeFactory, which both derive from AEntityFactory, and the DeviceFactory.

In addition to these factories and lists there is one (for the time being) other important functionality
lurking around, the refreshers.

5.4.1 The Refreshers
The refreshers, represented in TangoATK by the Refresher object, is simply a subclass of java.lang.Thread
which will sleep for a given amount of time and then call a method refresh on whatever kind of IRefreshee
it has been given as parameter, as shown below

// This is an example from DeviceFactory.
// We create a new Refresher with the name "device"
// We add ourself to it, and start the thread

Refresher refresher = new Refresher("device");
refresher.addRefreshee(this).start();

Both the AttributeList and the DeviceFactory implement the IRefreshee interface which
specify only one method, refresh(), and can thus be refreshed by the Refresher. Even if the new
release of TangoATK is based on the Tango Events, the refresher mecanisme will not be removed. As a
matter of fact, the method refresh() implemented in ATTRIBUTELIST skips all attributes (members of the
list) for which the subscribe to the tango event has succeeded and calls the old refresh() method for the
others (for which subscribe to tango events has failed).

In a first stage this will allow the TangoATK applications to mix the use of the old tango device servers
(which do not implement tango events) and the new ones in the same code. In other words, TangoATK
subscribes for tango events if possible otherwise TangoATK will refresh the attributes through the old
refresher mecanisme.

Another reason for keeping the refresher is that the subscribe event can fail even for the attributes of
the new Tango device servers. As soon as the specified attribute is not polled the Tango events cannot be
generated for that attribute. Therefore the event subscription will fail. In this case the attribute will be
refreshed thanks to the ATK attribute list refresher.

The AttributePolledList class allows the application programmer to force explicitly the use
of the refresher method for all attributes added in an AttributePolledList even if the corresponding de-
vice servers implement tango events. Some viewers (fr.esrf.tangoatk.widget.attribute.Trend) need an At-
tributePolledList in order to force the refresh of the attribute without using tango events.

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 84

5.4.1.1 What happens on a refresh

When refresh is called on the AttributeList and the DeviceFactory, they loop through their
objects, IAttributes and IDevices, respectively, and ask them to refresh themselves if they are not
event driven.

When ATTRIBUTEFACTORY, creates an IAttribute, TangoATK tries to subscribe for Tango Change
event for that attribute. If the subscription succeeds then the attribute is marked as event driven. If the
subscription for Tango Change event fails, TangoATK tries to subscribe for Tango Periodic event. If the
subscription succeeds then the attribute is marked as event driven. If the subscription fails then the attribute
is marked as to be “ without events”.

In the REFRESH() method of the ATTRIBUTELIST during the loop through the objects if the object
is marked event driven then the object is simply skipped. But if the object (attribute) is not marked as
event driven, the REFRESH() method of the ATTRIBUTELIST, asks the object to refresh itself by calling
the “REFRESH()” method of that object (attribute or device). The REFRESH() method of an attribute will
in turn call the “readAttribute” on the Tango device.

The result of this is that the IAttributes fire off events to their registered listeners containing
snapshots of their state. The events are fired either because the IATTRIBUTE has received a Tango Change
event, respectively a Tango Periodic event (event driven objects), or because the REFRESH() method of the
object has issued a readAttribute on the Tango device.

5.4.2 The DeviceFactory
The device factory is responsible for two things

1. Creating new devices (Tango device proxies) when needed

2. Refreshing the state and status of these devices

Regarding the first point, new devices are created when they are asked for and only if they have not already
been created. If a programmer asks for the same device twice, she is returned a reference to the same
device-object.

The DeviceFactory contains a Refresher as described above, which makes sure that the all Devices
in the DeviceFactory updates their state and status and fire events to its listeners.

5.4.3 The AttributeFactory and the CommandFactory
These factories are responsible for taking a name of an attribute or command and returning an object
representing the attribute or command. It is also responsible for making sure that the appropriate IDevice
is already available. Normally the programmer does not want to use these factory classes directly. They
are used by TangoATK classes indirectly when the application programmer calls the AttributeList’s (or
CommandList’s) ADD() method.

5.4.4 The AttributeList and the CommandList
These lists are containers for attributes and commands. They delegate the construction-work to the factories
mentioned above, and generally do not do much more, apart from containing refreshers, and thus being able
to make the objects they contain refresh their listeners.

5.4.5 The Attributes
The attributes come in several flavors. Tango supports the following types:

• Short

• Long

• Double

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 85

• String

• Unsigned Char

• Boolean

• Unsigned Short

• Float

• Unsigned Long

According to Tango specifications, all these types can be of the following formats:

• Scalar, a single value

• Spectrum, a single array

• Image, a two dimensional array

For the sake of simplicity, TangoATK has combined all the numeric types into one, presenting all of them
as doubles. So the TangoATK classes which handle the numeric attributes are : NumberScalar, Number-
Spectrum and NumberImage (Number can be short, long, double, float, ...).

5.4.5.1 The hierarchy

The numeric attribute hierarchy is expressed in the following interfaces:

INumberScalar extends INumber

INumberSpectrum extends INumber

INumberImage extends INumber

and INumber in turn extends IAttribute

Each of these types emit their proper events and have their proper listeners. Please consult the javadoc for
further information.

5.4.6 The Commands
The commands in Tango are rather ugly beasts. There exists the following kinds of commands

• Those which take input

• Those which do not take input

• Those which do output

• Those which do not do output

Now, for both input and output we have the following types:

• Double

• Float

• Unsigned Long

• Long

• Unsigned Short

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 86

• Short

• String

These types can appear in scalar or array formats. In addition to this, there are also four other types of
parameters:

1. Boolean

2. Unsigned Char Array

3. The StringLongArray

4. The StringDoubleArray

The last two types mentioned above are two-dimensional arrays containing a string array in the first dimen-
sion and a long or double array in the second dimension, respectively.

As for the attributes, all numeric types have been converted into doubles, but there has been made little
or no effort to create an hierarchy of types for the commands.

5.4.6.1 Events and listeners

The commands publish results to their IResultListeners, by the means of a ResultEvent. The
IResultListener extends IErrorListener, any viewer of command-results should also know
how to handle errors. So a viewer of command-results implements IResultListener interface and registers
itself as a resultListener for the command it has to show the results.

CHAPTER 5. TANGOATK PROGRAMMER’S GUIDE 87

Chapter 6

Writing a TANGO device server

6.1 The device server framework
This chapter will present the TANGO device server framework. It will introduce what is the device server
pattern and then it will describe a complete device server framework. A definition of classes used by the
device server framework is given in this chapter. This manual is not intended to give the complete and
detailed description of classes data member or methods, refer to [8] to get this full description. But first,
the naming convention used in this project is detailed.

The aim of the class definition given in this chapter is only to help the reader to understand how a
TANGO device server works. For a detailed description of these classes (and their methods), refer to
chapter 6.4 or to [8].

6.1.1 Naming convention and programming language
TANGO fully supports three different programming languages which are C++, Java and Python. This
documentation focuses on C++ Tango class. For Java and Python Tango class, have a look at the Tango
web pages where similar chapter for Java and Python are available.

Every software project needs a naming convention. The naming convention adopted for the TDSOM is
very simple and only defines two guidelines which are:

• Class names start with uppercase and use capitalization for compound words (For instance MyClass-
Name).

• Method names are in lowercase and use underscores for compound words (For instance my_method_name).

6.1.2 The device pattern
Device server are written using the Device pattern. The aim of this pattern is to provide the control pro-
grammer with a framework in which s/he can develop new control objects. The device pattern uses other
design patterns like the Singleton and Command patterns. These patterns are fully described in [10]. The
device pattern class diagram for stepper motor device is drawn in figure 6.1 . In this figure, only classes
surrounded with a dash line square are device specific. All the other classes are part of the TDSOM core
and are developed by the Tango system team. Different kind of classes are used by the device pattern.

• Three of them are root classes and it is only necessary to inherit from them. These classes are the
DeviceImpl, DeviceClass and Command classes.

• Classes necessary to implement commands. The TDSOM supports two ways to create command :
Using inheritance or using the template command model. It is possible to mix model within the same
device pattern

88

http://www.tango-controls.org
http://www.tango-controls.org

CHAPTER 6. WRITING A TANGO DEVICE SERVER 89

is_allowed()

execute()

DevReadPosition

is_allowed()

execute()

TemplCommand

DeviceImpl

DeviceClass

init_device()=0

attribute_factory()

command_factory()

Command

is_allowed()=0

execute()=0

DevState DevStatus DevRestart

is_allowed()

execute()

is_allowed() is_allowed()

execute() execute()

StepperMotorClass

device_factory()

command_factory()

dev_state

StpperMotor

init_device()

CORBA classes

dev_read_position()

device_factory()=0

command_factory()=0

is_allowed()

execute()

is_allowed()

execute()

is_allowed()

execute()

TemplCommandIn TemplCommandOut TemplCommandInOut

1,..n

1,..n

MultiAttributeAttribute

WAttribute

11,..nset_value()

get_name()

get_write_value()

read_alarm()

check_alarm()

get_attr....()

DbClass

get_property()

put_prperty()

1

DbDevice

get_property()

put_property()

read()

read() read()

is_allowed()

is_allowed() is_allowed()

1

1,..n
Attr

PositionAttr SetPositionAttr

(a) Device pattern class diagram

Figure 6.1: Device pattern class diagram

CHAPTER 6. WRITING A TANGO DEVICE SERVER 90

1. Using inheritance. This model of creating command heavily used the polymorphism offered
by each modern object oriented programming language. In this schema, each command sup-
ported by a device via the command_inout or command_inout_async operation is implemented
by a separate class. The Command class is the root class for each of these classes. It is an
abstract class. A execute method must be defined in each sub-class. A is_allowed method may
also be re-defined in each class if the default one does not fulfill all the needs1. In our stepper
motor device server example, the DevReadPosition command follows this model.

2. Using the template command model. Using this model, it is not necessary to write one class
for each command. You create one instance of classes already defined in the TDSOM for each
command. The link between command name and method which need to be executed is done
through pointers to method. To support different kind of command, four classes are part of the
TDSOM. These classes are :

(a) The TemplCommand class for command without input or output parameter
(b) The TemplCommandIn class for command with input parameter but without output pa-

rameter
(c) The TemplCommandOut class for command with output parameter but without input

parameter
(d) The TemplCommandInOut class for all the remaining commands

• Classes necessary to implement TANGO device attributes. All these classes are part of the TANGO
core classes. These classes are the MultiAttribute, Attribute, WAttribute, Attr, SpectrumAttr
and ImageAttr classes. The last three are used to create user attribute. Each attribute supported by
a device is implemented by a separate class. The Attr class is the root class for each of these classes.
According to the attribute data format, the user class implementing the attribute must inherit from
the Attr, SpectrumAttr or ImageAtttr class. SpectrumAttr class inherits from Attr class and Image
Attr class inherits from the SpectrumAttr class. The Attr base class defined three methods called
is_allowed, read and write. These methods may be redefined in sub-classes in order to implement
the attribute specific behaviour.

• The other are device specific. For stepper motor device, they are named StepperMotor, StepperMo-
torClass and DevReadPosition.

6.1.2.1 The Tango base class (DeviceImpl class)

6.1.2.1.1 Description This class is the device root class and is the link between the Device pattern
and CORBA. It inherits from CORBA classes and implements all the methods needed to execute CORBA
operations and attributes. For instance, its method command_inout is executed when a client requests a
command_inout operation. The method name of the DeviceImpl class is executed when a client requests
the name CORBA attribute. This class also encapsulates some key device data like its name, its state, its
status, its black box.... This class is an abstract class and cannot be instantiated as is.

6.1.2.1.2 Contents The contents of this class can be summarized as :

• Different constructors and one destructor

• Methods to access instance data members outside the class or its derivate classes. These methods are
necessary because data members are declared as protected.

• Methods triggered by CORBA attribute request

• Methods triggered by CORBA operation request

• The init_device() method. This method makes the class abstract. It should be implemented by a
sub-class. It is used by the inherited classes constructors.

1The default is_allowed method behavior is to always allows the command

CHAPTER 6. WRITING A TANGO DEVICE SERVER 91

• Methods triggered by the automatically added State and Status commands. These methods are de-
clared virtual and therefore can be redefined in sub-classes. These two commands are automatically
added to the list of commands defined for a class of devices. They are discussed in chapter 6.1.5

• A method called always_executed_hook() always executed for each command before the device
state is tested for command execution. This method gives the programmer a hook where he(she) can
program some mandatory action which must be done before any command execution. An example
of the such action is an hardware access to the device to read its real hardware state.

• A method called read_attr_hardware() triggered by the read_attributes CORBA operation. This
method is called once for each read_attributes call. This method is virtual and may be redefined in
sub-classes.

• A method called write_attr_hardware() triggered by the write_attributes CORBA operation. This
method is called once for each write_attributes call. This method is virtual and may be redefined in
sub-classes.

• Methods for signal management (C++ specific)

• Data members like the device name, the device status, the device state

• Some private methods and data members

6.1.2.2 The DbDevice class

Each DeviceImpl instance is an aggregate with one instance of the DbDevice class. This DbDevice class
can be used to query or modify device properties. It provides an easy to use interface for device objects
in the database. The description of this class can be found in the Tango API reference documentation
available on the Tango WEB pages.

6.1.2.3 The Command class

6.1.2.3.1 Description of the inheritance model Within the TDSOM, each command supported by a
device and implemented using the inheritance model is implemented by a separate class. The Command
class is the root class for each of these classes. It is an abstract class. It stores the command name,
the command argument types and description and mainly defines two methods which are the execute and
is_allowed methods. The execute method should be implemented in each sub-class. A default is_allowed
method exists for command always allowed. A command also stores a parameter which is the command
display type. It is also used to select if the command must be displayed according to the application mode
(every day operation or expert mode).

6.1.2.3.2 Description of the template model Using this method, it is not necessary to create a separate
class for each device command. In this method, each command is represented by an instance of one of the
template command classes. They are four template command classes. All these classes inherits from the
Command class. These four classes are :

1. The TemplCommand class. One object of this class must be created for each command without
input nor output parameters

2. The TemplCommandIn class. One object of this class must be created for each command without
output parameter but with input parameter

3. The TemplCommandOut class. One object of this class must be created for each command without
input parameter but with output parameter

4. The TemplCommandInOut class. One object of this class must be created for each command with
input and output parameters

CHAPTER 6. WRITING A TANGO DEVICE SERVER 92

These four classes redefine the execute and is_allowed method of the Command class. These classes
provides constructors which allow the user to :

• specify which method must be executed by these classes execute method

• optionally specify which method must be executed by these classes is_allowed method.

The method specification is done via pointer to method.
Remember that it is possible to mix command implementation method within the same device pattern.

6.1.2.3.3 Contents The content of this class can be summarizes as :

• Class constructors and destructor

• Declaration of the execute method

• Declaration of the is_allowed method

• Methods to read/set class data members

• Methods to extract data from the object used to transfer data on the network

• Methods to insert data into the object used to transfer data on the network

• Class data members like command name, command input data type, command input data descrip-
tion...

6.1.2.4 The DeviceClass class

6.1.2.4.1 Description This class implements all what is specific for a controlled object class. For in-
stance, every device of the same class supports the same list of commands and therefore, this list of avail-
able commands is stored in this DeviceClass. The structure returned by the info operation contains a
documentation URL2. This documentation URL is the same for every device of the same class. There-
fore, the documentation URL is a data member of this class. There should have only one instance of this
class per device pattern implementation. The device list is also stored in this class. It is an abstract class
because the two methods device_factory() and command_factory() are declared as pure virtual. The rule
of the device_factory() method is to create all the devices belonging to the device class. The rule of the
command_factory() method is to create one instance of all the classes needed to support device commands.
This class also stored the attribute_factory method. The rule of this method is to store in a vector of strings,
the name of all the device attributes. This method has a default implementation which is an empty body
for device without attribute.

6.1.2.4.2 Contents The contents of this class can be summarize as :

• The command_handler method

• Methods to access data members.

• Signal related method (C++ specific)

• Class constructor. It is protected to implements the Singleton pattern

• Class data members like the class command list, the device list...
2URL stands for Uniform Resource Locator

CHAPTER 6. WRITING A TANGO DEVICE SERVER 93

6.1.2.5 The DbClass class

Each DeviceClass instance is an aggregate with one instance of the DbClass class. This DbClass class
can be used to query or modify class properties. It provides an easy to use interface for device objects in
the database. The description of this class can be found in the reference Tango C++ API documentation
available in the Tango WEB pages.

6.1.2.6 The MultiAttribute class

6.1.2.6.1 Description This class is a container for all the TANGO attributes defined for the device.
There is one instance of this class for each device. This class is mainly an aggregate of Attribute object(s).
It has been developed to ease TANGO attribute management.

6.1.2.6.2 Contents The class contents could be summarizes as :

• Miscellaneous methods to retrieve one attribute object in the aggregate

• Method to retrieve a list of attribute with an alarm level defined

• Get attribute number method

• Miscellaneous methods to check if an attribute value is outside the authorized limits

• Method to add messages for all attribute with an alarm set

• Data members with the attribute list

6.1.2.7 The Attribute class

6.1.2.7.1 Description There is one object of this class for each device attribute. This class is used to
store all the attribute properties, the attribute value and all the alarm related data. Like commands, this
class also stores th attribute display type. It is foreseen to be used by future Tango graphical application
toolkit to select if the attribute must be displayed according to the application mode (every day operation
or expert mode).

6.1.2.7.2 Contents

• Miscellaneous method to get boolean attribute information

• Methods to access some data members

• Methods to get/set attribute properties

• Method to check if the attribute is in alarm condition

• Methods related to attribute data

• Friend function to print attribute properties

• Data members (properties value and attribute data)

6.1.2.8 The WAttribute class

6.1.2.8.1 Description This class inherits from the Attribute class. There is one instance of this class
for each writable device attribute. On top of all the data already managed by the Attribute class, this class
stores the attribute set value.

6.1.2.8.2 Contents Within this class, you will mainly find methods related to attribute set value storage
and some data members.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 94

6.1.2.9 The Attr class

Within the TDSOM, each attribute supported by a device is implemented by a separate class. The Attr class
is the root class for each of these classes. It is used in conjonction with the Attribute and Wattribute classes
to implement Tango attribute behaviour. It defines three methods which are the is_allowed, read and write
methods. A default is_allowed method exists for attribute always allowed. Default read and write empty
methods are defined. For readable attribute, it is necessary to overwrite the read method. For writable
attribute, it is necessary to overwrite the write method and for read and write attribute, both methods must
be overwritten.

6.1.2.10 The SpectrumAttr class

This class inherits from the Attr class. It is the base class for user spectrum attribute. It is used in conjonc-
tion with the Attribute and WAttribute class to implement Tango spectrum attribute behaviour. From the
Attr class, it inherits the Attr is_allowed, read and write methods.

6.1.2.11 The ImageAttr class

This class inherits from the SpectrumAttr class. It is the base class for user image attribute. It is used in
conjonction with the Attribute and WAttribute class to implement Tango image attribute behaviour. From
the Attr class, it inherits the Attr is_allowed, read and write methods.

6.1.2.12 The StepperMotor class

6.1.2.12.1 Description This class inherits from the DeviceImpl class and is the class implementing the
controlled object behavior. Each command will trigger a method in this class written by the device server
programmer and specific to the object to be controlled. This class also stores all the device specific data.

6.1.2.12.2 Definition

1 class StepperMotor: public TANGO_BASE_CLASS
2 {
3 public :
4 StepperMotor(Tango::DeviceClass *,string &);
5 StepperMotor(Tango::DeviceClass *,const char *);
6 StepperMotor(Tango::DeviceClass *,const char *,const char *);
7 ~StepperMotor() {};
8
9 DevLong dev_read_position(DevLong);
10 DevLong dev_read_direction(DevLong);
11 bool direct_cmd_allowed(const CORBA::Any &);
12
13 virtual Tango::DevState dev_state();
14 virtual Tango::ConstDevString dev_status();
15
16 virtual void always_executed_hook();
17
18 virtual void read_attr_hardware(vector<long> &attr_list);
19 virtual void write_attr_hardware(vector<long> &attr_list);
20
21 void read_position(Tango::Attribute &);
22 bool is_Position_allowed(Tango::AttReqType req);
23 void write_SetPosition(Tango::WAttribute &);

CHAPTER 6. WRITING A TANGO DEVICE SERVER 95

24 void read_Direction(Tango::Attribute &);
25
26 virtual void init_device();
27 virtual void delete_device();
28
29 void get_device_properties();
30
31 protected :
32 long axis[AGSM_MAX_MOTORS];
33 DevLong position[AGSM_MAX_MOTORS];
34 DevLong direction[AGSM_MAX_MOTORS];
35 long state[AGSM_MAX_MOTORS];
36
37 Tango::DevLong *attr_Position_read;
38 Tango::DevLong *attr_Direction_read;
38 Tango::DevLong attr_SetPosition_write;
40
41 Tango::DevLong min;
42 Tango::DevLong max;
43
44 Tango::DevLong *ptr;
45 };
46
47 } /* End of StepperMotor namespace */

Line 1 : The StepperMotor class inherits from the DeviceImpl class
Line 4-7 : Class constructors and destructor
Line 9 : Method triggered by the DevReadPosition command
Line 10-11 : Methods triggered by the DevReadDirection command
Line 13 : Redefinition of the dev_state method of the DeviceImpl class. This method will be triggered

by the State command
Line 14 : Redefinition of the dev_status method of the DeviceImpl class. This method will be triggered

by the Status command
Line 16 : Redefinition of the always_executed_hook method.
Line 26 : Definition of the init_device method (declared as pure virtual by the DeviceImpl class)
Line 27 : Definition of the delete_device method
Line 31-45 : Device data

6.1.2.13 The StepperMotorClass class

6.1.2.13.1 Description This class inherits from the DeviceClass class. Like the DeviceClass class,
there should be only one instance of the StepperMotorClass. This is ensured because this class is written
following the Singleton pattern as defined in [10]. All controlled object class data which should be defined
only once per class must be stored in this object.

6.1.2.13.2 Definition

1 class StepperMotorClass : public DeviceClass
2 {
3 public:
4 static StepperMotorClass *init(const char *);

CHAPTER 6. WRITING A TANGO DEVICE SERVER 96

5 static StepperMotorClass *instance();
6 ~StepperMotorClass() {_instance = NULL;}
7
8 protected:
9 StepperMotorClass(string &);
10 static StepperMotorClass *_instance;
11 void command_factory();
12
13 private:
14 void device_factory(Tango_DevVarStringArray *);
15 };

Line 1 : This class is a sub-class of the DeviceClass class
Line 4-5 and 9-10: Methods and data member necessary for the Singleton pattern
Line 6 : Class destructor
Line 11 : Definition of the command_factory method declared as pure virtual in the DeviceClass call
Line 13-14 : Definition of the device_factory method declared as pure virtual in the DeviceClass class

6.1.2.14 The DevReadPosition class

6.1.2.14.1 Description This is the class for the DevReadPosition command. This class implements
the execute and is_allowed methods defined by the Command class. This class is necessary because this
command is implemented using the inheritance model.

6.1.2.14.2 Definition

1 class DevReadPositionCmd : public Command
2 {
3 public:
4 DevReadPositionCmd(const char *,Tango_CmdArgType, Tango_CmdArgType, const char *, const char*);
5 ~DevReadPositionCmd() {};
6
7 virtual bool is_allowed (DeviceImpl *, const CORBA::Any &);
8 virtual CORBA::Any *execute (DeviceImpl *, const CORBA::Any &);
9 };

Line 1 : The class is a sub class of the Command class
Line 4-5 : Class constructor and destructor
Line 7-8 : Definition of the is_allowed and execute method declared as pure virtual in the Command

class.

6.1.2.15 The PositionAttr class

6.1.2.15.1 Description This is the class for the Position attribute. This attribute is a scalar attribute and
therefore inherits from the Attr base class. This class implements the read and is_allowed methods defined
by the Attr class.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 97

6.1.2.15.2 Definition

1 class PositionAttr: public Tango::Attr
2 {
3 public:
4 PositionAttr():Attr("Position",Tango::DEV_LONG,Tango::READ);
5 ~PositionAttr() {};
6
7 virtual void read(Tango::DeviceImpl *dev,Tango::Attribute &att)
8 {(static_cast<StepperMotor *>(dev))->read_Position(att);}
9 virtual bool is_allowed(Tango::DeviceImpl *dev,Tango::AttReqType ty)

10 {return (static_cast<StepperMotor *>(dev))->is_Position_allowed(ty);}
11 };

Line 1 : The class is a sub class of the Attr class
Line 4-5 : Class constructor and destructor
Line 7 : Re-definition of the read method defined in the Attr class. This is simply a "forward" to the

read_Position method of the StepperMotor class
Line 9 : Re-definition of the is_allowed method defined in the Attr class. This is also a "forward" to

the is_Position_allowed method of the StepperMotor class

6.1.3 Startup of a device pattern
To start the device pattern implementation for stepper motor device, four methods of the StepperMotorClass
class must be executed. These methods are :

1. The creation of the StepperMethodClass singleton via its init() method

2. The command_factory() method of the StepperMotorClass class

3. The attribute_factory() method of the StepperMotorClass class. This method has a default empty
body for device class without attributes.

4. The device_factory() method of the StepperMotorClass class

This startup procedure is described in figure 6.2 . The creation of the StepperMotorClass will automatically
create an instance of the DeviceClass class. The constructor of the DeviceClass class will create the Status,
State and Init command objects and store them in its command list.

The command_factory() method will simply create all the user defined commands and add them in the
command list.

The attribute_factory() method will simply build a list of device attribute names.
The device_factory() method will create each StepperMotor object and store them in the StepperMotor-

Class instance device list. The list of devices to be created and their names is passed to the device_factory
method in its input argument. StepperMotor is a sub-class of DeviceImpl class. Therefore, when a Step-
perMotor object is created, a DeviceImpl object is also created. The DeviceImpl constructor builds all the
device attribute object(s) from the attribute list built by the attribute_factory() method.

6.1.4 Command execution sequence
The figure 6.3

CHAPTER 6. WRITING A TANGO DEVICE SERVER 98

init

command_factory

device_factory

StepperMotorClass DeviceClass

new
new

new

DevReadPosition Attribute(s)StepperMotor DeviceImpl

new

new

new

new

attribute_factory

Attribute listStatus State Init

Figure 6.2: Device pattern startup sequence

command_handler

StepperMotor object StepperMotorClass singleton DevReadPosition StepperMotor object

command_inout

execute

is_allowed

always_executed_hook

dev_read_position

Figure 6.3: Command execution timing

described how the method implementing a command is executed when a command_inout CORBA
operation is requested by a client. The command_inout method of the StepperMotor object (inherited
from the DeviceImpl class) is triggered by an instance of a class generated by the CORBA IDL compiler.
This method calls the command_handler() method of the StepperMotorClass object (inherited from the

CHAPTER 6. WRITING A TANGO DEVICE SERVER 99

DeviceClass class). The command_handler method searches in its command list for the wanted command
(using its name). If the command is found, the always_executed_hook method of the StepperMotor object
is called. Then, the is_allowed method of the wanted command is executed. If the is_allowed method
returns correctly, the execute method is executed. The execute method extracts the incoming data from the
CORBA object use to transmit data over the network and calls the user written method which implements
the command.

6.1.5 The automatically added commands
In order to increase the common behavior of every kind of devices in a TANGO control system, three
commands are automatically added to each class of devices. These commands are :

• State

• Status

• Init

The default behavior of the method called by the State command depends on the device state. If the device
state is ON or ALARM, the method will :

• read the attribute(s) with an alarm level defined

• check if the read value is above/below the alarm level and eventually change the device state to
ALARM.

• returns the device state.

For all the other device state, the method simply returns the device state stored in the DeviceImpl class.
Nevertheless, the method used to return this state (called dev_state) is defined as virtual and can be rede-
fined in DeviceImpl sub-class. The difference between the default State command and the state CORBA
attribute is the ability of the State command to signal an error to the caller by throwing an exception.

The default behavior of the method called by the Status command depends on the device state. If the
device state is ON or ALARM, the method returns the device status stored in the DeviceImpl class plus
additional message(s) for all the attributes which are in alarm condition. For all the other device state, the
method simply returns the device status as it is stored in the DeviceImpl class. Nevertheless, the method
used to return this status (called dev_status) is defined as virtual and can be redefined in DeviceImpl sub-
class. The difference between the default Status command and the status CORBA attribute is the ability of
the Status command to signal an error to the caller by throwing an exception.

The Init command is used to re-initialize a device without changing its network connection. This
command calls the device delete_device method and the device init_device method. The rule of the
delete_device method is to free memory allocated in the init_device method in order to avoid memory
leak.

6.1.6 Reading/Writing attributes
6.1.6.1 Reading attributes

A Tango client is able to read Tango attribute(s) with the CORBA read_attributes call. Inside the device
server, this call will trigger several methods of the device class (StepperMotor in our example) :

1. The always_executed_hook() method.

2. A method call read_attr_hardware(). This method is called one time per read_attributes CORBA
call. The aim of this method is to read the device hardware and to store the result in a device class
data member.

3. For each attribute to be read

CHAPTER 6. WRITING A TANGO DEVICE SERVER 100

(a) A method called is_<att name>_allowed(). The rule of this method is to allow (or disallow)
the next method to be executed. It is usefull for device with some attributes which can be read
only in some precise conditions. It has one parameter which is the request type (read or write)

(b) A method called read_<att name>(). The aim of this method is to extract the real attribute
value from the hardware read-out and to store the attribute value into the attribute object. It has
one parameter which is a reference to the Attribute object to be read.

The figure 6.4 is a drawing of these method calls sequencing. For attribute always readable, a default
is_allowed method is provided. This method always returns true.

StepperMotor object

read_attribute

PositionAttr class

always_executed_hook

read_attr_hardware

is_allowed
is_Position_allowed

read
read_Position

StepperMotor object

Figure 6.4: Read attribute sequencing

6.1.6.2 Writing attributes

A Tango client is able to write Tango attribute(s) with the CORBA write_attributes call. Inside a device
server, this call will trigger several methods of the device class (StepperMotor in our example)

1. The always_executed_hook() method.

2. For each attribute to be written

(a) A method called is_<att name>_allowed(). The rule of this method is to allow (or disallow) the
next method to be executed. It is usefull for device with some attributes which can be written
only in some precise conditions. It has one parameter which is the request type (read or write)

(b) A method called write_<att name>(). It has one parameter which is a reference to the WAt-
tribute object to be written. The aim of this method is to get the data to be written from the
WAttribute object and to write this value into the corresponding hardware. If the hardware
support writing several data in one go, code the hardware access in the write_attr_harware()
method.

3. The write_attr_hardware() method. The rule of this method is to effectively write the hardware in
case it is able to support writing several data in one go. If this is not the case, don’t code this method
(a default implementation is coded in the Tango base class) and code the real hardware access in
each write_<att name>() method.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 101

The figure 6.5 is a drawing of these method calls sequencing. For attribute always writeable, a default
is_allowed method is provided. This method always allways returns true.

StepperMotor object PositionAttr class

always_executed_hook

is_allowed
is_Position_allowed

StepperMotor object

write
write_Position

write_attribute

write_attr_hardware

Figure 6.5: Write attribute sequencing

6.1.7 The device server framework
6.1.7.1 Vocabulary

A device server pattern implementation is embedded in a process called a device server. Several instances
of the same device server process can be used in a TANGO control system. To identify instances, a device
server process is started with an instance name which is different for each instance. The device server
name is the couple device server executable name/device server instance name. For instance, a device
server started with the following command

Perkin id11

starts a device server process with an instance name id11, an executable name Perkin and a device server
name Perkin/id11.

6.1.7.2 The DServer class

In order to simplify device server process administration, a device of the DServer class is automatically
added to each device server process. Thus, every device server process supports the same set of adminis-
tration commands. The implementation of this DServer class follows the device pattern and therefore, its
device behaves like any other devices. The device name is

dserver/device server executable name/device server instance name

For instance, for the device server process described in chapter 6.1.7.1, the dserver device name is dserver/perk-
in/id11. This name is returned by the adm_name CORBA attribute available for every device. On top of
the three automatically added commands, this device supports the following commands :

• DevRestart

CHAPTER 6. WRITING A TANGO DEVICE SERVER 102

• RestartServer

• QueryClass

• QueryDevice

• Kill

• AddLoggingTarget (C++ server only)

• RemoveLoggingTarget (C++ server only)

• GetLoggingTarget (C++ server only)

• GetLoggingLevel (C++ server only)

• SetLoggingLevel (C++ server only)

• StopLogging (C++ server only)

• StartLogging (C++ server only)

• PolledDevice

• DevPollStatus

• AddObjPolling

• RemObjPolling

• UpdObjPollingPeriod

• StartPolling

• StopPolling

• EventSubscriptionChange

• ZmqEventSubscriptionChange

• LockDevice

• UnLockDevice

• ReLockDevices

• DevLockStatus

These commands will be fully described later in this document.
Several controlled object classes can be embedded within the same device server process and it is the

rule of this device to create all these device server patterns and to call their command and device factories
as described in 6.1.3. The name and number of all the classes to be created is known to this device after
the execution of a method called class_factory. It is the user responsibility to write this method.

6.1.7.3 The Tango::Util class

6.1.7.3.1 Description This class merges a complete set of utilities in the same class. It is implemented
as a singleton and there is only one instance of this class per device server process. It is mandatory to create
this instance in order to run a device server. The description of all the methods implemented in this class
can be found in [8].

CHAPTER 6. WRITING A TANGO DEVICE SERVER 103

AClass

DeviceImpl DeviceClass

Device server pattern implementing the DServer class Device server pattern(s) implementing device class(es)

Tango::Util

DServer

Database

server_init()

server_run()

1

Figure 6.6: A complete device server

6.1.7.3.2 Contents Within this class, you can find :

• Static method to create/retrieve the singleton object

• Miscellaneous utility methods like getting the server output trace level, getting the CORBA ORB
pointer, retrieving device server instance name, getting the server PID and more. Please, refer to [8]
to get a complete list of all these utility methods.

• Method to create the device pattern implementing the DServer class (server_init())

• Method to start the server (server_run())

• TANGO database related methods

6.1.7.4 A complete device server

Within a complete device server, at least two implementations of the device server pattern are created (one
for the dserver object and the other for the class of devices to control). On top of that, one instance of the
Tango::Util class must also be created. A drawing of a complete device server is in figure 6.6

6.1.7.5 Device server startup sequence

The device server startup sequence is the following :

1. Create an instance of the Tango::Util class. This will initialize the CORBA Object Request Broker

2. Called the server_init method of the Tango::Util instance The call to this method will :

(a) Create the DServerClass object of the device pattern implementing the DServer class. This will
create the dserver object which during its construction will :

CHAPTER 6. WRITING A TANGO DEVICE SERVER 104

i. Called the class_factory method of the DServer object. This method must create all the
xxxClass instance for all the device pattern implementation embedded in the device server
process.

ii. Call the command_factory and device_factory of all the classes previously created. The list
of devices passed to each call to the device_factory method is retrieved from the TANGO
database.

3. Wait for incoming request with the server_run() method of the Tango::Util class.

6.2 Exchanging data between client and server
Exchanging data between clients and server means most of the time passing data between processes running
on different computer using the network. Tango limits the type of data exchanged between client and server
and defines a way to exchange these data. This chapter details these features. Memory allocation and error
reporting are also discussed.

All the rules described in this chapter are valid only for data exchanged between client and server.
For device server internal data, classical C++ types can be used.

6.2.1 Command / Attribute data types
Commands have a fixed calling syntax - consisting of one input argument and one output argument. Ar-
guments type must be chosen out of a fixed set of 24 data types. Attributes support a sub-set of these data
types (those are the data type with the (1) note) plus the DevEnum data type. The following table details
type name, code and the corresponding CORBA IDL types.

The type name used in the type name column of this table is the C++ name. In the IDL file, all the
Tango definition are grouped in a IDL module named Tango. The IDL module maps to C++ namespace.
Therefore, all the data type are parts of a namespace called Tango.

Type name IDL type
Tango::DevBoolean (1) boolean

Tango::DevShort (1) short
Tango::DevEnum (2) short (See chapter on advanced features)
Tango::DevLong (1) long

Tango::DevLong64 (1) long long
Tango::DevFloat (1) float

Tango::DevDouble (1) double
Tango::DevUShort (1) unsigned short
Tango::DevULong (1) unsigned long

Tango::DevULong64 (1) unsigned long long
Tango::DevString (1) string

Tango::DevVarCharArray sequence of unsigned char
Tango::DevVarShortArray sequence of short
Tango::DevVarLongArray sequence of long

Tango::DevVarLong64Array sequence of long long
Tango::DevVarFloatArray sequence of float

Tango::DevVarDoubleArray sequence of double
Tango::DevVarUShortArray sequence of unsigned short
Tango::DevVarULongArray sequence of unsigned long

Tango::DevVarULong64Array sequence of unsigned long long
Tango::DevVarStringArray sequence of string

Tango::DevVarLongStringArray structure with a sequence of long and a sequence of string

CHAPTER 6. WRITING A TANGO DEVICE SERVER 105

Tango::DevVarDoubleStringArray structure with a sequence of double and a sequence of string
Tango::DevState (1) enumeration

Tango::DevEncoded (1) structure with a string and a sequence of char

The CORBA Interface Definition Language uses a type called sequence for variable length array. The
Tango::DevUxxx types are used for unsigned types. The Tango::DevVarxxxxArray must be used when the
data to be transferred are variable length array. The Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray
are structures with two fields which are variable length array of Tango long (32 bits) and variable length
array of strings for the Tango::DevVarLongStringArray and variable length array of double and variable
length array of string for the Tango::DevVarDoubleStringArray. The Tango::State type is used by the State
command to return the device state.

6.2.1.1 Using data types with C++

Unfortunately, the mapping between IDL and C++ was defined before the C++ class library had been
standardized. This explains why the standard C++ string class or vector classes are not used in the IDL to
C++ mapping.

TANGO commands/attributes argument types can be grouped on five groups depending on the IDL
data type used. These groups are :

1. Data type using basic types (Tango::DevBoolean, Tango::DevShort, Tango::DevEnum, Tango::DevLong,
Tango::DevFloat, Tango::DevDouble, Tango::DevUshort and Tango::DevULong)

2. Data type using strings (Tango::DevString type)

3. Data types using sequences (Tango::DevVarxxxArray types except Tango::DevVarLongStringArray
and Tango::DevVarDoubleStringArray)

4. Data types using structures (Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray
types)

5. Data type using IDL enumeration (Tango::DevState type)

In the following sub chapters, only summaries of the IDL to C++ mapping are given. For a full description
of the C++ mapping, please refer to [2]

6.2.1.1.1 Basic types For these types, the mapping between IDL and C++ is obvious and defined in the
following table.

Tango type name IDL type C++ typedef
Tango::DevBoolean boolean CORBA::Boolean unsigned char

Tango::DevShort short CORBA::Short short
Tango::DevEnum short CORBA::Short
Tango::DevLong long CORBA::Long int

Tango::DevLong64 long long CORBA::LongLong long long or long (64 bits chip)
Tango::DevFloat float CORBA::Float float

Tango::DevDouble double CORBA::Double double
Tango::DevUShort unsigned short CORBA::UShort unsigned short
Tango::DevULong unsigned long CORBA::ULong unsigned long

Tango::DevULong64 unsigned long long CORBA:ULongLong unsigned long long or unsigned long (64 bits chip)

CHAPTER 6. WRITING A TANGO DEVICE SERVER 106

The types defined in the column named C++ should be used for a better portability. All these types are
defined in the CORBA namespace and therefore their qualified names is CORBA::xxx. The Tango data
type DevEnum is a special case described in detail in the chapter about advanced features.

6.2.1.1.2 Strings Strings are mapped to char *. The use of new and delete for dynamic allocation
of strings is not portable. Instead, you must use helper functions defined by CORBA (in the CORBA
namespace). These functions are :

char *CORBA::string_alloc(unsigned long len);
char *CORBA::string_dup(const char *);
void CORBA::string_free(char *);

These functions handle dynamic memory for strings. The string_alloc function allocates one more byte
than requested by the len parameter (for the trailing 0). The function string_dup combines the allocation
and copy. Both string_alloc and string_dup return a null pointer if allocation fails. The string_free function
must be used to free memory allocated with string_alloc and string_dup. Calling string_free for a null
pointer is safe and does nothing. The following code fragment is an example of the Tango::DevString type
usage

1 Tango::DevString str = CORBA::string_alloc(5);
2 strcpy(str,"TANGO");
3
4 Tango::DevString str1 = CORBA::string_dup("Do you want to danse TANGO?");
5
6 CORBA::string_free(str);
7 CORBA::string_free(str1);

Line 1-2 : TANGO is a five letters string. The CORBA::string_alloc function parameter is 5 but the
function allocates 6 bytes

Line 4 : Example of the CORBA::string_dup function
Line 6-7 : Memory deallocation

6.2.1.1.3 Sequences IDL sequences are mapped to C++ classes that behave like vectors with a variable
number of elements. Each IDL sequence type results in a separate C++ class. Within each class repre-
senting a IDL sequence types, you find the following method (only the main methods are related here)
:

1. Four constructors.

(a) A default constructor which creates an empty sequence.

(b) The maximum constructor which creates a sequence with memory allocated for at least the
number of elements passed as argument. This does not limit the number of element in the
sequence but only the way how memory is allocated to store element

(c) A sophisticated constructor where it is possible to assign the memory used by the sequence
with a preallocated buffer.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 107

(d) A copy constructor which does a deep copy

2. An assignment operator which does a deep copy

3. A length accessor which simply returns the current number of elements in the sequence

4. A length modifier which changes the length of the sequence (which is different than the number of
elements in the sequence)

5. Overloading of the [] operator. The subscript operator [] provides access to the sequence element.
For a sequence containing elements of type T, the [] operator is overloaded twice to return value of
type T & and const T &. Insertion into a sequence using the [] operator for the const T & make a
deep copy. Sequence are numbered between 0 and length() -1.

Note that using the maximum constructor will not prevent you from setting the length of the sequence with a
call to the length modifier. The following code fragment is an example of how to use a Tango::DevVarLongArray
type

1 Tango::DevVarLongArray *mylongseq_ptr;
2 mylongseq_ptr = new Tango::DevVarLongArray();
3 mylongseq_ptr->length(4);
4
5 (*mylongseq_ptr)[0] = 1;
6 (*mylongseq_ptr)[1] = 2;
7 (*mylongseq_ptr)[2] = 3;
8 (*mylongseq_ptr)[3] = 4;
9

10 // (*mylongseq_ptr)[4] = 5;
11
12 CORBA::Long nb_elt = mylongseq_ptr->length();
13
14 mylongseq_ptr->length(5);
15 (*mylongseq_ptr)[4] = 5;
16
17 for (int i = 0;i < mylongseq_ptr->length();i++)
18 cout << "Sequence elt " << i + 1 << " = " << (*mylongseq_ptr)[i] << endl;

Line 1 : Declare a pointer to Tango::DevVarLongArray type which is a sequence of long
Line 2 : Create an empty sequence
Line 3 : Change the length of the sequence to 4
Line 5 - 8 : Initialize sequence elements
Line 10 ; Oups !!! The length of the sequence is 4. The behavior of this line is undefined and may be a

core can be dumped at run time
Line 12 : Get the number of element actually stored in the sequence
Line 14-15 : Grow the sequence to five elements and initialize element number 5
Line 17-18 : Print sequence element
Another example for the Tango::DevVarStringArray type is given

1 Tango::DevVarStringArray mystrseq(4);
2 mystrseq.length(4);
3

CHAPTER 6. WRITING A TANGO DEVICE SERVER 108

4 mystrseq[0] = CORBA::string_dup("Rock and Roll");
5 mystrseq[1] = CORBA::string_dup("Bossa Nova");
6 mystrseq[2] = CORBA::string_dup(“Waltz”);
7 mystrseq[3] = CORBA::string_dup("Tango");
8
9 CORBA::Long nb_elt = mystrseq.length();

10
11 for (int i = 0;i < mystrseq.length();i++)
12 cout << "Sequence elt " << i + 1 << " = " << mystrseq[i] << endl;

Line 1 : Create a sequence using the maximum constructor
Line 2 : Set the sequence length to 4. This is mandatory even if you used the maximum constructor.
Line 4-7 : Populate the sequence
Line 9 : Get how many strings are stored into the sequence
Line 11-12 : Print sequence elements.

6.2.1.1.4 Structures Only three TANGO types are defined as structures. These types are the Tango::DevVarLongStringArray,
the Tango::DevVarDoubleStringArray and the Tango::DevEncoded data type. IDL structures map to C++
structures with corresponding members. For the Tango::DevVarLongStringArray, the two members are
named svalue for the sequence of strings and lvalue for the sequence of longs. For the Tango::DevVarDoubleStringArray,
the two structure members are called svalue for the sequence of strings and dvalue for the sequence of
double. For the Tango::DevEncoded, the two structure members are called encoded_format for a string
describing the data coding and encoded_data for the data themselves. The encoded_data field type is a
Tango::DevVarCharArray. An example of the usage of the Tango::DevVarLongStringArray type is detailed
below.

1 Tango::DevVarLongStringArray my_vl;
2
3 myvl.svalue.length(2);
4 myvl.svalue[0] = CORBA_string_dup("Samba");
5 myvl.svalue[1] = CORBA_string_dup("Rumba");
6
7 myvl.lvalue.length(1);
8 myvl.lvalue[0] = 10;

Line 1 : Declaration of the structure
Line 3-5 : Initialization of two strings in the sequence of string member
Line 7-8 : Initialization of one long in the sequence of long member

6.2.1.1.5 The DevState data type The Tango::DevState data type is used to transfer device state be-
tween client and server. It is a IDL enumeration. IDL enumerated types map to C++ enumerations (amazing
no!) with a trailing dummy enumerator to force enumeration to be a 32 bit type. The first enumerator will
have the value 0, the next one will have the value 1 and so on.

1 Tango::DevState state;
2
3 state = Tango::ON;
4 state = Tango::FAULT;

CHAPTER 6. WRITING A TANGO DEVICE SERVER 109

6.2.2 Passing data between client and server
In order to have one definition of the CORBA operation used to send a command to a device whatever
the command data type is, TANGO uses CORBA IDL any object. The IDL type any provides a universal
type that can hold a value of arbitrary IDL types. Type any therefore allows you to send and receive values
whose types are not fixed at compile time.

Type any is often compared to a void * in C. Like a pointer to void, an any value can denote a datum of
any type. However, there is an important difference; whereas a void * denotes a completely untyped value
that can be interpreted only with advance knowledge of its type, values of type any maintain type safety.
For example, if a sender places a string value into an any, the receiver cannot extract the string as a value
of the wrong type. Attempt to read the contents of an any as the wrong type cause a run-time error.

Internally, a value of type any consists of a pair of values. One member of the pair is the actual value
contained inside the any and the other member of the pair is the type code. The type code is a description
of the value’s type. The type description is used to enforce type safety when the receiver extracts the
value. Extraction of the value succeeds only if the receiver extracts the value as a type that matches the
information in the type code.

Within TANGO, the command input and output parameters are objects of the IDL any type. Only
insertion/extraction of all types defined as command data types is possible into/from these any objects.

6.2.2.1 C++ mapping for IDL any type

The IDL any maps to the C++ class CORBA::Any. This class contains a large number of methods with
mainly methods to insert/extract data into/from the any. It provides a default constructor which builds an
any which contains no value and a type code that indicates “no value”. Such an any must be used for
command which does not need input or output parameter. The operator <<= is overloaded many times
to insert data into an any object. The operator >>= is overloaded many times to extract data from an any
object.

6.2.2.1.1 Inserting/Extracting TANGO basic types The insertion or extraction of TANGO basic types
is straight forward using the <<= or >>= operators. Nevertheless, the Tango::DevBoolean type is mapped
to a unsigned char and other IDL types are also mapped to char C++ type (The unsigned is not taken
into account in the C++ overloading algorithm). Therefore, it is not possible to use operator overload-
ing for these IDL types which map to C++ char. For the Tango::DevBoolean type, you must use the
CORBA::Any::from_boolean or CORBA::Any::to_boolean intermediate objects defined in the CORBA::Any
class.

6.2.2.1.2 Inserting/Extracting TANGO strings The <<= operator is overloaded for const char * and
always makes a deep copy. This deep copy is done using the CORBA::string_dup function. The extraction
of strings uses the >>= overloaded operator. The main point is that the Any object retains ownership of the
string, so the returned pointer points at memory inside the Any. This means that you must not deallocate
the extracted string and you must treat the extracted string as read-only.

6.2.2.1.3 Inserting/Extracting TANGO sequences Insertion and extraction of sequences also uses the
overloaded <<= and >>= operators. The insertion operator is overloaded twice: once for insertion by
reference and once for insertion by pointer. If you insert a value by reference, the insertion makes a deep
copy. If you insert a value by pointer, the Any assumes the ownership of the pointed-to memory.

Extraction is always by pointer. As with strings, you must treat the extracted pointer as read-only and
must not deallocate it because the pointer points at memory internal to the Any.

6.2.2.1.4 Inserting/Extracting TANGO structures This is identical to inserting/extracting sequences.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 110

6.2.2.1.5 Inserting/Extracting TANGO enumeration This is identical to inserting/extracting basic
types

1 CORBA::Any a;
2 Tango::DevLong l1,l2;
3 l1 = 2;
4 a <<= l1;
5 a >>= l2;
6
7 CORBA::Any b;
8 Tango::DevBoolean b1,b2;
9 b1 = true;

10 b <<= CORBA::Any::from_boolean(b1);
11 b >>= CORBA::Any::to_boolean(b2);
12
13 CORBA::Any s;
14 Tango::DevString str1,str2;
15 str1 = "I like dancing TANGO";
16 s <<= str1;
17 s >>= str2;
18
19 // CORBA::string_free(str2);
20 // a <<= CORBA::string_dup("Oups");
21
22 CORBA::Any seq;
23 Tango::DevVarFloatArray fl_arr1;
24 fl_arr1.length(2);
25 fl_arr1[0] = 1.0;
26 fl_arr1[1] = 2.0;
27 seq <<= fl_arr1;
28 const Tango::DevVarFloatArray *fl_arr_ptr;
29 seq >>= fl_arr_ptr;
30
31 // delete fl_arr_ptr;

Line 1-5 : Insertion and extraction of Tango::DevLong type
Line 7-11 Insertion and extraction of Tango::DevBoolean type using the CORBA::Any::from_boolean

and CORBA::Any::to_boolean intermediate structure
Line 13-17 : Insertion and extraction of Tango::DevString type
Line 19 : Wrong ! You should not deallocate a string extracted from an any
Line 20 : Wrong ! Memory leak because the <<= operator will do the copy.
Line 22-29 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion by refer-

ence and the use of the <<= operator makes a deep copy of the sequence. Therefore, after line 27, it is
possible to deallocate the sequence

Line 31: Wrong.! You should not deallocate a sequence extracted from an any

6.2.2.2 The insert and extract methods of the Command class

In order to simplify the insertion/extraction into/from Any objects, small helper methods have been written
in the Command class. The signatures of these methods are :

CHAPTER 6. WRITING A TANGO DEVICE SERVER 111

1 void extract(const CORBA::Any &,<Tango type> &);
2 CORBA::Any *insert(<Tango type>);

An extract method has been written for all Tango types. These method extract the data from the Any
object passed as parameter and throw an exception if the Any data type is incompatible with the awaiting
type. An insert method have been written for all Tango types. These method create an Any object, insert
the data into the Any and return a pointer to the created Any. For Tango types mapped to sequences or
structures, two insert methods have been written: one for the insertion from pointer and the other for the
insertion from reference. For Tango strings, two insert methods have been written: one for insertion from a
classical Tango::DevString type and the other from a const Tango::DevString type. The first one deallocate
the memory after the insert into the Any object. The second one only inserts the string into the Any object.

The previous example can be rewritten using the insert/extract helper methods (We suppose that we can
use the Command class insert/extract methods)

1 Tango::DevLong l1,l2;
2 l1 = 2;
3 CORBA::Any *a_ptr = insert(l1);
4 extract(*a_ptr,l2);
5
6 Tango::DevBoolean b1,b2;
7 b1 = true;
8 CORBA::Any *b_ptr = insert(b1);
9 extract(*b_ptr,b2);

10
11 Tango::DevString str1,str2;
12 str1 = "I like dancing TANGO";
13 CORBA::Any *s_ptr = insert(str1);
14 extract(*s_ptr,str2);
15
16 Tango::DevVarFloatArray fl_arr1;
17 fl_arr1.length(2);
18 fl_arr1[0] = 1.0;
19 fl_arr1[1] = 2.0;
20 insert(fl_arr1);
21 CORBA::Any *seq_ptr = insert(fl_arr1);
22 Tango::DevVarFloatArray *fl_arr_ptr;
23 extract(*seq_ptr,fl_arr_ptr);

Line 1-4 : Insertion and extraction of Tango::DevLong type
Line 6-9 : Insertion and extraction of Tango::DevBoolean type
Line 11-14 : Insertion and extraction of Tango::DevString type
Line 16-23 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion by refer-

ence which makes a deep copy of the sequence. Therefore, after line 20, it is possible to deallocate the
sequence

CHAPTER 6. WRITING A TANGO DEVICE SERVER 112

6.2.3 C++ memory management
The rule described here are valid for variable length command data types like Tango::DevString or all the
Tango:: DevVarxxxxArray types.

The method executing the command must allocate the memory used to pass data back to the client
or use static memory (like buffer declares as object data member. If necessary, the ORB will deallocate
this memory after the data have been sent to the caller. Fortunately, for incoming data, the method have no
memory management responsibilities. The details about memory management given in this chapter assume
that the insert/extract methods of the Tango::Command class are used and only the method in the device
object is discussed.

6.2.3.1 For string

Example of a method receiving a Tango::DevString and returning a Tango::DevString is detailed just below

1 Tango::DevString MyDev::dev_string(Tango::DevString argin)
2 {
3 Tango::DevString argout;
4
5 cout << "the received string is " << argin << endl;
6
7 string str("Am I a good Tango dancer ?");
8 argout = new char[str.size() + 1];
9 strcpy(argout,str.c_str());

10
11 return argout;
12 }

Note that there is no need to deallocate the memory used by the incoming string. Memory for the
outgoing string is allocated at line 8, then it is initialized at the following line. The memory allocated
at line 8 will be automatically freed by the usage of the Command::insert() method. Using this schema,
memory is allocated/freed each time the command is executed. For constant string length, a statically
allocated buffer can be used.

1 Tango::ConstDevString MyDev::dev_string(Tango::DevString argin)
2 {
3 Tango::ConstDevString argout;
4
5 cout << "the received string is " << argin << endl;
6
7 argout = "Hello world";
8 return argout;
9 }

A Tango::ConstDevString data type is used. It is not a new data Tango data type. It has been introduced
only to allows Command::insert() method overloading. The argout pointer is initialized at line 7 with
memory statically allocated. In this case, no memory will be freed by the Command::insert() method.
There is also no memory copy in the contrary of the previous example. A buffer defined as object data
member can also be used to set the argout pointer.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 113

6.2.3.2 For array/sequence

Example of a method returning a Tango::DevVarLongArray is detailed just below

1 Tango::DevVarLongArray *MyDev::dev_array()
2 {
3 Tango::DevVarLongArray *argout = new Tango::DevVarLongArray();
4
5 long output_array_length = ...;
6 argout->length(output_array_length);
7 for (int i = 0;i < output_array_length;i++)
8 (*argout)[i] = i;
9

10 return argout;
11 }

In this case, memory is allocated at line 3 and 6. Then, the sequence is populated. The sequence
is created and returned using pointer. The Command::insert() method will insert the sequence into the
CORBA::Any object using this pointer. Therefore, the CORBA::Any object will take ownership of the
allocated memory. It will free it when it will be destroyed by the CORBA ORB after the data have been
sent away. It is also possible to use a statically allocated memory and to avoid copying in the sequence used
to returned the data. This is explained in the following example assuming a buffer of long data is declared
as device data member and named buffer.

1 Tango::DevVarLongArray *MyDev::dev_array()
2 {
3 Tango::DevVarLongArray *argout;
4
5 long output_array_length = ...;
6 argout = create_DevVarLongArray(buffer,output_array_length);
7 return argout;
8 }

At line 3 only a pointer to a DevVarLongArray is defined. This pointer is set at line 6 using the
create_DevVarLongArray() method. This method will create a sequence using this buffer without memory
allocation and with minimum copying. The Command::insert() method used here is the same than the one
used in the previous example. The sequence is created in a way that the destruction of the CORBA::Any
object in which the sequence will be inserted will not destroy the buffer. The following create_xxx methods
are defined in the DeviceImpl class :

Method name data type
create_DevVarCharArray() unsigned char
create_DevVarShortArray() short
create_DevVarLongArray() DevLong

create_DevVarLong64Array() DevLong64
create_DevVarFloatArray() float

CHAPTER 6. WRITING A TANGO DEVICE SERVER 114

create_DevVarDoubleArray() double
create_DevVarUShortArray() unsigned short
create_DevVarULongArray() DevULong

create_DevVarULong64Array() DevULong64

6.2.3.3 For string array/sequence

Example of a method returning a Tango::DevVarStringArray is detailed just below

1 Tango::DevVarStringArray *MyDev::dev_str_array()
2 {
3 Tango::DevVarStringArray *argout = new Tango::DevVarStringArray();
4
5 argout->length(3);
6 (*argout)[0] = CORBA::string_dup("Rumba");
7 (*argout)[1] = CORBA::string_dup("Waltz");
8 string str("Jerck");
9 (*argout)[2] = CORBA::string_dup(str.c_str());

10 return argout;
11 }

Memory is allocated at line 3 and 5. Then, the sequence is populated at lines 6,7 and 9. The usage
of the CORBA::string_dup function also allocates memory. The sequence is created and returned using
pointer. The Command::insert() method will insert the sequence into the CORBA::Any object using this
pointer. Therefore, the CORBA::Any object will take ownership of the allocated memory. It will free
it when it will be destroyed by the CORBA ORB after the data have been sent away. For portability
reason, the ORB uses the CORBA::string_free function to free the memory allocated for each string. This
is why the corresponding CORBA::string_dup or CORBA::string_alloc function must be used to reserve
this memory.It is also possible to use a statically allocated memory and to avoid copying in the sequence
used to returned the data. This is explained in the following example assuming a buffer of pointer to char
is declared as device data member and named int_buffer.

1 Tango::DevVarStringArray *DocDs::dev_str_array()
2 {
3 int_buffer[0] = "first";
4 int_buffer[1] = "second";
5
6 Tango::DevVarStringArray *argout;
7 argout = create_DevVarStringArray(int_buffer,2);
8 return argout;
9 }

The intermediate buffer is initialized with statically allocated memory at lines 3 and 4. The returned
sequence is created at line 7 with the create_DevVarStringArray() method. Like for classical array, the
sequence is created in a way that the destruction of the CORBA::Any object in which the sequence will be
inserted will not destroy the buffer.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 115

6.2.3.4 For Tango composed types

Tango supports only two composed types which are Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray.
These types are translated to C++ structure with two sequences. It is not possible to use memory statically
allocated for these types. Each structure element must be initialized as described in the previous sub-
chapters using the dynamically allocated memory case.

6.2.4 Reporting errors
Tango uses the C++ try/catch plus exception mechanism to report errors. Two kind of errors can be trans-
mitted between client and server :

1. CORBA system error. These exceptions are raised by the ORB and indicates major failures (A
communication failure, An invalid object reference...)

2. CORBA user exception. These kind of exceptions are defined in the IDL file. This allows an excep-
tion to contain an arbitrary amount of error information of arbitrary type.

TANGO defines one user exception called DevFailed. This exception is a variable length array of DevEr-
ror type (a sequence of DevError). The DevError type is a four fields structure. These fields are :

1. A string describing the type of the error. This string replaces an error code and allows a more easy
management of include files.

2. The error severity. It is an enumeration with the three values which are WARN, ERR or PANIC.

3. A string describing in plain text the reason of the error

4. A string describing the origin of the error

The Tango::DevFailed type is a sequence of DevError structures in order to transmit to the client what
is the primary error reason when several classes are used within a command. The sequence element 0
must be the DevError structure describing the primary error. A method called print_exception() defined
in the Tango::Except class prints the content of exception (CORBA system exception or Tango::DevFailed
exception). Some static methods of the Tango::Except class called throw_exception() can be used to throw
Tango::DevFailed exception. Some other static methods called re_throw_exception() may also be used
when the user want to add a new element in the exception sequence and re-throw the exception. Details on
these methods can be found in [8].

6.2.4.1 Example of throwing exception

This example is a piece of code from the command_handler() method of the DeviceImpl class. An excep-
tion is thrown to the client to indicate that the requested command is not defined in the command list.

1 TangoSys_OMemStream o;
2
3 o << "Command " << command << " not found" << ends;
4 Tango::Except::throw_exception("API_CommandNotFound",
5 o.str(),
6 "DeviceClass::command_handler");
7
8
9 try

10 {
11
12 }

CHAPTER 6. WRITING A TANGO DEVICE SERVER 116

13 catch (Tango::DevFailed &e)
14 {
15 TangoSys_OMemStream o;
16
17 o << "Command " << command << " not found" << ends;
18 Tango::Except::re_throw_exception(e,
19 "API_CommandNotFound",
20 o.str(),
21 "DeviceClass::command_handler");
22 }

Line 1 : Build a memory stream. Use the TangoSys_MemStream because memory streams are not
managed the same way between Windows and Unix

Line 3 : Build the reason string in the memory stream
Line 4-5 : Throw the exception to client using one of the throw_exception static method of the Except

class. This throw_exception method used here allows the definition of the error type string, the reason
string and the origin string of the DevError structure. The remaining DevError field (the error severity) will
be set to its default value. Note that the first and third parameters are casted to a const char *. Standard
C++ defines that such a string is already a const char * but the GNU C++ compiler (release 2.95) does
not use this type inside its function overloading but rather uses a char * which leads to calling the wrong
function.

Line 13-22 : Re-throw an already catched tango::DevFailed exception with one more element in the
exception sequence.

6.3 The Tango Logging Service
A first introduction about this logging service has been done in chapter 3.5

The TANGO Logging Service (TLS) gives the user the control over how much information is actually
generated and to where it goes. In practice, the TLS allows to select both the logging level and targets of
any device within the control system.

6.3.1 Logging Targets
The TLS implementation allows each device logging requests to print simultaneously to multiple destina-
tions. In the TANGO terminology, an output destination is called a logging target. Currently, targets exist
for console, file and log consumer device.

CONSOLE: logs are printed to the console (i.e. the standard output),
FILE: logs are stored in a XML file. A rolling mechanism is used to backup the log file when it reaches

a certain size (see below),
DEVICE: logs are sent to a device implementing a well known TANGO interface (see section A.9 for a

definition of the log consumer interface). One implementation of a log consumer associated to a graphical
user interface is available within the Tango package. It is called the LogViewer.

The device’s logging behavior can be control by adding and/or removing targets.
Note : When the size of a log file (for file logging target) reaches the so-called rolling-file-threshold

(rft), it is backuped as "current_log_file_name" + "_1" and a new "current_log_file_name" is opened. Ob-
viously, there is only one backup file at a time (i.e. any existing backup is destroyed before the current log
file is backuped). The default threshold is 20 Mb, the minimum is 500 Kb and the maximum is 1000 Mb.

6.3.2 Logging Levels
Devices can be assigned a logging level. It acts as a filter to control the kind of information sent to
the targets. Since, there are (usually) much more low level log statements than high level statements,

CHAPTER 6. WRITING A TANGO DEVICE SERVER 117

the logging level also control the amount of information produced by the device. The TLS provides the
following levels (semantic is just given to be indicative of what could be log at each level):

OFF: Nothing is logged
FATAL: A fatal error occurred. The process is about to abort
ERROR: An (unrecoverable) error occurred but the process is still alive
WARN: An error occurred but could be recovered locally
INFO: Provides information on important actions performed
DEBUG: Generates detailed information describing the internal behavior of a device
Levels are ordered the following way:

DEBUG < INFO < WARN < ERROR < FATAL < OFF

For a given device, a level is said to be enabled if it is greater or equal to the logging level assigned
to this device. In other words, any logging request which level is lower than the device’s logging level is
ignored.

Note: The logging level can’t be controlled at target level. The device’s targets shared the same device
logging level.

6.3.3 Sending TANGO Logging Messages
6.3.3.1 Logging macros in C++

The TLS provides the user with easy to use C++ macros with printf and stream like syntax. For each
logging level, a macro is defined in both styles:

• LOG_{FATAL, ERROR, WARN, INFO or DEBUG}

• {FATAL, ERROR, WARN, INFO or DEBUG}_STREAM

These macros are supposed to be used within the device’s main implementation class (i.e. the class that
inherits (directly or indirectly) from the Tango::DeviceImpl class). In this context, they produce logging
messages containing the device name. In other words, they automatically identify the log source. Section
6.3.3.2 gives a trick to log in the name of device outside its main implementation class. Printf like example:

LOG_DEBUG(("Msg#%d - Hello world", i++));

Stream like example:

DEBUG_STREAM << "Msg#" << i++ << "- Hello world" << endl;

These two logging requests are equivalent. Note the double parenthesis in the printf version.

6.3.3.2 C++ logging in the name of a device

A device implementation is sometimes spread over several classes. Since all these classes implement
the same device, their logging requests should be associated with this device name. Unfortunately, the
C++ logging macros can’t be used because they are outside the device’s main implementation class. The
Tango::LogAdapter class is a workaround for this limitation.

Any method not member of the device’s main implementation class, which send log messages asso-
ciated to a device must be a member of a class inheriting from the Tango::LogAdapter class. Here is an
example:

CHAPTER 6. WRITING A TANGO DEVICE SERVER 118

1 class MyDeviceActualImpl: public Tango::LogAdapter
2 {
3 public :
4 MyDeviceActualImpl(...,Tango::DeviceImpl *device,...)
5 :Tango::LogAdpater(device)
6 {
7
8 //
9 // The following log is associated to the device passed to the constructor
10 //
11 DEBUG_STREAM << "In MyDeviceActualImpl constructor" << endl;
12
13
14 }
15 };

6.4 Writing a device server process
Writing a device server can be made easier by adopting the correct approach. This chapter will describe
how to write a device server process. It is divided into the following parts : understanding the device,
defining device commands/attributes/pipes, choosing device state and writing the necessary classes. All
along this chapter, examples will be given using the stepper motor device server. Writing a device server
for our stepper motor example device means writing :

• The main function

• The class_factory method (only for C++ device server)

• The StepperMotorClass class

• The DevReadPositionCmd and DevReadDirectionCmd classes

• The PositionAttr, SetPositionAttr and DirectionAttr classes

• The StepperMotor class.

All these functions and classes will be detailed. The stepper motor device server described in this chapter
supports 2 commands and 3 attributes which are :

• Command DevReadPosition implemented using the inheritance model

• Command DevReadDirection implemented using the template command model

• Attribute Position (position of the first motor). This attribute is readable and is linked with a writable
attribute (called SetPosition). When the value of this attribute is requested by the client, the value of
the associated writable attribute is also returned.

• Attribute SetPosition (writable attribute linked with the Position attribute). This attribute has some
properties with user defined default value.

• Attribute Direction (direction of the first motor)

CHAPTER 6. WRITING A TANGO DEVICE SERVER 119

As the reader will understand during the reading of the following sub-chapters, the command and attributes
classes (DevReadPositionCmd, DevReadDirectionCmd, PositionAttr, SetPositionAttr and DirectionAttr)
are very simple classes. A tool called Pogo has been developped to automatically generate/maintain these
classes and to write part of the code needed in the remaining one. See xx to know more on this Pogo tool.

In order to also gives an example of how the database objects part of the Tango device pattern could
be used, our device have two properties. These properties are of the Tango long data types and are named
“Max” and “Min”.

6.4.1 Understanding the device
The first step before writing a device server is to develop an understanding of the hardware to be pro-
grammed. The Equipment Responsible should have description of the hardware and its operating modes
(manuals, spec sheets etc.). The Equipment Responsible must also provide specifications of what the de-
vice server should do. The Device Server Programmer should demand an exact description of the registers,
alarms, interlocks and any timing constraints which have to be kept. It is very important to have a good
understanding of the device interfacing before starting designing a new class.

Once the Device Server Programmer has understood the hardware the next important step is to define
what is a logical device i.e. what part of the hardware will be abstracted out and treated as a logical device.
In doing so the following points of the TDSOM should be kept in mind

• Each device is known and accessed by its ascii name.

• The device is exported onto the network to be imported by applications.

• Each device belongs to a class.

• A list of commands exists per device.

• Applications use the device server api to execute commands on a device.

The above points have to be taken into account when designing the level of device abstraction. The def-
inition of what is a device for a certain hardware is primarily the job of the Device Server Programmer
and the Applications Programmer but can also involve the Equipment Responsible. The Device Server
Programmer should make sure that the Applications Programmer agrees with her definition of what is a
device.

Here are some guidelines to follow while defining the level of device abstraction -

• efficiency, make sure that not a too fine level of device abstraction has been chosen. If possible group
as many attributes together to form a device. Discuss this with the Applications Programmer to find
out what is efficient for her application.

• hardware independency, one of the main reasons for writing device servers is to provide the Appli-
cations Programmer with a software interface as opposed to a hardware interface. Hide the hardware
structure of the device. For example if the user is only interested in a single channel of a multichan-
nel device then define each channel to be a logical device. The user should not be aware of hardware
addresses or cabling details. The user is very often a scientist who has a physics-oriented world
view and not a hardware-oriented world view. Hardware independency also has the advantage that
applications are immune to hardware changes to the device

• object oriented world view, another raison d’etre behind the device server model is to build up
an object oriented view of the world. The device should resemble the user’s view of the object as
closely as possible. In the case of the ESRF’s beam lines for example, the devices should resemble
beam line scientist’s view of the machine.

• atomism, each device can be considered like an atom - is a independent object. It should appear
independent to the client even if behind the scenes it shares some hardware or software with other
objects. This is often the case with multichannel devices where the user would like to see each chan-
nel as a device but it is obvious that the channels cannot be programmed completely independently.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 120

The logical device is there to hide or make transparent this fact. If it is impossible to send commands
to one device without modifying another device then a single device should be made out the two
devices.

• tailored vs general, one of the philosophies of the TDSOM is to provide tailored solutions. For
example instead of writing one serial line class which treats the general case of a serial line device
and leaving the device protocol to be implemented in the client the TDSOM advocates implementing
a device class which handles the protocol of the device. This way the client only has to know the
commands of the class and not the details of the protocol. Nothing prevents the device class from
using a general purpose serial line class if it exists of course.

6.4.2 Defining device commands
Each device has a list of commands which can be executed by the application across the network or lo-
cally. These commands are the Application Programmer’s network knobs and dials for interacting with the
device.

The list of commands to be implemented depends on the capabilities of the hardware, the list of sensible
functions which can be executed at a distance and of course the functionality required by the application.
This implies a close collaboration between the Equipment Responsible, Device Server Programmer and
the Application Programmer.

When drawing up the list of commands particular attention should be paid to the following points

• performance, no single command should monopolize the device server for a long time (a nominal
value for long is one second). Commands should be implemented in such a way that it executes
immediately returning with a response. At best try to keep command execution time down to less
than the typical overhead of an rpc call i.e. som milliseconds. This of course is not always possible
e.g. a serial line device could require 100 milliseconds of protocol exchange. The Device Server
Programmer should find the best trade-off between the users requirements and the devices capabili-
ties. If a command implies a sequence of events which could last for a long time then implement the
sequence of events in another thread - don’t block the device server.

• robustness, should be provided which allow the client to recover from error conditions and or do a
warm startup.

6.4.2.1 Standard commands

A minimum set of three commands exist for all devices. These commands are

• State which returns the state of a device

• Status which returns the status of the device as a formatted ascii string

• Init which re-initialize a device without changing its network connection

These commands have already been discussed in 6.1.5

6.4.3 Choosing device state
The device state is a number which reflects the availability of the device. To simplify the coding for generic
application, a predefined set of states are supported by TANGO. This list has 14 members which are

State name

CHAPTER 6. WRITING A TANGO DEVICE SERVER 121

ON
OFF

CLOSE
OPEN

INSERT
EXTRACT
MOVING

STANDBY
FAULT

INIT
RUNNING
ALARM

DISABLE
UNKNOWN

The names used here have obvious meaning.

6.4.4 Device server utilities to ease coding/debugging
The device server framework supports one set of utilities to ease the process of coding and debugging
device server code. This utility is :

1. The device server verbose option

Using this facility avoids the usage of the classical “#ifdef DEBUG” style which makes code less readable.

6.4.4.1 The device server verbose option

Each device server supports a verbose option called -v. Four verbose levels are defined from 1 to 4. Level
4 is the most talkative one. If you use the -v option without specifying level, level 4 will be assumed.

Since Tango release 3, a Tango Logging Service has been introduced (detailed in chapter 6.3). This
-v option set-up the logging service. If it used, it will automatically add a console target to all devices
embedded within the device server process. Level 1 and 2 will set the logging level to all devices embedded
within the device server to INFO. Level 3 and 4 will set the logging level to all devices embedded within the
device server to DEBUG. All messages sent by the API layer are associated to the administration device.

6.4.4.2 C++ utilities to ease device server coding

Some utilities functions have been added in the C++ release to ease Tango device server development.
These utilities allow the user to

• Init a C++ vector from a data of one of the Tango DevVarXXXArray data types

• Init a data of one of the Tango::DevVarxxxArray data type from a C++ vector

• Print a data of one of Tango::DevVarxxxArray data type

They mainly used the “<<” operator overloading features. The following code lines are an example of
usage of these utilities.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 122

1 vector<string> v1;
2 v1.push_back("one");
3 v1.push_back("two");
4 v1.push_back("three");
5
6 Tango::DevVarStringArray s;
7 s << v1;
8 cout << s << endl;
9

10 vector<string> v2;
11 v2 << s;
12
13 for (int i = 0;i < v2.size();i++)
14 cout << "vector element = " << v2[i] << endl;

Line 1-4 : Create and Init a C++ string vector
Line 7 : Init a Tango::DevVarStringArray data from the C++ vector
Line 8 : Print all the Tango::DevVarStringArray element in one line of code.
Line 11 : Init a second empty C++ string vector with the content of the Tango::DevVarStringArray
Line 13-14 : Print vector element

Warning: Note that due to a strange behavior of the Windows VC++ compiler compared to other
compilers, to use these utilities with the Windows VC++ compiler, you must add the line “using namespace
tango” at the beginning of your source file.

6.4.5 Avoiding name conflicts
Namespace are used to avoid name conflicts. Each device pattern implementation is defined within its own
namespace. The name of the namespace is the device pattern class name. In our example, the namespace
name is StepperMotor.

6.4.6 The device server main function
A device server main function (or method) always follows the same framework. It exactly implements all
the action described in chapter 6.1.7.5. Even if it could be always the same, it has not been included in the
library because some linkers are perturbed by the presence of two main functions.

1 #include <tango.h>
2
3 int main(int argc,char *argv[])
4 {
5
6 Tango::Util *tg;
7
8 try
9 {

10
11 tg = Tango::Util::init(argc,argv);
12
13 tg->server_init();
14

CHAPTER 6. WRITING A TANGO DEVICE SERVER 123

15 cout << "Ready to accept request" << endl;
16 tg->server_run();
17 }
18 catch (bad_alloc)
19 {
20 cout << "Can’t allocate memory!!!" << endl;
21 cout << "Exiting" << endl;
22 }
23 catch (CORBA::Exception &e)
24 {
25 Tango::Except::print_exception(e);
26
27 cout << "Received a CORBA::Exception" << endl;
28 cout << "Exiting" << endl;
29 }
30
31 tg->server_cleanup();
32
33 return(0);
34 }

Line 1 : Include the tango.h file. This file is a master include file. It includes several other files. The
list of files included by tango.h can be found in [8]

Line 11 : Create the instance of the Tango::Util class (a singleton). Passing argc,argv to this method is
mandatory because the device server command line is checked when the Tango::Util object is constructed.

Line 13 : Start all the device pattern creation and initialization with the server_init() method
Line 16 : Put the server in a endless waiting loop with the server_run() method. In normal case, the

process should never returns from this line.
Line 18-22 : Catch all exceptions due to memory allocation error, display a message to the user and

exit
Line 23 : Catch all standard TANGO exception which could occur during device pattern creation and

initialization
Line 25 : Print exception parameters
Line 27-28 : Print an additional message
Line 31 : Cleanup the server before exiting by calling the server_cleanup() method.

6.4.7 The DServer::class_factory method
As described in chapter 6.1.7.2, C++ device server needs a class_factory() method. This method creates
all the device pattern implemented in the device server by calling their init() method. The following is an
example of a class_factory method for a device server with one implementation of the device server pattern
for stepper motor device.

1 #include <tango.h>
2 #include <steppermotorclass.h>
3
4 void Tango::DServer::class_factory()
5 {
6
7 add_class(StepperMotor::StepperMotorClass::init("StepperMotor"));
8
9 }

CHAPTER 6. WRITING A TANGO DEVICE SERVER 124

Line 1 : Include the Tango master include file
Line 2 : Include the steppermotorclass class definition file
Line 7 : Create the StepperMotorClass singleton by calling its init method and stores the returned

pointer into the DServer object. Remember that all classes for the device pattern implementation for the
stepper motor class is defined within a namespace called StepperMotor.

6.4.8 Writing the StepperMotorClass class
6.4.8.1 The class declaration file

1 #include <tango.h>
2
3 namespace StepperMotor
4 {
5
6 class StepperMotorClass : public Tango::DeviceClass
7 {
8 public:
9 static StepperMotorClass *init(const char *);

10 static StepperMotorClass *instance();
11 ~StepperMotorClass() {_instance = NULL;}
12
13 protected:
14 StepperMotorClass(string &);
15 static StepperMotorClass *_instance;
16 void command_factory();
17 void attribute_factory(vector<Tango::Attr *> &);
18
19 public:
20 void device_factory(const Tango::DevVarStringArray *);
21 };
22
23 } /* End of StepperMotor namespace */

Line 1 : Include the Tango master include file
Line 3 : This class is defined within the StepperMotor namespace
Line 6 : Class StepperMotorClass inherits from Tango::DeviceClass
Line 9-10 : Definition of the init and instance methods. These methods are static and can be called

even if the object is not already constructed.
Line 11: The destructor
Line 14 : The class constructor. It is protected and can’t be called from outside the class. Only the init

method allows a user to create an instance of this class. See [10] to get details about the singleton design
pattern.

Line 15 : The instance pointer. It is static in order to set it to NULL during process initialization phase
Line 16 : Definition of the command_factory method
Line 17 : Definition of the attribute_factory method
Line 20 : Definition of the device_factory method

CHAPTER 6. WRITING A TANGO DEVICE SERVER 125

6.4.8.2 The singleton related methods

1 #include <tango.h>
2
3 #include <steppermotor.h>
4 #include <steppermotorclass.h>
5
6 namespace StepperMotor
7 {
8
9 StepperMotorClass *StepperMotorClass::_instance = NULL;

10
11 StepperMotorClass::StepperMotorClass(string &s):
12 Tango::DeviceClass(s)
13 {
14 INFO_STREAM << "Entering StepperMotorClass constructor" << endl;
15
16 INFO_STREAM << "Leaving StepperMotorClass constructor" << endl;
17 }
18
19
20 StepperMotorClass *StepperMotorClass::init(const char *name)
21 {
22 if (_instance == NULL)
23 {
24 try
25 {
26 string s(name);
27 _instance = new StepperMotorClass(s);
28 }
29 catch (bad_alloc)
30 {
31 throw;
32 }
33 }
34 return _instance;
35 }
36
37 StepperMotorClass *StepperMotorClass::instance()
38 {
39 if (_instance == NULL)
40 {
41 cerr << "Class is not initialised !!" << endl;
42 exit(-1);
43 }
44 return _instance;
45 }

Line 1-4 : include files: the Tango master include file (tango.h), the StepperMotorClass class definition
file (steppermotorclass.h) and the StepperMotor class definition file (steppermotor.h)

CHAPTER 6. WRITING A TANGO DEVICE SERVER 126

Line 6 : Open the StepperMotor namespace.
Line 9 : Initialize the static _instance field of the StepperMotorClass class to NULL
Line 11-18 : The class constructor. It takes an input parameter which is the controlled device class

name. This parameter is passed to the constructor of the DeviceClass class. Otherwise, the constructor
does nothing except printing a message

Line 20-35 : The init method. This method needs an input parameter which is the controlled device
class name (StepperMotor in this case). This method checks is the instance is already constructed by
testing the _instance data member. If the instance is not constructed, it creates one. If the instance is
already constructed, the method simply returns a pointer to it.

Line 37-45 : The instance method. This method is very similar to the init method except that if the
instance is not already constructed. the method print a message and abort the process.

As you can understand, it is not possible to construct more than one instance of the StepperMotorClass
(it is a singleton) and the init method must be called prior to any other method.

6.4.8.3 The command_factory method

Within our example, the stepper motor device supports two commands which are called DevReadPosition
and DevReadDirection. These two command takes a Tango::DevLong argument as input and output pa-
rameter. The first command is created using the inheritance model and the second command is created
using the template command model.

1
2 void StepperMotorClass::command_factory()
3 {
4 command_list.push_back(new DevReadPositionCmd("DevReadPosition",
5 Tango::DEV_LONG,
6 Tango::DEV_LONG,
7 "Motor number (0-7)",
8 "Motor position"));
9

10 command_list.push_back(
11 new TemplCommandInOut<Tango::DevLong,Tango::DevLong>
12 ((const char *)"DevReadDirection",
13 static_cast<Tango::Lg_CmdMethPtr_Lg>
14 (&StepperMotor::dev_read_direction),
15 static_cast<Tango::StateMethPtr>
16 (&StepperMotor::direct_cmd_allowed))
17);
18 }
19

Line 4 : Creation of one instance of the DevReadPositionCmd class. The class is created with five
arguments which are the command name, the command type code for its input and output parameters and
two strings which are the command input and output parameters description. The pointer returned by the
new C++ keyword is added to the vector of available command.

Line 10-14 : Creation of the object used for the DevReadDirection command. This command has one
input and output parameter. Therefore the created object is an instance of the TemplCommandInOut class.
This class is a C++ template class. The first template parameter is the command input parameter type,
the second template parameter is the command output parameter type. The second TemplCommandInOut
class constructor parameter (set at line 13) is a pointer to the method to be executed when the command is

CHAPTER 6. WRITING A TANGO DEVICE SERVER 127

requested. A casting is necessary to store this pointer as a pointer to a method of the DeviceImpl class3.
The third TemplCommandInOut class constructor parameter (set at line 15) is a pointer to the method to
be executed to check if the command is allowed. This is necessary only if the default behavior (command
always allowed) does not fulfill the needs. A casting is necessary to store this pointer as a pointer to a
method of the DeviceImpl class. When a command is created using the template command method, the
input and output parameters type are determined from the template C++ class parameters.

6.4.8.4 The device_factory method

The device_factory method has one input parameter. It is a pointer to Tango::DevVarStringArray data
which is the device name list for this class and the instance of the device server process. This list is fetch
from the Tango database.

1 void StepperMotorClass::device_factory(const Tango::_DevVarStringArray *devlist_ptr)
2 {
3
4 for (long i = 0;i < devlist_ptr->length();i++)
5 {
6 DEBUG_STREAM << "Device name : " << (*devlist_ptr)[i] << endl;
7
8 device_list.push_back(new StepperMotor(this,(*devlist_ptr)[i])); 9

10 if (Tango::Util::_UseDb == true)
11 export_device(device_list.back());
12 else
13 export_device(device_list.back(),(*devlist_ptr[i]));
14 }
15 }

Line 4 : A loop for each device
Line 8 : Create the device object using a StepperMotor class constructor which needs two arguments.

These two arguments are a pointer to the StepperMotorClass instance and the device name. The pointer to
the constructed object is then added to the device list vector

Line 10-13 : Export device to the outside world using the export_device method of the DeviceClass
class.

6.4.8.5 The attribute_factory method

The rule of this method is to fulfill a vector of pointer to attributes. A reference to this vector is passed as
argument to this method.

1 void StepperMotorClass::attribute_factory(vector<Tango::Attr *> &att_list)
2 {
3 att_list.push_back(new PositionAttr());
4
5 Tango::UserDefaultAttrProp def_prop;
6 def_prop.set_label("Set the motor position");

3The StepperMotor class inherits from the DeviceImpl class and therefore is a DeviceImpl

CHAPTER 6. WRITING A TANGO DEVICE SERVER 128

7 def_prop.set_format("scientific;setprecision(4)");
8 Tango::Attr *at = new SetPositionAttr();
9 at->set_default_properties(def_prop);

10 att_list.push_back(at);
11
12 att_list.push_back(new DirectcionAttr());
13 }

Line 3 : Create the PositionAttr class and store the pointer to this object into the attribute pointer vector.
Line 5-7 : Create a Tango::UserDefaultAttrProp instance and set the label and format properties default

values in this object
Line 8 : Create the SetPositionAttr attribute.
Line 9 : Set attribute user default value with the set_default_properties() method of the Tango::Attr

class.
Line 10 : Store the pointer to this object into the attribute pointer vector.
Line 12 : Create the DirectionAttr class and store the pointer to this object into the attribute pointer

vector.
Please, note that in some rare case, it is necessary to add attribute to this list during the device server life

cycle. This attribute_factory() method is called once during device server start-up. A method add_attribute()
of the DeviceImpl class allows the user to add a new attribute to the attribute list outside of this at-
tribute_factory() method. See [8] for more information on this method.

6.4.9 The DevReadPositionCmd class
6.4.9.1 The class declaration file

1 #include <tango.h>
2
3 namespace StepperMotor
4 {
5
6 class DevReadPositionCmd : public Tango::Command
7 {
8 public:
9 DevReadPositionCmd(const char *,Tango::CmdArgType,

10 Tango::CmdArgType,
11 const char *,const char *);
12 ~DevReadPositionCmd() {};
13
14 virtual bool is_allowed (Tango::DeviceImpl *, const CORBA::Any &);
15 virtual CORBA::Any *execute (Tango::DeviceImpl *, const CORBA::Any &);
16 };
17
18 } /* End of StepperMotor namespace */

Line 1 : Include the tango master include file
Line 3 : Open the StepperMotor namespace.
Line 6 : The DevReadPositionCmd class inherits from the Tango::Command class
Line 9 : The constructor

CHAPTER 6. WRITING A TANGO DEVICE SERVER 129

Line 12 : The destructor
Line 14 : The definition of the is_allowed method. This method is not necessary if the default behavior

implemented by the default is_allowed method fulfill the requirements. The default behavior is to always
allows the command execution (always return true).

Line 15: The definition of the execute method

6.4.9.2 The class constructor

The class constructor does nothing. It simply invoke the Command constructor by passing it its five argu-
ments which are:

1. The command name

2. The command input type code

3. The command output type code

4. The command input parameter description

5. The command output parameter description

With this 5 parameters command class constructor, the command display level is not specified. Therefore
it is set to its default value (OPERATOR). If the command does not have input or output parameter, it is not
possible to use the Command class constructor defined with five parameters. In this case, the command con-
structor execute the Command class constructor with three elements (class name, input type, output type)
and set the input or output parameter description fields with the set_in_type_desc or set_out_type_desc
Command class methods. To set the command display level, it is possible to use a 6 parameters constructor
or it is also possible to set it in the constructor code with the set_disp_level method. Many Command class
constructors are defined. See [8]for a complete list.

6.4.9.3 The is_allowed method

In our example, the DevReadPosition command is allowed only if the device is in the ON state. This
method receives two argument which are a pointer to the device object on which the command must be
executed and a reference to the command input Any object. This method returns a boolean which must be
set to true if the command is allowed. If this boolean is set to false, the DeviceClass command_handler
method will automatically send an exception to the caller.

1 bool DevReadPositionCmd::is_allowed(Tango::DeviceImpl *device,
2 const CORBA::Any &in_any)
3 {
4 if (device->get_state() == Tango::ON)
5 return true;
6 else
7 return false;
8 }

Line 4 : Call the get_state method of the DeviceImpl class which simply returns the device state
Line 5 : Authorize command if the device state is ON
Line 7 : Refuse command execution in all other cases.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 130

6.4.9.4 The execute method

This method receives two arguments which are a pointer to the device object on which the command must
be executed and a reference to the command input Any object. This method returns a pointer to an any
object which must be initialized with the data to be returned to the caller.

1 CORBA::Any *DevReadPositionCmd::execute(
2 Tango::DeviceImpl *device,
3 const CORBA::Any &in_any)
4 {
5 INFO_STREAM << "DevReadPositionCmd::execute(): arrived" << endl;
6 Tango::DevLong motor;
7
8 extract(in_any,motor);
9 return insert(

10 (static_cast<StepperMotor *>(device))->dev_read_position(motor));
11 }

Line 8 : Extract incoming data from the input any object using a Command class extract helper method.
If the type of the data in the Any object is not a Tango::DevLong, the extract method will throw an exception
to the client.

Line 9 : Call the stepper motor object method which execute the DevReadPosition command and insert
the returned value into an allocated Any object. The Any object allocation is done by the insert method
which return a pointer to this Any.

6.4.10 The PositionAttr class
6.4.10.1 The class declaration file

1 #include <tango.h>
2 #include <steppermotor.h>
3
4 namespace StepperMotor
5 {
6
7
8 class PositionAttr: public Tango::Attr
9 {

10 public:
11 PositionAttr():Attr("Position",
12 Tango::DEV_LONG,
13 Tango::READ_WITH_WRITE,
14 "SetPosition") {};
15 ~PositionAttr() {};
16
17 virtual void read(Tango::DeviceImpl *dev,Tango::Attribute &att)
18 {(static_cast<StepperMotor *>(dev))->read_Position(att);}
19 virtual bool is_allowed(Tango::DeviceImpl *dev,Tango::AttReqType ty)
20 {return (static_cast<StepperMotor *>(dev))->is_Position_allowed(ty);}
21 };

CHAPTER 6. WRITING A TANGO DEVICE SERVER 131

22
23 } /* End of StepperMotor namespace */
24
25 #endif // _STEPPERMOTORCLASS_H

Line 1-2 : Include the tango master include file and the steppermotor class definition include file
Line 4 : Open the StepperMotor namespace.
Line 8 : The PosiitionAttr class inherits from the Tango::Attr class
Line 11-14 : The constructor with 4 arguments
Line 15 : The destructor
Line 17 : The definition of the read method. This method forwards the call to a StepperMotor class

method called read_Position()
Line 19 : The definition of the is_allowed method. This method is not necessary if the default behaviour

implemented by the default is_allowed method fulfills the requirements. The default behaviour is to always
allows the attribute reading (always return true). This method forwards the call to a StepperMotor class
method called is_Position_allowed()

6.4.10.2 The class constructor

The class constructor does nothing. It simply invoke the Attr constructor by passing it its four arguments
which are:

1. The attribute name

2. The attribute data type code

3. The attribute writable type code

4. The name of the associated write attribute

With this 4 parameters Attr class constructor, the attribute display level is not specified. Therefore it is set
to its default value (OPERATOR). To set the attribute display level, it is possible to use in the constructor
code the set_disp_level method. Many Attr class constructors are defined. See [8]for a complete list.

This Position attribute is a scalar attribute. For spectrum attribute, instead of inheriting from the Attr
class, the class must inherits from the SpectrumAttr class. Many SpectrumAttr class constructors are
defined. See [8]for a complete list.

For Image attribute, instead of inheriting from the Attr class, the class must inherits from the ImageAttr
class. Many ImageAttr class constructors are defined. See [8]for a complete list.

6.4.10.3 The is_allowed method

This method receives two argument which are a pointer to the device object to which the attribute belongs
to and the type of request (read or write). In the PositionAttr class, this method simply "forwards" the
request to a method of the StepperMotor class called is_Position_allowed() passing the request type to this
method. This method returns a boolean which must be set to true if the attribute is allowed. If this boolean
is set to false, the DeviceImpl read_attribute method will automatically send an exception to the caller.

6.4.10.4 The read method

This method receives two arguments which are a pointer to the device object to which the attribute be-
longs to and a reference to the corresponding attribute object. This method "forwards" the request to a
StepperMotor class called read_Position() passing it the reference on the attribute object.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 132

6.4.11 The StepperMotor class
6.4.11.1 The class declaration file

1 #include <tango.h>
2
3 #define AGSM_MAX_MOTORS 8 // maximum number of motors per device
4
5 namespace StepperMotor
6 {
7
8 class StepperMotor: public TANGO_BASE_CLASS
9 {
10 public :
11 StepperMotor(Tango::DeviceClass *,string &);
12 StepperMotor(Tango::DeviceClass *,const char *);
13 StepperMotor(Tango::DeviceClass *,const char *,const char *);
14 ~StepperMotor() {};
15
16 DevLong dev_read_position(DevLong);
17 DevLong dev_read_direction(DevLong);
18 bool direct_cmd_allowed(const CORBA::Any &);
19
20 virtual Tango::DevState dev_state();
21 virtual Tango::ConstDevString dev_status();
22
23 virtual void always_executed_hook();
24
25 virtual void read_attr_hardware(vector<long> &attr_list);
26 virtual void write_attr_hardware(vector<long> &attr_list);
27
28 void read_position(Tango::Attribute &);
29 bool is_Position_allowed(Tango::AttReqType req);
30 void write_SetPosition(Tango::WAttribute &);
31 void read_Direction(Tango::Attribute &);
32
33 virtual void init_device();
34 virtual void delete_device();
35
36 void get_device_properties();
37
38 protected :
39 long axis[AGSM_MAX_MOTORS];
40 DevLong position[AGSM_MAX_MOTORS];
41 DevLong direction[AGSM_MAX_MOTORS];
42 long state[AGSM_MAX_MOTORS];
43
44 Tango::DevLong *attr_Position_read;
45 Tango::DevLong *attr_Direction_read;
46 Tango::DevLong attr_SetPosition_write;
47
48 Tango::DevLong min;
49 Tango::DevLong max;

CHAPTER 6. WRITING A TANGO DEVICE SERVER 133

50
51 Tango::DevLong *ptr;
52 };
53
54 } /* End of StepperMotor namespace */

Line 1 : Include the Tango master include file
Line 5 : Open the StepperMotor namespace.
Line 8 : The StepperMotor class inherits from a Tango base class
Line 11-13 : Three different object constructors
Line 14 : The destructor which calls the delete_device() method
Line 16 : The method to be called for the execution of the DevReadPosition command. This method

must be declared as virtual if it is needed to redefine it in a class inheriting from StepperMotor. See chapter
6.7.2 for more details about inheriting.

Line 17 : The method to be called for the execution of the DevReadDirection command
Line 18 : The method called to check if the execution of the DevReadDirection command is allowed.

This method is necessary because the DevReadDirection command is created using the template command
method and the default behavior is not acceptable

Line 20 : Redefinition of the dev_state. This method is used by the State command
Line 21 : Redefinition of the dev_status. This method is used by the Status command
Line 23 : Redefinition of the always_executed_hook method. This method is the place to code manda-

tory action which must be executed prior to any command.
Line 25-31 : Attribute related methods
Line 32 : Definition of the init_device method.
Line 33 : Definition of the delete_device method
Line 35 : Definition of the get_device_properties method
Line 38-50 : Data members.
Line 43-44 : Pointers to data for readable attributes Position and Direction
Line 45 : Data for the SetPosition attribute
Line 47-48 : Data members for the two device properties

6.4.11.2 The constructors

Three constructors are defined here. It is not mandatory to defined three constructors. But at least one is
mandatory. The three constructors take a pointer to the StepperMotorClass instance as first parameter4.
The second parameter is the device name as a C++ string or as a classical pointer to char array. The
third parameter necessary only for the third form of constructor is the device description string passed as a
classical pointer to a char array.

1 #include <tango.h>
2 #include <steppermotor.h>
3
4 namespace StepperMotor
5 {
6
7 StepperMotor::StepperMotor(Tango::DeviceClass *cl,string &s)
8 :TANGO_BASE_CLASS(cl,s.c_str())
9 {
10 init_device();

4The StepperMotorClass inherits from the DeviceClass and therefore is a DeviceClass

CHAPTER 6. WRITING A TANGO DEVICE SERVER 134

11 }
12
13 StepperMotor::StepperMotor(Tango::DeviceClass *cl,const char *s)
14 :TANGO_BASE_CLASS(cl,s)
15 {
16 init_device();
17 }
18
19 StepperMotor::StepperMotor(Tango::DeviceClass *cl,const char *s,const char *d)
20 :TANGO_BASE_CLASS(cl,s,d)
21 {
22 init_device();
23 }
24
25 void StepperMotor::init_device()
26 {
27 cout << "StepperMotor::StepperMotor() create " << device_name << endl;
28
29 long i;
30
31 for (i=0; i< AGSM_MAX_MOTORS; i++)
32 {
33 axis[i] = 0;
34 position[i] = 0;
35 direction[i] = 0;
36 }
37
38 ptr = new Tango::DevLong[10];
39
40 get_device_properties();
41 }
42
43 void StepperMotor::delete_device()
44 {
45 delete [] ptr;
46 }

Line 1-2 : Include the Tango master include file (tango.h) and the StepperMotor class definition file
(steppermotor.h)

Line 4 : Open the StepperMotor namespace
Line 7-11 : The first form of the class constructor. It execute the Tango base class constructor with

the two parameters. Note that the device name passed to this constructor as a C++ string is passed to the
Tango::DeviceImpl constructor as a classical C string. Then the init_device method is executed.

Line 13-17 : The second form of the class constructor. It execute the Tango base class constructor with
its two parameters. Then the init_device method is executed.

Line 19-23: The third form of constructor. Again, it execute the Tango base class constructor with its
three parameters. Then the init_device method is executed.

Line 25-41 : The init_device method. All the device data initialization is done in this method. The
device properties are also retrieved from database with a call to the get_device_properties method at line
40. The device data member called ptr is initialized with allocated memory at line 38. It is not needed to
have this pointer, it has been added only for educational purpose.

Line 43-46 : The delete_device method. The rule of this method is to free memory allocated in the
init_device method. In our case , only the device data member ptr is allocated in the init_device method.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 135

Therefore, its memory is freed at line 45. This method is called by the automatically added Init command
before it calls the init_device method. It is also called by the device destructor.

6.4.11.3 The methods used for the DevReadDirection command

The DevReadDirection command is created using the template command method. Therefore, there is no
specific class needed for this command but only one object of the TemplCommandInOut class. This com-
mand needs two methods which are the dev_read_direction method and the direct_cmd_allowed method.
The direct_cmd_allowed method defines here implements exactly the same behavior than the default one.
This method has been used only for pedagogic issue. The dev_read_direction method will be executed by
the execute method of the TemplCommandInOut class. The direct_cmd_allowed method will be executed
by the is_allowed method of the TemplCommandInOut class.

1 DevLong StepperMotor::dev_read_direction(DevLong axis)
2 {
3 if (axis < 0 || axis > AGSM_MAX_MOTORS)
4 {
5 WARNING_STREAM << "Steppermotor::dev_read_direction(): axis out of range !";
6 WARNING_STREAM << endl;
7 TangoSys_OMemStream o;
8
9 o << "Axis number " << axis << " out of range" << ends;

10 throw_exception("StepperMotor_OutOfRange",
11 o.str(),
12 "StepperMotor::dev_read_direction");
13 }
14
15 return direction[axis];
16 }
17
18
19 bool StepperMotor::direct_cmd_allowed(const CORBA::Any &in_data)
20 {
21 INFO_STREAM << "In direct_cmd_allowed() method" << endl;
22
23 return true;
24 }
25

Line 1-16 : The dev_read_direction method
Line 5-12 : Throw exception to client if the received axis number is out of range
Line 7 : A TangoSys_OMemStream is used as stream. The TangoSys_OMemStream has been defined

in improve portability across platform. For Unix like operating system, it is a ostrtream type. For operating
system with a full implementation of the standard library, it is a ostringstream type.

Line 19-24 : The direct_cmd_allowed method. The command input data is passed to this method in
case of it is needed to take the decision. This data is still packed into the CORBA Any object.

6.4.11.4 The methods used for the Position attribute

To enable reading of attributes, the StepperMotor class must re-define two or three methods called read_attr_hardware(),
read_<Attribute_name>() and if necessary a method called

CHAPTER 6. WRITING A TANGO DEVICE SERVER 136

is_<Attribute_name>_allowed(). The aim of the first one is to read the hardware. It will be called only
once at the beginning of each read_attribute CORBA call. The second method aim is to build the ex-
act data for the wanted attribute and to store this value into the Attribute object. Special care has been
taken in order to minimize the number of data copy and allocation. The data passed to the Attribute ob-
ject as attribute value is passed using pointers. It must be allocated by the method5 and the Attribute
object will not free this memory. Data members called attr_<Attribute_name>_read are foreseen for this
usage. The read_attr_hardware() method receives a vector of long which are indexes into the main at-
tributes vector of the attributes to be read. The read_Position() method receives a reference to the Attribute
object. The third method (is_Position_allowed()) aim is to allow or dis-allow, the attribute reading. In
some cases, some attributes can be read only if some conditions are met. If this method returns true, the
read_<Attribute_name>() method will be called. Otherwise, an error will be generated for the attribute.
This method receives one argument which is an emumeration describing the attribute request type (read or
write). In our example, the reading of the Position attribute is allowed only if the device state is ON.

1 void StepperMotor::read_attr_hardware(vector<long> &attr_list)
2 {
3 INFO_STREAM << "In read_attr_hardware for " << attr_list.size();
4 INFO_STREAM << " attribute(s)" << endl;
5
6 for (long i = 0;i < attr_list.size();i++)
7 {
8 string attr_name;
9 attr_name = dev_attr->get_attr_by_ind(attr_list[i]).get_name();

10
11 if (attr_name == "Position")
12 {
13 attr_Position_read = &(position[0]);
14 }
15 else if (attr_name == "Direction")
16 {
17 attr_Direction_read = &(direction[0]);
18 }
19 }
20 }
21
22 void read_Position(Tango::Attribute &att)
23 {
24 att.set_value(attr_Position_read);
25 }
26
27 bool is_Position_allowed(Tango::AttReqType req)
28 {
29 if (req == Tango::WRITE_REQ)
30 return false;
31 else
32 {
33 if (get_state() == Tango::ON)
34 return true;
35 else
36 return false;

5It can also be data declared as object data members or memory declared as static

CHAPTER 6. WRITING A TANGO DEVICE SERVER 137

37 }
38 }

Line 6 : A loop on each attribute to be read
Line 9 : Get attribute name
Line 11 : Test on attribute name
Line 13 : Read hardware (pretty simple in our case)
Line 24 : Set attribute value in Attribute object using the set_value() method. This method will also

initializes the attribute quality factor to Tango::ATTR_VALID if no alarm level are defined and will set the
attribute returned date. It is also possible to use a method called set_value_date_quality() which allows the
user to set the attribute quality factor as well as the attribute date.

Line 33 : Test on device state

6.4.11.5 The methods used for the SetPosition attribute

To enable writing of attributes, the StepperMotor class must re-define one or two methods called write_<Attribute_name>()
and if necessary a method called is_<Attribute_name>_allowed(). The aim of the first one is to write the
hardware. The write_Position() method receives a reference to the WAttribute object. The value to write
is in this WAttribute object. The third method (is_Position_allowed()) aim is to allow or dis-allow, the at-
tribute writing. In some cases, some attributes can be write only if some conditions are met. If this method
returns true, the write_<Attribute_name>() method will be called. Otherwise, an error will be generated
for the attribute. This method receives one argument which is an emumeration describing the attribute
request type (read or write). For read/write attribute, this method is the same for reading and writing. The
input argument value makes the difference.

For our example, it is always possible to write the SetPosition attribute. Therefore, the StepperMotor
class only defines a write_SetPosition() method.

1 void StepperMotor::write_SetPosition(Tango::WAttribute &att)
2 {
3 att.get_write_value(sttr_SetPosition_write);
4
5 DEBUG_STREAM << "Attribute SetPosition value = ";
6 DEBUG_STREAM << attr_SetPosition_write << endl;
7
8 position[0] = attr_SetPosition_write;
9 }
10
11 void StepperMotor::write_attr_hardware(vector<long> &attr_list)
12 {
13
14 }

Line 3 : Retrieve new attribute value
Line 5-6 : Send some messages using Tango Logging system
Line 8 : Set the hardware (pretty simple in our case)
Line 11 - 14: The write_attr_hardware() method.

In our case, we don’t have to do anything in the write_attr_hardware() method. It is coded here just
for educational purpose. When itś not needed, this method has a default implementation in the Tango base
class and it is not mandatory to declare and defin it in your own Tango class

CHAPTER 6. WRITING A TANGO DEVICE SERVER 138

6.4.11.6 Retrieving device properties

Retrieving properties is fairly simple with the use of the database object. Each Tango device is an aggregate
with a DbDevice object (see figure 6.1). This has been grouped in a method called get_device_properties().
The classes and methods of the Dbxxx objects are described in the Tango API documentation.

1 void DocDs::get_device_property()
2 {
3 Tango::DbData data;
4 data.push_back(DbDatum("Max"));
5 data.push_back(DbDatum("Min"));
6
7 get_db_device()->get_property(data);
8
9 if (data[0].is_empty()==false)

10 data[0] >> max;
11 if (data[1].is_empty()==false)
12 data[1] >> min;
13 }

Line 4-5 : Two DbDatum (one per property) are stored into a DbData object
Line 7 : Call the database to retrieve properties value
Line 9-10 : If the Max property is defined in the database, extract its value from the DbDatum object

and store it in a device data member
Line 11-12 : If the Min property is defined in the database, extract its value from the DbDatum object

and store it in a device data member

6.4.11.7 The remaining methods

The remaining methods are the dev_state, dev_status, always_executed_hook, dev_read_position and read_Direction()
methods. The dev_state method parameters are fixed. It does not receive any input parameter and must
return a Tango_DevState data type. The dev_status parameters are also fixed. It does not receive any input
parameter and must return a Tango string. The always_executed_hook receives nothing and return nothing.
The dev_read_position method input parameter is the motor number as a long and the returned parameter
is the motor position also as a long data type. The read_Direction() method is the method for reading the
Direction attribute.

1 DevLong StepperMotor::dev_read_position(DevLong axis)
2 {
3
4 if (axis < 0 || axis > AGSM_MAX_MOTORS)
5 {
6 WARNING_STREAM << "Steppermotor::dev_read_position(): axis out of range !";
7 WARNING_STREAM << endl;
8
9 TangoSys_OMemStream o;

10
11 o << "Axis number " << axis << " out of range" << ends;
12 throw_exception("StepperMotor_OutOfRange",
13 o.str(),

CHAPTER 6. WRITING A TANGO DEVICE SERVER 139

14 "StepperMotor::dev_read_position");
15 }
16
17 return position[axis];
18 }
19
20 void always_executed_hook()
21 {
22 INFO_STREAM << "In the always_executed_hook method << endl;
23 }
24
25 Tango_DevState StepperMotor::dev_state()
26 {
27 INFO_STREAM << "In StepperMotor state command" << endl;
28 return DeviceImpl::dev_state();
29 }
30
31 Tango_DevString StepperMotor::dev_status()
32 {
33 INFO_STREAM << "In StepperMotor status command" << endl;
34 return DeviceImpl::dev_status();
35 }
36
37 void read_Direction(Tango::Attribute att)
38 {
39 att.set_value(attr_Direction_read);
40 }

Line 1-18 : The dev_read_position method
Line 6-14 : Throw exception to client if the received axis number is out of range
Line 9 : A TangoSys_OMemStream is used as stream. The TangoSys_OMemStream has been defined

in improve portability across platform. For Unix like operating system, it is a ostrtream type. For operating
system with a full implementation of the standard library, it is a ostringstream type.

Line 20-23 : The always_executed_hook method. It does nothing. It has been included here only as
pedagogic usage.

Line 25-29 : The dev_state method. It does exactly what the default dev_state does. It has been
included here only as pedagogic usage

Line 31-35 : The dev_status method. It does exactly what the default dev_status does. It has been
included here only as pedagogic usage

Line 37-40 : The read_Direction method. Simply set the Attribute object internal value

6.5 Device server under Windows
Two kind of programs are available under Windows. These kinds of programs are called console application
or Windows application. A console application is started from a MS-DOS window and is very similar to
classical UNIX program. A Windows application is most of the time not started from a MS-DOS window
and is generally a graphical application without standard input/output. Writing a device server in a console
application is straight forward following the rules described in the previous sub-chapters. Writing a device
server in a Windows application needs some changes detailed in the following sub-chapters.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 140

Figure 6.7: Tango device server main window

6.5.1 The Tango device server graphical interface
Within the Windows operating system, most of the running application has a window user interface. This
is also true for the Windows Tango device server. Using or not this interface is up to the device server
programmer. The choice is done with an argument to the server_init() method of the Tango::Util class.
This interface is pretty simple and is based on three windows which are :

• The device server main window

• The device server console window

• The device server help window

6.5.1.1 The device server main window

This window looks like :

Four menus are available in this window. The File menu allows the user to exit the device server. The
View menu allows you to display/hide the device server console window. The Debug menu allows the user
to change the server output verbose level. All the outputs goes to the console window even if it is hidden.
The Help menu displays the help window. The device server name is displayed in the window title. The
text displayed at the bottom of the window has a default value (the one displayed in this window dump)
but may be changed by the device server programmer using the set_main_window_text() method of the
Tango::Util class. If used, this method must be called prior to the call of the server_init() method. Refer to
[8] for a complete description of this method.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 141

6.5.1.2 The console window

This window looks like :

It simply displays all the logging message when a console target is used in the device server.

6.5.1.3 The help window

This window looks like :

This window displays

• The device server name

• The Tango library release

• The Tango IDL definition release

• The device server release. The device server programmer may set this release number using the
set_server_version() method of the Tango::Util class. If used, this must be done prior to the call of
the server_init() method. If the set_server_version() method is not used, x.y is displays as version
number. Refer to [8] for a complete description of this method.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 142

6.5.2 MFC device server
There is no main function within a classical MFC program. Most of the time, your application is rep-
resented by one instance of a C++ class which inherits from the MFC CWinApp class. This CWinApp
class has several methods that you may overload in your application class. For a device server to run cor-
rectly, you must overload two methods of the CWinApp class. These methods are the InitInstance() and
ExitInstance() methods. The rule of these methods is obvious following their names.

Remember that if the Tango device server graphical user interface is used, you must link your
device server with the Tango windows resource file. This is done by adding the Tango resource file to
the Project Settings/Link/Input/Object, library modules window in VC++.

6.5.2.1 The InitInstance method

The code to be added here is the equivalent of the code written in a classical main() function. Don’t forget
to add the tango.h file in the list of included files.

1 BOOL FluidsApp::InitInstance()
2 {
3 AfxEnableControlContainer();
4
5 // Standard initialization
6 // If you are not using these features and wish to reduce the size
7 // of your final executable, you should remove from the following
8 // the specific initialization routines you do not need.
9

10 #ifdef _AFXDLL
11 Enable3dControls(); // Call this when using MFC in a shared DLL
12 #else
13 Enable3dControlsStatic(); // Call this when linking to MFC statically
14 #endif
15 Tango::Util *tg;
16 try
17 {
18
19 tg = Tango::Util::init(m_hInstance,m_nCmdShow);
20
21 tg->server_init(true);
22
23 tg->server_run();
24
25 }
26 catch (bad_alloc)
27 {
28 MessageBox((HWND)NULL,"Memory error","Command line",MB_ICONSTOP);
29 return(FALSE);
30 }
31 catch (Tango::DevFailed &e)
32 {
33 MessageBox((HWND)NULL„e.errors[0].desc.in(),"Command line",MB_ICONSTOP);
34 return(FALSE);
35 }
36 catch (CORBA::Exception &)
37 {

CHAPTER 6. WRITING A TANGO DEVICE SERVER 143

38 MessageBox((HWND)NULL,"Exception CORBA","Command line",MB_ICONSTOP);
39 return(FALSE);
40 }
41
42 m_pMainWnd = new CWnd;
43 m_pMainWnd->Attach(tg->get_ds_main_window());
44
45 return TRUE;
46 }

Line 19 : Initialise Tango system. This method also analises the argument used in command line.
Line 21 : Create Tango classes requesting the Tango Windows graphical interface to be used
Line 23 : Start Network listener. Note that under NT, this call returns in the contrary of UNIX like

operating system.
Line 26-30 : Display a message box in case of memory allocation error and leave method with a return

value set to false in order to stop the process
Line 31-35 : Display a message box in case of error during server initialization phase.
Line 36-40 : Display a message box in case of error other than memory allocation. Leave method with

a return value set to false in order to stop the process.
Line 37-38 : Create a MFC main window and attach the Tango graphical interface main window to this

MFC window.

6.5.2.2 The ExitInstance method

This method is called when the application is stopped. For Tango device server, its rule is to destroy the
Tango::Util singleton if this one has been correctly constructed.

1 int FluidsApp::ExitInstance()
2 {
3 bool del = true;
4
5 try
6 {
7 Tango::Util *tg = Tango::Util::instance();
8 }
9 catch(Tango::DevFailed)

10 {
11 del = false;
12 }
13
14 if (del == true)
15 delete (Tango::Util::instance());
16
17 return CWinApp::ExitInstance();
18 }

Line 7 : Try to retrieve the Tango::Util singleton. If this one has not been constructed correctly, this
call will throw an exception.

Line 9-12 : Catch the exception in case of incomplete Tango::Util singleton construction

CHAPTER 6. WRITING A TANGO DEVICE SERVER 144

Line 14-15 : Delete the Tango::Util singleton. This will unregister the Tango device server from the
Tango database.

Line 17 : Execute the ExitInstance method of the CWinApp class.
If you don’t want to use the Tango device server graphical interface, do not pass any parameter to the

server_init() method and instead of the code display in lines 37 and 38 in the previous example of the
InitInstance() method, use your own code to initialize your own application.

6.5.2.3 Example of how to build a Windows device server MFC based

This sub-chapter gives an example of what it is needed to do to build a MFC Windows device server. Rather
than being a list of actions to strictly follow, this is some general rules of how using VC++ to build a Tango
device server using MFC.

1. Create your device server using Pogo. For a class named MyMotor, the following files will be needed
: class_factory.cpp, MyMotorClass.h, MyMotorClass.cpp, MyMotor.h and MyMotor.cpp.

2. On a Windows computer running VC++, create a new project of type “MFC app Wizard (exe)” using
static MFC libs. Ask for a dialog based project without ActiveX controls.

3. Copy the five files generated by Pogo to the Windows computer and add them to your project

4. Remove the dialog window files (xxxDlg.cpp and xxxDlg.h), the Resource include file and the re-
source script file from your project

5. Add #include <stdafx.h> as first line of the include files list in class_factory.cpp, MyMotorClass.cpp
and MyMotor.cpp file. Also add your own directory and the Tango include directory to the project
pre-compiler include directories list.

6. Enable RTTI in your project settings (see chapter 6.6.1.2)

7. Change your application class:

(a) Add the definition of an ExitInstance method in the declaration file. (xxx.h file)

(b) Remove the include of the dialog window file in the xxx.cpp file and add an include of the
Tango master include files (tango.h)

(c) Replace the InitInstance() method as described in previous sub-chapter. (xx.cpp file)

(d) Add an ExitInstance() method as described in previous sub-chapter (xxx.cpp file)

8. Add all the libraries needed to compile a Tango device server (see chapter 6.6.1.2) and the Tango
resource file to the linker Object/Libraries modules.

6.5.3 Win32 application
Even if it is more natural to use the C++ structure of the MFC class to write a Tango device server, it
is possible to write a device server as a Win32 application. Instead of having a main() function as the
application entry point, the operating system, provides a WinMain() function as the application entry point.
Some code must be added to this WinMain function in order to support Tango device server. Don’t forget
to add the tango.h file in the list of included files. If you are using the project files generated by Pogo,
don’t forget to change the linker SUBSYSTEM option to "Windows" (Under Linker/System in the project
properties window).

CHAPTER 6. WRITING A TANGO DEVICE SERVER 145

1 int APIENTRY WinMain(HINSTANCE hInstance,
2 HINSTANCE hPrevInstance,
3 LPSTR lpCmdLine,
4 int nCmdShow)
5 {
6 MSG msg;
7 Tango::Util *tg;
8
9 try

10 {
11 tg = Tango::Util::init(hInstance,nCmdShow);
12
13 string txt;
14 txt = "Blabla first line\n";
15 txt = txt + "Blabla second line\n";
16 txt = txt + "Blabla third line\n";
17 tg->set_main_window_text(txt);
18 tg->set_server_version("2.2");
19
20 tg->server_init(true);
21
22 tg->server_run();
23
24 }
25 catch (bad_alloc)
26 {
27 MessageBox((HWND)NULL,"Memory error","Command line",MB_ICONSTOP);
28 return (FALSE);
29 }
30 catch (Tango::DevFailed &e)
31 {
32 MessageBox((HWND)NULL,e.errors[0].desc.in(),"Command line",MB_ICONSTOP);
33 return (FALSE);
34 }
35 catch (CORBA::Exception &)
36 {
37 MessageBox((HWND)NULL,"Exception CORBA","Command line",MB_ICONSTOP);
38 return(FALSE);
39 }
40
41 while (GetMessage(&msg, NULL, 0, 0))
42 {
43 TranslateMessage(&msg);
44 DispatchMessage(&msg);
45 }
46
47 delete tg;
48
49 return msg.wParam;
50 }

Line 11 : Create the Tango::Util singleton

CHAPTER 6. WRITING A TANGO DEVICE SERVER 146

Line 13-18 : Set parameters for the graphical interface
Line 20 : Initialize Tango device server requesting the display of the graphical interface
Line 22 : Run the device server
Line 25-39 : Display a message box for all the kinds of error during Tango device server initialization

phase and exit WinMain function.
Line 41-45 : The Windows message loop
Line 47 : Delete the Tango::Util singleton. This class destructor unregisters the device server from the

Tango database.
Remember that if the Tango device server graphical user interface is used, you must add the

Tango windows resource file to your project.
If you don’t want to use the tango device server graphical user interface, do not use any parameter in

the call of the server_init() method and do not link your device server with the Tango Windows resource
file.

6.5.4 Device server as service
With Windows, if you want to have processes which survive to logoff sequence and/or are automatically
started during computer startup sequence, you have to write them as service. It is possible to write Tango
device server as service. You need to

1. Write a class which inherits from a pre-written Tango class called NTService. This class must have
a start method.

2. Write a main function following a predefined skeleton.

6.5.4.1 The service class

It must inherits from the NTService class and defines a start method. The NTService class must be con-
structed with one argument which is the device server executable name. The start method has three argu-
ments which are the number of arguments passed to the method, the argument list and a reference to an
object used to log info in the NT event system. The first two args must be passed to the Tango::Util::init
method and the last one is used to log error or info messages. The class definition file looks like

1 #include <tango.h>
2 #include <ntservice.h>
3
4 class MYService: public Tango::NTService
5 {
6 public:
7 MYService(char *);
8
9 void start(int,char **,Tango::NTEventLogger *);

10 };

Line 1-2 : Some include files
Line 4 : The MYService class inherits from Tango::NTService class
Line 7 : Constructor with one parameter
Line 9 : The start() method

The class source code looks like

CHAPTER 6. WRITING A TANGO DEVICE SERVER 147

1 #include <myservice.h>
2 #include <tango.h>
3
4 using namespace std;
5
6 MYService::MYService(char *exec_name):NTService(exec_name)
7 {
8 }
9

10 void MYService::start(int argc,char **argv,Tango::NTEventLogger *logger)
11 {
12 Tango::Util *tg;
13 try
14 {
15 Tango::Util::_service = true;
16
17 tg = Tango::Util::init(argc,argv);
18
19 tg->server_init();
20
21 tg->server_run();
22 }
23 catch (bad_alloc)
24 {
25 logger->error("Can’t allocate memory to store device object");
26 }
27 catch (Tango::DevFailed &e)
28 {
29 logger->error(e.errors[0].desc.in());
30 }
31 catch (CORBA::Exception &)
32 {
33 logger->error("CORBA Exception");
34 }
35 }

Line 6-8 : The MYService class constructor code.
Line 15 : Set to true the _service static variable of the Tango::Util class.
Line 17-21 : Classical Tango device server startup code
Line 23-34 : Exception management. Please, note that within a service. it is not possible to print data

on a console. This method receives a reference to a logger object. This object sends all its output to the
Windows event system. It is used to send messages when an exception has occurred.

6.5.4.2 The main function

The main function is used to create one instance of the class describing the service, to check the service
option and to run the service. The code looks like :

1 #include <tango.h>
2 #include <MYService.h>
3

CHAPTER 6. WRITING A TANGO DEVICE SERVER 148

4 using namespace std;
5
6
7 int main(int argc,char *argv[])
8 {
9 MYService service(argv[0]);

10
11 int ret;
12 if ((ret = service.options(argc,argv)) <= 0)
13 return ret;
14
15 service.run(argc,argv);
16
17 return 0;
18 }

Line 9 : Create one instance of the MYService class with the executable name as parameter
Line 12 : Check service option with the options() method inherited from the NTService class.
Line 15 : Run the service. The run() method is inherited from the NTService class. This method will

after some NT initialization sequence execute the user start() method.

6.5.4.3 Service options and messages

When a Tango device server is written as a Windows service, it supports several new options. These option
are linked to Windows service usage.

Before it can be used, a service must be installed. A name and a title is associated to each service. For
Tango device server used as service, the service name is build from the executable name followed by the
underscore character and the instance name. For example, a device server service executable file named
“opc” and started with “fluids” as instance name, will be named “opc_fluids”. The title string is built from
the service executable name followed by the sentence “Tango device server” and the instance name between
parenthesis. In the previous example, the service title will be “opc Tango device server (fluids)”. Once a
service is installed, you can configure it with the “Services” application of the control panel. Services title
are displayed by this application and allow the user to select one specific service. Once a service is selected,
it is possible to start/stop it and to configure its startup type as manual (with the Services application) or
as automatic. When the automatic mode is chosen, the service starts when the computer is started. In this
case, the service executable code must resides on the computer local disk.

Tango device server logs message in the Windows event system when the service is started or stopped.
You can see these messages with the “Event Viewer” application (Start->Programs->Administrative tools-
>Event Viewer) and choose the Application events.

The new options are -i, -s, -u, -h and -d.

• -i : Install the service

• -s : Install the service and choose the automatic startup mode

• -u : Un-install the service

• -dbg : Run in console mode to debug service. The service must have been installed prior to used it.
The classical -v device server option can be used with the -d option.

On the command line, all these options must be used after the device server instance name (“opc fluids -i”
to install the service, “opc fluids -u” to un-install the service, “opc fluids -v -d” to debug the service)

CHAPTER 6. WRITING A TANGO DEVICE SERVER 149

6.5.4.4 Tango device server using MFC as Windows service

If your Tango device server uses MFC and must be written as a Windows NT service, follow these rules :

• Don’t forget to add the stdafx.h file as the first file included in all the source files making the project.

• Comment out the definition of VC_EXTRALEAN in the stdafx.h file.

• Change the pre-processor definitions, replace _WINDOWS by _CONSOLE

• Add the /SUBSYSTEM:CONSOLE option in the linker options window of the project settings.

• Add a call to initialize the MFC (AfxWinInit()) in the service main function

1 int main(int argc,char *argv[])
2 {
3 if (!AfxWinInit(::GetModuleHandle(NULL),NULL,::GetCommandLine(),0))
4 {
5 cerr << "Can’t initialise MFC !" << endl;
6 return -1;
7 }
8
9 service serv(argv[0]);

10
11 int ret;
12 if ((ret = serv.options(argc,argv)) <= 0)
13 return ret;
14
15 serv.run(argc,argv);
16
17 return 0;
18 }

Line 3 : The MFC classes are initialized with the AfxWinInit() function call.

6.6 Compiling, linking and executing a TANGO device server pro-
cess

6.6.1 Compiling and linking a C++ device server
6.6.1.1 On UNIX like operating system

6.6.1.1.1 Supported development tools The supported compiler for Linux is gcc release 3.3 and above.
Please, note that to debug a Tango device server running under Linux, gdb release 7 and above is needed
in order to correctly handle threads.

6.6.1.1.2 Compiling TANGO for C++ uses omniORB (release 4) as underlying CORBA Object Re-
quest Broker [11] and starting with Tango 8, the ZMQ library. To compile a TANGO device server, your
include search path must be set to :

• The omniORB include directory

• The ZMQ include directory

CHAPTER 6. WRITING A TANGO DEVICE SERVER 150

• The Tango include directory

• Your development directory

6.6.1.1.3 Linking To build a running device server process, you need to link your code with several
libraries. Nine of them are always the same whatever the operating system used is. These nine libraries
are:

• The Tango libraries (called libtango and liblog4tango)

• Three omniORB package libraries (called libomniORB4, libomniDynamic4 and libCOS4)

• The omniORB threading library (called libomnithread)

• The ZMQ library (callled libzmq)

On top of that, you need additional libraries depending on the operating system :

• For Linux, add the posix thread library (libpthread)

The following table summarizes the necessary options to compile a Tango C++ device server. Please, note
that starting with Tango 8 and for gcc release 4.3 and later, some C++11 code has been used. This requires
the compiler option "-std=c++0x". Obviously, the options -I and -L must be updated to reflect your file
system organization.

Operating system Compiling option Linking option

Linux gcc -D_REENTRANT -std=c++0x -I..
-L.. -ltango -llog4tango -lomniORB4 -
lomniDynamic4 -lCOS4 -lomnithread -lzmq
-lpthread

The following is an example of a Makefile for Linux. Obviously, all the paths are set to the ESRF file
system structure.

1 #
2 # Makefile to generate a Tango server
3 #
4
5 CC = c++
6 BIN_DIR = ubuntu1104
7 TANGO_HOME = /segfs/tango
8
9 INCLUDE_DIRS = -I $(TANGO_HOME)/include/$(BIN_DIR) -I .
10
11
12 LIB_DIRS = -L $(TANGO_HOME)/lib/$(BIN_DIR)
13
14
15 CXXFLAGS = -D_REENTRANT -std=c++0x $(INCLUDE_DIRS)
16 LFLAGS = $(LIB_DIRS) -ltango \
17 -llog4tango \

CHAPTER 6. WRITING A TANGO DEVICE SERVER 151

18 -lomniORB4 \
19 -lomniDynamic4 \
20 -lCOS4 \
21 -lomnithread \
22 -lzmq \
23 -lpthread
24
25
26 SVC_OBJS = main.o \
27 ClassFactory.o \
28 SteppermotorClass.o \
29 Steppermotor.o \
30 SteppermotorStateMachine.o
31
32
33 .SUFFIXES: .o .cpp
34 .cpp.o:
35 $(CC) $(CXXFLAGS) -c $<
36
37
38 all: StepperMotor
39
40 StepperMotor: $(SVC_OBJS)
41 $(CC) $(SVC_OBJS) -o $(BIN_DIR)/StepperMotor $(LFLAGS)
42
43 clean:
44 rm -f *.o core

Line 5-7 : Define Makefile macros
Line 9-10 : Set the include file search path
Line 12 : Set the linker library search path
Line 15 : The compiler option setting
Line 16-23 : The linker option setting
Line 26-30 : All the object files needed to build the executable
Line 33-35 : Define rules to generate object files
Line 38 : Define a “all” dependency
Line 40-41 : How to generate the StepperMotor device server executable
Line 43-44 : Define a “clean” dependency

6.6.1.2 On Windows using Visual Studio

Supported Windows compiler for Tango is Visual Studio 2008 (VC 9), Visual Studio 2010 (VC10) and
Visual Studio 2013 (VC12). Most problems in building a Windows device server revolve around the /M
compiler switch family. This switch family controls which run-time library names are embedded in the
object files, and consequently which libraries are used during linking. Attempt to mix and match compiler
settings and libraries can cause link error and even if successful, may produce undefined run-time behavior.

Selecting the correct /M switch in Visual Studio is done through a dialog box. To open this dialog
box, click on the “Project” menu (once the correct project is selected in the Solution Explorer window)
and select the “Properties” option. To change the compiler switch open the “C/C++” tree and select “Code
Generation”. The following options are supported.

• Multithreaded = /MT

CHAPTER 6. WRITING A TANGO DEVICE SERVER 152

• Multithreaded DLL = /MD

• Debug Multithreaded = /MTd

• Debug Multithreaded DLL = /MDd

Compiling a file with a value of the /M switch family will impose at link phase the use of libraries also
compiled with the same value of the /M switch family. If you compiled your source code with the /MT
option (Multithreaded), you must link it with libraries also compiled with the /MT option.

On both 32 or 64 bits computer, omniORB and TANGO relies on the preprocessor identifier WIN32
being defined in order to configure itself. If you build an application using static libraries (option /MT or
/MTd), you must add _WINSTATIC to the list of the preprocessor identifiers. If you build an application
using DLL (option /MD or /MDd), you must add LOG4TANGO_HAS_DLL and TANGO_HAS_DLL
to the list of preprocessor identifiers.

To build a running device server process, you need to link your code with several libraries on top of the
Windows libraries. These libraries are:

• The Tango libraries (called tango.lib and log4tango.lib or tangod.lib and log4tangod.lib for debug
mode)

• The omniORB package libraries (see next table)

Compile mode Libraries
Debug Multithreaded omniORB4d.lib, omniDynamic4d.lib, omnithreadd.lib and COS4d.lib

Multithreaded omniORB4.lib, omniDynamic4.lib, omnithread.lib and COS4.lib
Debug Multithreaded DLL omniORB420_rtd.lib, omniDynamic420_rtd.lib, omnithread40_rtd.lib,

and COS420_rtd.lib
Multithreaded DLL omniORB420_rt.lib, omniDynamic420_rt.lib, omnithread40_rt.lib

and COS420_rt.lib

• The ZMQ library (zmq.lib or zmqd.lib for debug mode)

• Windows network libraries (mswsock.lib and ws2_32.lib)

• Windows graphic library (comctl32.lib)

To add these libraries in Visual Studio, open the project property pages dialog box and open the “Link”
tree. Select “Input” and add these library names to the list of library in the “Additional Dependencies” box.

The “Win32 Debug” or “Win32 Release” configuration that you change within the "Configuration Man-
ager" window changes the /M switch compiler. For instance, if you select a “Win32 Debug” configuration
in a "non-DLL" project, use the omniORB4d.lib, omniDynamic4d.lib and omnithreadd.lib libraries plus
the tangod.lib, log4tangod.lib and zmqd.lib libraries. If you select the “Win32 Release” configuration, use
the omniORB4.lib, omniDynamic4.lib and omnithread.lib libraries plus the tango.lib, log4tango.lib and
zmq.lib libraries.

WARNING: In some cases, the Microsoft Visual Studio wizard used during project creation generates
one include file called Stdafx.h. If this file itself includes windows.h file, you have to add the preprocessor
macro _WIN32_WINNT and set it to 0x0500.

6.6.2 Running a C++ device server
To run a C++ Tango device server, you must set an environment variable. This environment variable is
called TANGO_HOST and has a fixed syntax which is

CHAPTER 6. WRITING A TANGO DEVICE SERVER 153

TANGO_HOST=<host>:<port>

The host field is the host name where the TANGO database device server is running. The port field is the
port number on which this server is listening. For instance, a valid syntax is TANGO_HOST=dumela:10000.
For UNIX like operating system, setting environment variable is possible with the export or setenv com-
mand depending on the shell used. For Windows, setting environment variable is possible with the “Envi-
ronment” tab of the “System” application in the control panel.

If you need to start a Tango device server on a pre-defined port (For Tango database device server or
device server without database usage), you must use one of the underlying ORB option endPoint like

myserver myinstance_name -ORBendPoint giop:tcp::<port number>

6.7 Advanced programming techniques
The basic techniques for implementing device server pattern are required by each device server program-
mer. In certain situations, it is however necessary to do things out of the ordinary. This chapter will look
into programming techniques which permit the device server serve more than simply the network.

6.7.1 Receiving signal
It is UNSAFE to use any CORBA call in a signal handler. It is also UNSAFE to use some system calls
in a signal handler. Tango device server solved this problem by using threads. A specific thread is started
to handle signals. Therefore, every Tango device server is automatically a threaded process. This allows
the programmer to write the code which must be executed when a signal is received as ordinary code. All
device server threads masks all signals except the specific signal thread which is permanently waiting for
signal. If a signal is sent to a device server process, only the signal thread will receive it because it is the
single thread which does not mask signals.

Nevertheless, signal management is not trivial and some care have to be taken. The signal management
differs from operating system to operating system. It is not recommended that you install your own signal
routine using any of the signal routines provided by the operating system calls or library.

6.7.1.1 Using signal

It is possible for C++ device server to receive signals from drivers or other processes. The TDSOM sup-
ports receiving signal at two levels: the device level and the class level. Supporting signal at the device
level means that it is possible to specify interest into receiving signal on a device basis. This feature is
supported via three methods defined in the DeviceImpl class. These methods are called register_signal,
unregister_signal and signal_handler.

The register_signal method has one parameter which is the signal number. This method informs the
device server signal system that the device want to be informed when the signal passed as parameter is
received by the process. There is a special case for Linux as explained in the previous sub-chapter. It is
possible to register a signal to be executed in the a signal handler context (with all its restrictions). This is
done with a second parameter to this register_signal method. This second parameter is simply a boolean
data. If it is true, the signal_handler will be executed in a signal handler context in the device server main
thread. A default value (false) has been defined for this parameter.

The unregister_signal method also have an input parameter which is the signal number. This method
removes the device from the list of object which should be warned when the signal is received by the
process.

The signal_handler method is the method which is triggered when a signal is received if the corre-
sponding register_signal has been executed. This method is defined as virtual and can be redefined by the
user. It has one input argument which is the signal number.

The same three methods also exist in the DeviceClass class. Their action and their usage are similar
to the DeviceImpl class methods. Installing a signal at the class level does not mean that all the device
belonging to this class will receive the signal. This only means that the signal_handler method of the

CHAPTER 6. WRITING A TANGO DEVICE SERVER 154

DeviceClass instance will be executed. This is useful if an action has to be executed once for a class of
devices when a signal is received.

The following code is an example with our stepper motor device server configured via the database to
serve three motors. These motors have the following names : id04/motor/01, id04/motor/02 and id04/motor/03.
The signal SIGALRM (alarm signal) must be propagated only to the motor number 2 (id04/motor/02)

1 void StepperMotor::init_device()
2 {
3 cout << "StepperMotor::StepperMotor() create motor " << dev_name << endl;
4
5 long i;
6
7 for (i=0; i< AGSM_MAX_MOTORS; i++)
8 {
9 axis[i] = 0;
10 position[i] = 0;
11 direction[i] = 0;
12 }
13
14 if (dev_name == "id04/motor/02")
15 register_signal(SIGALRM);
16 }
17
18 StepperMotor::~StepperMotor()
19 {
20 unregister_signal(SIGALRM);
21 }
22
23 void StepperMotor::signal_handler(long signo)
24 {
25 INFO_STREAM << "Inside signal handler for signal " << signo << endl;
26
27 // Do what you want here
28
29 }

The init_device method is modified.
Line 14-15 : The device name is checked and if it is the correct name, the device is registered in the list

of device wanted to receive the SIGALARM signal.
The destructor is also modified
Line 20 : Unregister the device from the list of devices which should receives the SIGALRM signal.

Note that unregister a signal for a device which has not previously registered its interest for this signal does
nothing.

The signal_handler method is redefined
Line 25 : Print signal number
Line 27 : Do what you have to do when the signal SIGALRM is received.
If all devices must be warned when the device server process receives the signal SIGALRM, removes

line 14 in the init_device method.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 155

6.7.1.2 Exiting a device server gracefully

A device server has to exit gracefully by unregistering itself from the database. The necessary action to
gracefully exit are automatically executed on reception of the following signal :

• SIGINT, SIGTERM and SIGQUIT for device server running on Linux

• SIGINT, SIGTERM, SIGABRT and SIGBREAK for device server running on Windows

This does not prevents device server to also register interest at device or class levels for those signals. The
user installed signal_handler method will first be called before the graceful exit.

6.7.2 Inheriting
This sub-chapter details how it is possible to inherit from an existing device pattern implementation. As
the device pattern includes more than a single class, inheriting from an existing device pattern needs some
explanations.

Let us suppose that the existing device pattern implementation is for devices of class A. This means that
classes A and AClass already exists plus classes for all commands offered by device of class A. One new
device pattern implementation for device of class B must be written with all the features offered by class A
plus some new one. This is easily done with the inheritance. Writing a device pattern implementation for
device of class B which inherits from device of class A means :

• Write the BClass class

• Write the B class

• Write B class specific commands

• Eventually redefine A class commands

The miscellaneous code fragments given below detail only what has to be updated to support device pattern
inheritance

6.7.2.1 Writing the BClass

As you can guess, BClass has to inherit from AClass. The command_factory method must also be adapted.

1 namespace B
2 {
3
4 class BClass : public A::AClass
5 {
6
7 }
8
9 BClass::command_factory()

10 {
11 A::AClass::command_factory();
12
13 command_list.push_back(....);
14 }
15
16 } /* End of B namespace */

CHAPTER 6. WRITING A TANGO DEVICE SERVER 156

Line 1 : Open the B namespace
Line 4 : BClass inherits from AClass which is defined in the A namespace.
Line 11 : Only the command_factory method of the BClass will be called at start-up. To create the

AClass commands, the command_factory method of the AClass must also be executed. This is the reason
of the line

Line 13 : Create BClass commands

6.7.2.2 Writing the B class

As you can guess, B has to inherits from A.

1 namespace B
2 {
3
4 class B : public A:A
5 {
6
7 };
8
9 B::B(Tango::DeviceClass *cl,const char *s):A::A(cl,s)

10 {
11
12 init_device();
13 }
14
15 void B::init_device()
16 {
17
18 }
19
20 } /* End of B namespace */

Line 1 : Open the B namespace.
Line 4 : B inherits from A which is defined in the A namespace
Line 9 : The B constructor calls the right A constructor

6.7.2.3 Writing B class specific command

Noting special here. Write these classes as usual

6.7.2.4 Redefining A class command

It is possible to redefine a command which already exist in class A only if the command is created using
the inheritance model (but keeping its input and output argument types). The method which really execute
the class A command is a method implemented in the A class. This method must be defined as virtual. In
class B, you can redefine the method executing the command and implement it following the needs of the
B class.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 157

6.7.3 Using another device pattern implementation within the same server
It is often necessary that inside the same device server, a method executing a command needs a command
of another class to be executed. For instance, a device pattern implementation for a device driven by a
serial line class can use the command offered by a serial line class embedded within the same device server
process. To execute one of the command (or any other CORBA operations/attributes) of the serial line
class, just call it as a normal client will do by using one instance of the DeviceProxy class. The ORB will
recognize that all the devices are inside the same process and will execute calls as a local calls. To create
the DeviceProxy class instance, the only thing you need to know is the name of the device you gave to the
serial line device. Retrieving this could be easily done by a Tango device property. The DeviceProxy class
is fully described in Tango Application Programming Interface (API) reference WEB pages

6.7.4 Device pipe
What a Tango device pipe is has been defined in the Chapter 3 about device server model. How you read
or write a pipe in a client software is documented in chapter 4 about the Tango API. In this section, we
describe how you can read/write into/from a device pipe on the server side (In a Tango class with pipe).

6.7.4.1 Client reading a pipe

When a client reads a pipe, the following methods are executed in the Tango class:

1. The always_executed_hook() method.

2. A method called is_<pipe_name>_allowed(). The rule of this method is to allow (or disallow) the
next method to be executed. It is usefull for device with some pipes which can be read only in some
precise conditions. It has one parameter which is the request type (read or write)

3. A method called read_<pipe_name>(). The aim of this method is to store the pipe data in the pipe
object. It has one parameter which is a reference to the Pipe object to be read.

The figure 6.8 is a drawing of these method calls sequencing for our class StepperMotor with one pipe
named DynData.

always_executed_hook

read

StepperMotor object

is_allowed

Device_5Impl
read_pipe

DynDataPipe class

is_DynData_allowed

read_DynData

Figure 6.8: Read pipe sequencing

The class DynDataPipe is a simple class which follow the same skeleton from one Tango class to
another. Therefore, this class is generated by the Tango code generator Pogo and the Tango class developper

CHAPTER 6. WRITING A TANGO DEVICE SERVER 158

does not have to modify it. The method is_DynData_allowed() is relatively simple and in most cases the
default code generated by Pogo is enough. The method read_DynData() is the method on which the Tango
class developper has to concentrate on. The following code is one example of these two methods.

1 bool StepperMotor::is_DynData_allowed(Tango::PipeReqType req)
2 {
3 if (get_state() == Tango::ON)
4 return true;
5 else
6 return false;
7 }
8
9 void StepperMotor::read_DynData(Tango::Pipe &pipe)

10 {
11 nb_call++;
12 if (nb_call % 2 == 0)
13 {
14 pipe.set_root_blob_name(“BlobCaseEven”);
15
16 vector<string> de_names {”EvenFirstDE”,”EvenSecondDE”};
17 pipe.set_data_elt_names(de_names);
18
19 dl = 666;
20 v_db.clear();
21 v_db.push_back(1.11);
22 v_db.push_back(2.22);
23
24 pipe << dl << v_db;
25 }
26 else
27 {
28 pipe.set_root_blob_name(“BlobCaseOdd”);
29
30 vector<string> de_names {”OddFirstDE”};
31 pipe.set_data_elt_names(de_names);
32
33 v_str.clear();
34 v_str.push_back(“Hola”);
35 v_str.push_back(“Salut”);
36 v_str.push_back(“Hi”);
37
38 pipe << v_str;
39 }
40 }

The is_DynData_allowed method is defined between lines 1 and 7. It is allowed to read or write the
pipe only is the device state is ON. Note that the input parameter req is not used. The parameter allows the
user to know the type of request. The data type PipeReqType is one enumeration with two possible values
which are READ_REQ and WRITE_REQ.

CHAPTER 6. WRITING A TANGO DEVICE SERVER 159

The read_DynData method is defined between lines 9 and 40. If the number of times this method has
been called is even, the pipe contains two data elements. The first one is named EvenFirstDE and its data
is a long. The second one is named EvenSecondDE and its data is an array of double. If the number of call
is odd, the pipe contains only one data element. Its name is OddFirstDe and its data is an array of strings.
Data are inserted into the pipe at lines 24 and 38. The variables nb_call, dl, v_db and v_str are device data
member and therefore declare in the .h file. Refer to pipe section in chapter 3 and to the API reference
documentation (in Tango WEB pages) to learn more on how you can insert data into a pipe and to know
how data are organized within a pipe.

6.7.4.2 Client writing a pipe

When a client writes a pipe, the following methods are executed in the Tango class:

1. The always_executed_hook() method.

2. A method called is_<pipe_name>_allowed(). The rule of this method is to allow (or disallow) the
next method to be executed. It is usefull for device with some pipes which can be read only in some
precise conditions. It has one parameter which is the request type (read or write)

3. A method called write_<pipe_name>(). It has one parameter which is a reference to the WPipe
object to be written. The aim of this method is to get the data to be written from the WPipe oject and
to write them into the corresponding Tango class objects.

The figure 6.9 is a drawing of these method calls sequencing for our class StepperMotor with one pipe
named DynData.

always_executed_hook

StepperMotor object

is_allowed

Device_5Impl DynDataPipe class

is_DynData_allowed

write_pipe

write write_DynData

Figure 6.9: Write pipe sequencing

The class DynDataPipe is a simple class which follow the same skeleton from one Tango class to
another. Therefore, this class is generated by the Tango code generator Pogo and the Tango class developper
does not have to modify it. The method is_DynData_allowed() is relatively simple and in most cases the
default code generated by Pogo is enough. The method write_DynData() is the method on which the Tango
class developper has to concentrate on. The following code is one example of the write_DynData() method.

1 void StepperMotor::write_DynData(Tango::WPipe &w_pipe)

CHAPTER 6. WRITING A TANGO DEVICE SERVER 160

2 {
3 string str;
4 vector<float> v_fl;
5
6 w_pipe >> str >> v_fl;
7
8 }

In this example, we know that the pipe will always contain a srting followed by one array of float. On
top of that, we are not niterested by the

data element names. Data are extracted from the pipe at line 6 and are available for further use starting
at line 7. If the content of the pipe is not a string followed by one array of float, the data extraction line (6)
will throw one exception which will be reported to the client who has tried to write the pipe. Refer to pipe
section in chapter 3 and to the API reference documentation (in Tango WEB pages) to learn more on how
you can insert data into a pipe and to know how data are organized within a pipe.

Chapter 7

Advanced features

7.1 Attribute alarms
Each Tango attribute two several alarms. These alarms are :

• A four thresholds level alarm

• The read different than set (RDS) alarm

7.1.1 The level alarms
This alarm is defined for all Tango attribute read type and for numerical data type. The action of this alarm
depend on the attribute value when it is read :

• If the attribute value is below or equal the attribute configuration min_alarm parameter, the at-
tribute quality factor is switched to Tango::ATTR_ALARM and if the device state is Tango::ON, it
is switched to Tango::ALARM.

• If the attribute value is below or equal the attribute configuration min_warning parameter, the at-
tribute quality factor is switched to Tango::ATTR_WARNING and if the device state is Tango::ON,
it is switched to Tango::ALARM.

• If the attribute value is above or equal the attribute configuration max_warning parameter, the at-
tribute quality factor is switched to Tango::ATTR_WARNING and if the device state is Tango::ON,
it is switched to Tango::ALARM.

• If the attribute value is above or equal the attribute configuration max_alarm parameter, the at-
tribute quality factor is switched to Tango::ATTR_ALARM and if the device state is Tango::ON, it
is switched to Tango::ALARM.

If the attribute is a spectrum or an image, then the alarm is set if any one of the attribute value satisfies the
above criterium. By default, these four parameters are not defined and no check will be done.

The following figure is a drawing of attribute quality factor and device state values function of the the
attribute value.

Attribute
 value

Attribute quality
 factor

Device state

ATTR_ALARM ATTR_WARNING ATTR_VALID ATTR_WARNING ATTR_ALARM

ALARM ON ALARM

min_alarm min_warning max_warning max_alarm

Figure 7.1: Level alarm

161

CHAPTER 7. ADVANCED FEATURES 162

If the min_warning and max_warning parameters are not set, the attribute quality factor will simply
change between Tango::ATTR_ALARM and Tango::ATTR_VALID function of the attribute value.

7.1.2 The Read Different than Set (RDS) alarm
This alarm is defined only for attribute of the Tango::READ_WRITE and Tango::READ_WITH_WRITE
read/write type and for numerical data type. When the attribute is read (or when the device state is re-
quested), if the difference between its read value and the last written value is something more than or equal
to an authorized delta and if at least a certain amount of milli seconds occurs since the last write operation,
the attribute quality factor will be set to Tango::ATTR_ALARM and if the device state is Tango::ON, it
is switched to Tango::ALARM. If the attribute is a spectrum or an image, then the alarm is set if any one
of the attribute value’s satisfies the above criterium. This alarm configuration is done with two attribute
configuration parameters called delta_val and delta_t. By default, these two parameters are not defined
and no check will be done.

7.2 Enumerated attribute
Since Tango release 9, enumerated attribute is supported using the new data type DevEnum. This data type
is not a real C++ enumeration because:

1. The enumerated value allways start with 0

2. Values are consecutive

3. It is transferred on the network as DevShort data type

One enumeration label is associated to each enumeration value. For the Tango kernel, it is this list of
enumeration labels which will define the possible enumeration values. For instance if the enumeration has
3 labels, its value must be between 0 and 2. There are two ways to define the enumeration labels:

1. At attribute creation time. This is the most common case when the list of possible enumeration
values and labels are known at compile time. The Tango code generator Pogo generates for you the
code needed to pass the enumeration labels to the Tango kernel.

2. In the user code when the enumeration values and labels are not known at compile time but retrieved
during device startup phase. The user gives the possible enumeration values to the Tango kernel
using the Attribute class set_properties() method.

A Tango client is able to retrieve the enumeration labels in the attribute configuration returned by instance
by a call to the DeviceProxy::get_attribute_config() method. Using the DeviceProxy::set_attribute_config()
call, a user may change the enumeration labels but not their number.

7.2.1 Usage in a Tango class
Within a Tango class, you set the attribute value with a C++ enum or a DevShort variable. In case a
DevShort variable is used, its value will be checked according to the enumeration labels list given to Tango
kernel.

7.2.1.1 Setting the labels with enumeration compile time knowledge

In such a case, the enumeration labels are given to Tango at the attribute creation time in the attribute_factory
method of the XXXClass class. Let us take one example

CHAPTER 7. ADVANCED FEATURES 163

1 enum class Card: short
2 {
3 NORTH = 0,
4 SOUTH,
5 EAST,
6 WEST
7 };
8
9 void XXXClass::attribute_factory(vector<Tango::Attr *> &att_list)

10 {
11
12 TheEnumAttrib *theenum = new TheEnumAttrib();
13 Tango::UserDefaultAttrProp theenum_prop;
14 vector<string> labels = {"North","South","East","West"};
15 theenum_prop.set_enum_labels(labels);
16 theenum->set_default_properties(theenum_prop);
17 att_list.push_back(theenum);
18
19 }

line 1-7 : The definition of the enumeration (C++11 in this example)
line 14 : A vector of strings with the enumeration labels is created. Because there is no way to get the

labels from the enumeration definition, they are re-defined here.
line 15 : This vector is given to the theenum_prop object which contains the user default properties
line 16 : The user default properties are associated to the attribute

In most cases, all this code will be automatically generated by the Tango code generator Pogo. It is
given here for completness.

7.2.1.2 Setting the labels without enumeration compile time knowledge

In such a case, the enumeration labels are retrieved by the user in a way specific to the device and passed
to Tango using the Attribute class set_properties() method. Let us take one example

1 void MyDev::init_device()
2 {
3 ...
4
5 Attribute &att = get_device_attr()->get_attr_by_name("TheEnumAtt");
6 MultiAttrProp<DevEnum> multi_prop;
7 att.get_properties(multi_prop);
8
9 multi_prop.enum_labels = {....};

10 att.set_properties(multi_prop);
11
12 }

line 5 : Get a reference to the attribute object
line 7 : Retrieve the attribute properties
line 9 : Initialise the attribute labels in the set of attribute properties
line 10 : Set the attribute properties

CHAPTER 7. ADVANCED FEATURES 164

7.2.1.3 Setting the attribute value

It is possible to set the attribute value using either a classical DevShort variable or using a variable of the
C++ enumeration. The following example is when you have compile time knowledge of the enumeration
definition. We assume that the enumeration is the same than the one defined above (Card enumeration)

1 enum Card points;
2
3 void MyDev::read_TheEnum(Attribute &att)
4 {
5 ...
6 points = SOUTH;
7 att.set_value(&points);
8 }

line 1 : One instance of the Card enum is created (named points)
line 6 : The enumeration is initialized
line 7 : The value of the attribute object is set using the enumeration (by pointer)

To get the same result using a classical DevShort variable, the code looks like

1 DevShort sh;
2
3 void MyDev::read_TheEnum(Attribute &att)
4 {
5 ...
6 sh = 1;
7 att.set_value(&sh);
8 }

line 1 : A DevShort variable is created (named sh)
line 6 : The variable is initialized
line 7 : The value of the attribute object is set using the DevShort variable (by pointer)

7.2.2 Usage in a Tango client
Within a Tango client, you insert/extract enumerated attribute value in/from DeviceAttribute object with
a C++ enum or a DevShort variable. The later case is for generic client which do not have compile time
knowledge of the enumeration. The code looks like

1 DeviceAttribute da = the_dev.read_attribute("TheEnumAtt");
2 Card ca;
3 da >> ca;
4
5 DeviceAttribute db = the_dev.read_attribute("TheEnumAtt");
6 DevShort sh;
7 da >> sh;

CHAPTER 7. ADVANCED FEATURES 165

line 2-3 : The attribute value is extracted in a C++ enumeration variable
line 6-7 : The attribute value is extracted in a DevShort variable

7.3 Device polling

7.3.1 Introduction
Each tango device server automatically have a separate polling thread pool. Polling a device means peri-
odically executing command on a device (or reading device attribute) and storing the results (or the thrown
exception) in a polling buffer. The aim of this polling is threefold :

• Speed-up response time for slow device

• Get a first-level history of device command output or attribute value

• Be the data source for the Tango event system

Speeding-up response time is achieved because the command_inout or read_attribute CORBA operation is
able to get its data from the polling buffer or from the a real access to the device. For “slow” device, getting
the data from the buffer is much faster than accessing the device. Returning a first-level command output
history (or attribute value history) to a client is possible due to the polling buffer which is managed as a
circular buffer. The history is the contents of this circular buffer. Obviously, the history depth is limited to
the depth of the circular buffer. The polling is also the data source for the event system because detecting
an event means being able to regularly read the data, memorize it and declaring that it is an event after
some comparison with older values.

Starting with Tango 9, the default polling algorithm has been modifed. However, it is still possible to
use the polling as it was in Tango releases prior to release 9. See chaper on polling configuration to get
details on this.

7.3.2 Configuring the polling system
7.3.2.1 Configuring what has to be polled and how

It is possible to configure the polling in order to poll :

• Any command which does not need input parameter

• Any attribute

Configuring the polling is done by sending command to the device server administration device automat-
ically implemented in every device server process. Seven commands are dedicated to this feature. These
commands are

AddObjPolling It add a new object (command or attribute) to the list of object(s) to be polled. It is also
with this command that the polling period is specified.

RemObjPolling To remove one object (command or attribute) from the polled object(s) list

UpdObjPollingPeriod Change one object polling period

StartPolling Starts polling for the whole process

StopPolling Stops polling for the whole process

PolledDevice Allow a client to know which device are polled

DevPollStatus Allow a client to precisely knows the polling status for a device

CHAPTER 7. ADVANCED FEATURES 166

All the necessary parameters for the polling configuration are stored in the Tango database. Therefore,
the polling configuration is not lost after a device server process stop and restart (or after a device server
process crash!!).

It is also possible to automatically poll a command (or an attribute) without sending command to the
device server administration device. This request some coding (a method call) in the device server software
during the command or attribute creation. In this case, for every devices supporting this command or this
attribute, polling configuration will be automatically updated in the database and the polling will start
automatically at each device server process startup. It is possible to stop this behavior on a device basis
by sending a RemObjPolling command to the device server administration device. The following piece of
code shows how the source code should be written.

1
2 void DevTestClass::command_factory()
3 {
4 ...
5 command_list.push_back(new IOStartPoll("IOStartPoll",
6 Tango::DEV_VOID,
7 Tango::DEV_LONG,
8 "Void",
9 "Constant number"));

10 command_list.back()->set_polling_period(400);
11 ...
12 }
13
14
15 void DevTestClass::attribute_factory(vector<Tango::Attr *> &att_list)
16 {
17 ...
18 att_list.push_back(new Tango::Attr("String_attr",
19 Tango::DEV_STRING,
20 Tango::READ));
21 att_list.back()->set_polling_period(250);
22 ...
23 }

A polling period of 400 mS is set for the command called “IOStartPoll” at line 10 with the set_polling_period
method of the Command class. Therefore, for a device of this class, the polling thread will start polling its
IOStartPoll command at process start-up except if a RemObjPolling indicating this device and the IOStart-
Poll command has already been received by the device server administration device. This is exactly the
same behavior for attribute. The polling period for attribute called “String_attr” is defined at line 20.

Configuring the polling means defining device attribute/command polling period. The polling period
has to be chosen with care. If reading an attribute needs 200 mS, there is no point to poll this attribute with
a polling period equal or even below 200 mS. You should also take into account that some "free" time has
to be foreseen for external request(s) on the device. On average, for one attribute needing X mS as reading
time, define a polling period which is equal to 1.4 X (280 mS for our example of one attribute needing
200 mS as reading time). In case the polling tuning is given to external user, Tango provides a way to
define polling period minimun threshold. This is done using device properties. These properties are named
min_poll_period, cmd_min_poll_period and attr_min_poll_period. The property min_poll_period (mS)
defined a minimun polling period for the device. The property cmd_min_poll_period allows the definition
of a minimun polling period for a specific device command. The property attr_min_poll_period allows
the definition of a minimun polling period for one device attribute. In case these properties are defined,

CHAPTER 7. ADVANCED FEATURES 167

it is not possible to poll the device command/attribute with a polling period below those defined by these
properties. See Appendix A on device parameter to get a precise syntax description for these properties.

The Jive[21] tool also allows a graphical device polling configuration.

7.3.2.2 Configuring the polling threads pool

Starting with Tango release 7, a Tango device server process may have several polling threads managed
as a pool. For instance, this could be usefull in case of devices within the same device server process but
accessed by different hardware channel when one of the channel is not responding (Thus generating long
timeout and de-synchronising the polling thread). By default, the polling threads pool size is set to 1 and
all the polled object(s) are managed by the same thread (idem polling system in Tango releases older than
release 7) . The configuration of the polling thread pool is done using two properties associated to the
device server administration device. These properties are named:

• polling_threads_pool_size defining the maximun number of threads that you can have in the pool

• polling_threads_pool_conf defining which threads in the pool manages which device

The granularity of the polling threads pool tuning is the device. You cannot ask the polling threads pool to
have thread number 1 in charge of attribute att1 of device dev1 and thread number 2 to be in charge of att2
of the same device dev1.

When you require a new object (command or attribute) to be polled, two main cases may arrive:

1. Some polled object(s) belonging to the device are already polled by one of the polling threads in the
pool: There is no new thread created. The object is simply added to the list of objects to be polled
for the existing thread

2. There is no thread already created for the device. We have two sub-cases:

(a) The number of polling threads is less than the polling_threads_pool_size: A new thread is
created and started to poll the object (command or attribute)

(b) The number of polling threads is already equal to the polling_threads_pool_size: The software
search for the thread with the smallest number of polled objects and add the new polled object
to this thread

Each time the polling threads pool configuration is changed, it is written in the database using the polling_threads_pool_conf
property. If the behaviour previously described does not fulfill your needs, it is possible to update the
polling_threads_pool_conf property in a graphical way using the Tango Astor [19] tool or manually using
the Jive tool [21]. These changes will be taken into account at the next device server process start-up. At
start-up, the polling threads pool will allways be configured as required by the polling_threads_pool_conf
property. The syntax used for this property is described in the Reference part of the Appendix A. The
following window dump is the Astor tool window which allows polling threads pool management.

CHAPTER 7. ADVANCED FEATURES 168

In this example, the polling threads pool size to set to 9 but only 4 polling threads are running. Thread
1 is in charge of all polled objects related to device pv/thread-pool/test-1 and pv/thread-pool/test-2. Thread
2 is in charge of all polled objects related to device pv/thread-pool/test-3. Thread 3 is in charge of all
polled objects related to device pv/thread-pool/test-5 anf finally, thread 4 is in charge of all polled objects
for devices pv/thread-pool/test-4, pv/thread-pool/test-6 and pv/thread-pool/test-7.

It’s also possible to define the polling threads pool size programmatically in the main function of a de-
vice server process using the Util::set_polling_threads_pool_size() method before the call to the Util::server_init()
method

7.3.2.3 Choosing polling algorithm

Starting with Tango 9, you can choose between two different polling algorithm:

• The polling as it was in Tango since it has been introduced. This means:

– For one device, always poll attribute one at a time even if the polling period is the same (use of
read_attribute instead of read_attributes)

– Do not allow the polling thread to be late: If it is the case (because at the end of polling object
1, the time is greater than the polling date of object 2), discard polling object and inform event
user by sending one event with error (Polling thread is late and discard....)

• New polling algorithm introduced in Tango 9 as the default one. This means:

CHAPTER 7. ADVANCED FEATURES 169

– For one device, poll all attributes with the same polling period using a single device call
(read_attributes)

– Allow the polling thread to be late but only if number of late objects decreases.

The advantages of new polling algorithm are

1. In case of several attributes polled on the same device at the same period a lower device occu-
pation time by the polling thread (due to a single read_attributes() call instead of several single
read_attribute() calls)

2. Less “Polling thread late” errors in the event system in case of device with non constant response
time

The drawback is

1. The loss of attribute individual timing data reported in the polling thread status

It is still possible to return to pre-release 9 polling algorithm. To do so, you can use the device server
process administration device polling_before_9 property by setting it to true. It is also possible to choose
this pre-release 9 algorithm in device server process code in the main function of the process using the
Util::set_polling_before_9() method.

7.3.3 Reading data from the polling buffer
For a polled command or a polled attribute, a client has three possibilities to get command result or attribute
value (or the thrown exception) :

• From the device itself

• From the polling buffer

• From the polling buffer first and from the device if data in the polling buffer are invalid or if the
polling is badly configured.

The choice is done during the command_inout CORBA operation by positioning one of the operation
parameter. When reading data from the polling buffer, several error cases are possible

• The data in the buffer are not valid any more. Every time data are requested from the polling buffer,
a check is done between the client request date and the date when the data were stored in the buffer.
An exception is thrown if the delta is greater than the polling period multiplied by a “too old” factor.
This factor has a default value and is up-datable via a device property. This is detailed in the reference
part of this manual.

• The polling is correctly configured but there is no data yet in the polling buffer.

7.3.4 Retrieving command/attribute result history
The polling thread stores the command result or attribute value in circular buffers. It is possible to re-
trieve an history of the command result (or attribute value) from these polling buffers. Obviously the
history is limited by the depth of the circular buffer. For commands, a CORBA operation called com-
mand_inout_history_2 allows this retrieval. The client specifies the command name and the record number
he want to retrieve. For each record, the call returns the date when the command was executed, the com-
mand result or the exception stack in case of the command failed when it was executed by the polling
thread. In such a case, the exception stack is sent as a structure member and not as an exception. The same
thing is available for attribute. The CORBA operation name is read_attribute_history_2. For these two
calls, there is no check done between the call date and the record date in contrary of the call to retrieve the
last command result (or attribute value).

CHAPTER 7. ADVANCED FEATURES 170

7.3.5 Externally triggered polling
Sometimes, rather than polling a command or an attribute regulary with a fixed period, it is more interesting
to "manually" decides when the polling must occurs. The Tango polling system also supports this kind of
usage. This is called externally triggered polling. To define one attribute (or command) as externally
triggered, simply set its polling period to 0. This can be done with the device server administration device
AddObjPolling or UpdObjPollingPeriod command. Once in this mode, the attribute (or command) polling
is triggered with the trigger_cmd_polling() method (or trigger_attr_polling() method) of the Util class.
The following piece of code shows how this method could be used for one externally triggered command.

1
2
3 string ext_polled_cmd("MyCmd");
4 Tango::DeviceImpl *device =;
5
6 Tango::Util *tg = Tango::Util::instance();
7
8 tg->trigger_cmd_polling(device,ext_polled_cmd);
9

10

line 3 : The externally polled command name
line 4 : The device object
line 8 : Trigger polling of command MyCmd

7.3.6 Filling polling buffer
Some hardware to be interfaced already returned an array of pair value, timestamp. In order to be read with
the command_inout_history or read_attribute_history calls, this array has to be transferred in the attribute
or command polling buffer. This is possible only for attribute or command configured in the externally
triggered polling mode. Once in externally triggered polling mode, the attribute (or command) polling
buffer is filled with the fill_cmd_polling_buffer() method (or fill_attr_polling_buffer() method) of the Util
class. For command, the user uses a template class called TimedCmdData for each element of the command
history. Each element is stored in a stack in one instance of a template class called CmdHistoryStack. This
object is one of the argument of the fill_cmd_polling_buffer() method. Obviously, the stack depth cannot
be larger than the polling buffer depth. See A.1.4 to learn how the polling buffer depth is defined. The same
way is used for attribute with the TimedAttrData and AttrHistoryStack template classes. These classes are
documented in [8]. The following piece of code fills the polling buffer for a command called MyCmd which
is already in externally triggered mode. It returns a DevVarLongArray data type with three elements. This
example is not really something you will find in a real hardware interface. It is only to demonstrate the
fill_cmd_polling_buffer() method usage. Error management has also been removed.

1
2
3 Tango::DevVarLongArray dvla_array[4];
4
5 for(int i = 0;i < 4;i++)
6 {
7 dvla_array[i].length(3);

CHAPTER 7. ADVANCED FEATURES 171

8 dvla_array[i][0] = 10 + i;
9 dvla_array[i][1] = 11 + i;

10 dvla_array[i][2] = 12 + i;
11 }
12
13 Tango::CmdHistoryStack<DevVarLongArray> chs;
14 chs.length(4);
15
16 for (int k = 0;k < 4;k++)
17 {
18 time_t when = time(NULL);
19
20 Tango::TimedCmdData<DevVarLongArray> tcd(&dvla_array[k],when);
21 chs.push(tcd);
22 }
23
24 Tango::Util *tg = Tango::Util::instance();
25 string cmd_name("MyCmd");
26 DeviceImpl *dev =;
27
28 tg->fill_cmd_polling_buffer(dev,cmd_name,chs);
29
30

Line 3-11 : Simulate data coming from hardware
Line 13-14 : Create one instance of the CmdHistoryStack class and reserve space for one history of 4

elements
Line 16-17 : A loop on each history element
Line 18 : Get date (hardware simulation)
Line 20 : Create one instance of the TimedCmdData class with data and date
Line 21 : Store this command history element in the history stack. The element order will be the

insertion order whatever the element date is.
Line 28 : Fill command polling buffer
After one execution of this code, a command_inout_history() call will return one history with 4 ele-

ments. The first array element of the oldest history record will have the value 10. The first array element of
the newest history record will have the value 13. A command_inout() call with the data source parameter set
to CACHE will return the newest history record (ie an array with values 13,14 and 15). A command_inout()
call with the data source parameter set to DEVICE will return what is coded is the command method. If
you execute this code a second time, a command_inout_history() call will return an history of 8 elements.

The next example fills the polling buffer for an attribute called MyAttr which is already in externally
triggered mode. It is a scalar attribute of the DevString data type. This example is not really something you
will find in a real hardware interface. It is only to demonstrate the fill_attr_polling_buffer() method usage
with memory management issue. Error management has also been removed.

1
2
3 AttrHistoryStack<DevString> ahs;
4 ahs.length(3);
5
6 for (int k = 0;k < 3;k++)
7 {

CHAPTER 7. ADVANCED FEATURES 172

8 time_t when = time(NULL);
9

10 DevString *ptr = new DevString [1];
11 ptr = CORBA::string_dup("Attr history data");
12
13 TimedAttrData<DevString> tad(ptr,Tango::ATTR_VALID,true,when);
14 ahs.push(tad);
15 }
16
17 Tango::Util *tg = Tango::Util::instance();
18 string attr_name("MyAttr");
19 DeviceImpl *dev =;
20
21 tg->fill_attr_polling_buffer(dev,attr_name,ahs);
22
23

Line 3-4 : Create one instance of the AttrHistoryStack class and reserve space for an history with 3
elements

Line 6-7 : A loop on each history element
Line 8 : Get date (hardware simulation)
Line 10-11 : Create a string. Note that the DevString object is created on the heap
Line 13 : Create one instance of the TimedAttrData class with data and date requesting the memory to

be released.
Line 14 : Store this attribute history element in the history stack. The element order will be the insertion

order whatever the element date is.
Line 21 : Fill command polling buffer
It is not necessary to return the memory allocated at line 10. The fill_attr_polling_buffer() method will

do it for you.

7.3.7 Setting and tuning the polling in a Tango class
Even if the polling is normally set and tuned with external tool like Jive, it is possible to set it directly into
the code of a Tango class. A set of methods belonging to the DeviceImpl class allows the user to deal with
polling. These methods are:

• is_attribute_polled() and is_command_polled() to check if one command/attribute is polled

• get_attribute_poll_period() and get_command_poll_period() to get polled object polling period

• poll_attribute() and poll_command() to poll command or attribute

• stop_poll_attribute() and stop_poll_command() to stop polling a command or an attribute

The following code snippet is just an exmaple of how these methods could be used. They are documented
in [24]

1 void MyClass::read_attr(Tango::Attribute &attr)
2 {
3 ...

CHAPTER 7. ADVANCED FEATURES 173

4 ...
5
6 string att_name("SomeAttribute");
7 string another_att_name("AnotherAttribute");
8
9 if (is_attribute_polled(att_name) == true)

10 stop_poll_attribute(att_name);
11 else
12 poll_attribute(another_att_name,500);
13
14
15
16
17 }

7.4 Threading
When used with C++, Tango used omniORB as underlying ORB. This CORBA implementation is a
threaded implementation and therefore a C++ Tango device server or client are multi-threaded processes.

7.4.1 Device server process
A classical Tango device server without any connected clients has eight threads. These threads are :

• The main thread waiting in the ORB main loop

• Two ORB implementation threads (the POA thread)

• The ORB scavanger thread

• The signal thread

• The heartbeat thread (needed by the Tango event system)

• Two Zmq implementation threads

On top of these eight threads, you have to add the thread(s) used by the polling threads pool. This num-
ber depends on the polling thread pool configuration and could be between 0 (no polling at all) and the
maximun number of threads in the pool.

A new thread is started for each connected client. Device server are mostly used to interface hardware
which most of the time does not support multi-threaded access. Therefore, all remote calls executed from
a client are serialized within the device server code by using mutual exclusion. See chapter 7.4.1.1 on
which serialization model are available. In order to limit thread number, the underlying ORB (omniORB)
is configured to shutdown threads dedicated to client if the connection is inactive for more than 3 minutes.
To also limit thread number, the ORB is configured to create one thread per connection up to 55 threads.
When this level is reached, the threading model is automatically switch to a "thread pool" model with up
to 100 threads. If the number of threads decrease down to 50, the threading model will return to "thread
per connection" model.

If you are using event, the event system for its internal heartbeat system periodically (every 200 sec-
onds) sends a command to the device server administration device. As explained above, a thread is created
to execute these command. The omniORB scavanger will terminate this thread before the next event system
heartbeat command arrives. For example, if you have a device server with three connected clients using
only event, the process thread number will permanently change between 8 and 11 threads.

In summary, the number of threads in a device server process can be evaluated with the following
formula:

CHAPTER 7. ADVANCED FEATURES 174

8 + k + m

k is the number of polling threads used from the polling threads pool and m is the number of threads used
for connected clients.

7.4.1.1 Serialization model within a device server

Four serialization models are available within a device server. These models protect all requests coming
from the network but also requests coming from the polling thread. These models are:

1. Serialization by device. All access to the same device are serialized. As an example, let’s take a
device server implementing one class of device with two instances (dev1 and dev2). Two clients are
connected to these devices (client1 and client2). Client2 will not be able to access dev1 if client1 is
using it. Nevertheless, client2 is able to access dev2 while client1 access dev1 (There is one mutual
exclusion object by device)

2. Serialization by class. With non multi-threaded legacy software, the preceding scenario could gen-
erate problem. In this mode of serialization, client2 is not able to access dev2 while client1 access
dev1 because dev2 and dev1 are instances of the same class (There is one mutual exclusion object
by class)

3. Serialization by process. This is one step further than the previous case. In this mode, only one
client can access any device embedded within the device server at a time. There is only one mutual
exclusion object for the whole process)

4. No serialization. This is an exotic kind of serialization and should be used with extreme care only
with device which are fully thread safe. In this model, most of the device access are not serialized
at all. Due to Tango internal structure, the get_attribute_config, set_attribute_config, read_attributes
and write_attributes CORBA calls are still protected. Reading the device state and status via com-
mands or via CORBA attribute is also protected.

By default, every Tango device server is in serialization by device mode. A method of the Tango::Util class
allows to change this default behavior.

CHAPTER 7. ADVANCED FEATURES 175

1 #include <tango.h>
2
3 int main(int argc,char *argv[])
4 {
5
6 try
7 {
8
9 Tango::Util *tg = Tango::Util::init(argc,argv);

10
11 tg->set_serial_model(Tango::BY_CLASS);
12
13 tg->server_init();
14
15 cout << "Ready to accept request" << endl;
16 tg->server_run();
17 }
18 catch (bad_alloc)
19 {
20 cout << "Can’t allocate memory!!!" << endl;
21 cout << "Exiting" << endl;
22 }
23 catch (CORBA::Exception &e)
24 {
25 Tango::Except::print_exception(e);
26
27 cout << "Received a CORBA::Exception" << endl;
28 cout << "Exiting" << endl;
29 }
30
31 return(0);
32 }

The serialization model is set at line 11 before the server is initialized and the infinite loop is started.
See [8] for all details on the methods to set/get serialization model.

7.4.1.2 Attribute Serialization model

Even with the serialization model described previously, in case of attributes carrying a large number of data
and several clients reading this attribute, a device attribute serialization has to be followed. Without this
level of serialization, for attribute using a shared buffer, a thread scheduling may happens while the device
server process is in the CORBA layer transferring the attribute data on the network. Three serialization
models are available for attribute serialization. The default is well adapted to nearly all cases. Nevertheless,
if the user code manages several attributes data buffer or if it manages its own buffer protection by one way
or another, it could be interesting to tune this serialization level. The available models are:

1. Serialization by kernel. This is the default case. The kernel is managing the serialization

2. Serialization by user. The user code is in charge of the serialization. This serialization is done by
the use of a omni_mutex object. An omni_mutex is an object provided by the omniORB package.
It is the user responsability to lock this mutex when appropriate and to give this mutex to the Tango
kernel before leaving the attribute read method

CHAPTER 7. ADVANCED FEATURES 176

3. No serialization.

By default, every Tango device attribute is in serialization by kernel. Methods of the Tango::Attribute class
allow to change the attribute serialization behavior and to give the user omni_mutex object to the kernel.

1 void MyClass::init_device()
2 {
3 ...
4 ...
5 Tango::Attribute &att = dev_attr->get_attr_by_name("TheAttribute");
6 att.set_attr_serial_model(Tango::ATTR_BY_USER);
7
8
9
10 }
11
12
13 void MyClass::read_TheAttribute(Tango::Attribute &attr)
14 {
15
16
17 the_mutex.lock();
18
19 // Fill the attribute buffer
20
21 attr.set_value(buffer,....);
22 attr->set_user_attr_mutex(&the_mutex);
23 }
24

The serialization model is set at line 6 in the init_device() method. The user omni_mutex is passed to
the Tango kernel at line 22. This omni_mutex object is a device data member. See [8] for all details on the
methods to set attribute serialization model.

7.4.2 Client process
Clients are also multi threaded processes. The underlying C++ ORB (omniORB) try to keep system re-
sources to a minimum. To decrease process file descriptors usage, each connection to server is automati-
cally closed if it is idle for more than 2 minutes and automatically re-opened when needed. A dedicated
thread is spawned by the ORB to manage this automatic closing connection (the ORB scavenger thread).

Threrefore, a Tango client has two threads which are:

1. The main thread

2. The ORB scavanger thread

If the client is using the event system and as Tango is using the event push-push model, it has to be a server
for receiving the events. This increases the number of threads. The client now has 6 threads which are:

• The main thread

• The ORB scavenger thread

• Two Zmq implementation threads

• Two Tango event system related threads (the KeepAliveThread and the EventConsumer thread)

CHAPTER 7. ADVANCED FEATURES 177

7.5 Generating events in a device server
The server is at the origin of events. It will fire events as soon as they occur. Standard events (change,
periodic and archive) are detected automatically in the polling thread and fired as soon as they are detected.
The periodic events can only be handled by the polling thread. Change, Data ready and archive events can
also be pushed from the device server code. To allow a client to subscribe to events of non polled attributes
the server has to declare that events are pushed from the code. Three methods are available for this purpose:

Attr::set_change_event(bool implemented, bool detect = true);
Attr::set_archive_event(bool implemented, bool detect = true);
Attr::set_data_ready_event(bool implemented);

where implemented=true indicates that events are pushed manually from the code and detect=true (when
used) triggers the verification of the same event properties as for events send by the polling thread. When
setting detect=false, no value checking is done on the pushed value! The class DeviceImpl also supports
the first two methods with an addictional parameter attr_name defining the attribute name.

To push events manually from the code a set of data type dependent methods can be used:

DeviceImpl::push_change_event (string attr_name,);
DeviceImpl::push_archive_event(string attr_name,);

For the data ready event, a DeviceImpl class method has to be used to push the event.

DeviceImpl::push_data_ready_event(string attr_name,Tango::DevLong ctr);

See the class documentation for all available interfaces.
For non-standard events a single call exists for pushing the data to the CORBA Notification Service

(omniNotify). Clients who are subscribed to this event have to know what data type is in the DeviceAt-
tribute and unpack it accordingly.

To push non-standard events, use the following api call is available to all device servers :

DeviceImpl::push_event(string attr_name,
vector<string> &filterable_names,
vector<double> &filterable_vals,
Attribute &att)

where attr_name is the name of the attribute. Filterable_names and filterable_vals represent any filterable
data which can be used by clients to filter on. Here is a typical example of what a server will need to do to
send its own events. We are in the read method of the "Sinusoide" attribute. This attribute is readable as
any other attribute but an event is sent if its value is positive when it is read. On top of that, this event is
sent with one filterable field called "value" which is set to the attribute value.

1 void MyClass::read_Sinusoide(Tango::Attribute &attr)
2 {
3 ...
4 struct timeval tv;
5 gettimeofday(&tv, NULL);
6 sinusoide = 100 * sin(2 * 3.14 * frequency * tv.tv_sec);
7
8 if (sinusoide >= 0)
9 {
10 vector<string> filterable_names;
11 vector<double> filterable_value;

CHAPTER 7. ADVANCED FEATURES 178

12
13 filterable_names.push_back("value");
14 filterable_value.push_back((double)sinusoide);
15
16 push_event(attr.get_name(),
17 filterable_names, filterable_value,
18 &sinusoide);
19 }
20
21
22
23 }

line 13-14 : The filter pair name/value is initialised
line 16-18 : The event is pushed

7.6 Using multicast protocol to transfer events
This feature is available starting with Tango 8.1. Transferring events using a multicast protocol means
delivering the events to a group of clients simultaneously in a single transmission from the event source.
Tango, through ZMQ, uses the OpenPGM multicating protocol. This is one implementation of the PGM
protocol defined by the RFC 3208 (Reliable multicasting protocol). Nevertheless, the default event com-
munication mode is unicast and propagating events via multicasting requires some specific configuration.

7.6.1 Configuring events to use multicast transport
Before using multicasting transport for event(s), you have to choose which address and port have to be
used. In a IP V4 network, only a limited set of addresses are associated with multicasting. These are the IP
V4 addresses between

224.0.1.0 and 238.255.255.255

Once the address is selected, you have to choose a port number. Together with the event name, these are the
two minimum configuration informations which have to be provided to Tango to get multicast transport.
This configuration is done using the MulticastEvent free property associated to the CtrlSystem object.

In the above window dump of the Jive tool, the change event on the state attribute of the dev/test/11
device has to be transferred using multicasting with the address 226.20.21.22 and the port number 2222.
The exact definition of this CtrlSystem/MulticastEvent property for one event propagated using multicast
is

CHAPTER 7. ADVANCED FEATURES 179

1 CtrlSystem->MulticastEvent: Multicast address,
2 port number,
3 [rate in Mbit/sec],
4 [ivl in seconds],
5 event name

Rate and Ivl are optional properties. In case several events have to be transferred using multicasting,
simply extend the MulicastEvent property with the configuration parameters related to the other events.
There is only one MultiCastEvent property per Tango control system. The underlying multicast protocol
(PGM) is rate limited. This means that it limits its network bandwidth usage to a user defined value.
The optional third configuration parameter is the maximum rate (in Mbit/sec) that the protocol will use
to transfert this event. Because PGM is a reliable protocol, data has to be buffered for re-transmission in
case a receiver signal some lost data. The optional forth configuration parameter specify the maximum
amount of time (in seconds) that a receiver can be absent for a multicast group before unrecoverable data
loss will occur. Exercise care when setting large recovery interval as the data needed for recovery will be
held in memory. For example, a 60 seconds (1 minute) recovery interval at a data rate of 1 Gbit/sec requires
a 7 GBytes in-memory buffer. Whan any of these two optional parameters are not set, the default value
(defined in next sub-chapter) are used. Here is another example of events using multicasting configuration

In this example, there are 5 events which are transmitted using multicasting:

1. Event change for attribute state on device dev/test/11 which uses multicasting address 226.20.21.22
and port number 2222

2. Event periodic for attribute state on device dev/test/10 which uses multicasting address 226.20.21.22
and port number 3333

3. Event change for attribute ImaAttr on device et/ev/01 which uses multicasting address 226.30.31.32
and port number 4444. Note that this event uses a rate set to 40 Mbit/sec and a ivl set to 20 seconds.

4. Event change for attribute event_change_tst on device dev/test/12 which uses multicasting address
226.20.21.22 and port number 2233

5. Event archive for attribute event_change_tst on device dev/tomasz/3 which uses multicasting address
226.20.21.22 and port number 2234

CHAPTER 7. ADVANCED FEATURES 180

7.6.2 Default multicast related properties
On top of the MulticastEvent property previously described, Tango supports three properties to defined
default value for multicast transport tuning. These properties are:

• MulticastRate associated to the CtrlSystem object. This defines the maximum rate will will be used
by the multicast protocol when transferring event. The unit is Mbit/sec. In case this property is not
defined, the Tango library used a value of 80 Mbit/sec.

• MulticastIvl associated to the CtrlSystem object. It specifies the maximum time (in sec) during
which data has to be buffered for re-transmission in case a receiver signals some lost data. The unit
is seconds. In case this property is not defined, the Tango library takes a value of 20 seconds.

• MulticastHops associated to the CtrlSystem object. This property defines the maximum number of
element (router), the multicast packet is able to cross. Each time one element is crossed, the value is
decremented. When it reaches 0, the packet is not transferred any more. In case this property is not
defined, the Tango library uses a value of 5.

7.7 Memorized attribute
It is possible to ask Tango to store in its database the last written value for attribute of the SCALAR data
format and obviously only for READ_WRITE or READ_WITH_WRITE attribute. This is fully automatic.
During device startup phase, for all device memorized attributes, the value written in the database is fetched
and applied. A write_attribute call can be generated to apply the memorized value to the attribute or only
the attribute set point can be initialised. The following piece of code shows how the source code should be
written to set an attribute as memorized and to initialise only the attribute set point.

1 void DevTestClass::attribute_factory(vector<Tango::Attr *> &att_list)
2 {
3 ...
4 att_list.push_back(new String_attrAttr());
5 att_list.back()->set_memorized();
6 att_list.back()->set_memorized_init(false);
7 ...
8 }

Line 4 : The attribute to be memorized is created and inserted in the attribute vector.
Line 5 : The set_memorized() method of the attribute base class is called to define the attribute as

memorized.
Line 6 : The set_memorized_init() method is called with the parameter false to define that only the set

point should be initialsied.

7.8 Forwarded attribute

7.8.1 Definition
Let’s take an example to explain what is a forwarded attribute. We assume we have to write a Tango class
for a ski lift in a ski resort somewhere in the Alps. Obviously, the ski lift has a motor for which we already
have a Tango class. This motor Tango class has one attribute speed. But for the ski lift, the motor speed is
not the only thing which has to be controlled. For instance, you also want to give access to the wind sensor
data installed on the top of the ski lift. Therefore, you write a ski-lift Tango class representing the whole
ski-lift system. This ski-lift class will have at least two attributes which are:

CHAPTER 7. ADVANCED FEATURES 181

1. The wind speed at the top of the ski-lift

2. The motor speed

The ski-lift Tango class motor speed attribute is nothing more than the motor Tango class speed attribute.
All the ski-lift class has to do for this attribute is to forward the request (read/write) to the speed attribute
of the motor Tango class. The speed attribute of the ski-lift Tango class is a forwarded attribute while the
speed attribute of the motor Tango class is its root attribute.

A forwarded attribute get its configuration from its root attribute and it forwards to its root attribute

• Its read / write / write_read requests

• Its configuration change

• Its event subscription

• Its locking behavior

As stated above, a forwarded attribute has the same configuration than its root attribute except its name and
label which stays local. All other attribute configuration parameters are forwarded to the root attribute. If
a root attribute configuration parameter is changed, the forwarded attribute is informed (via event) and its
local configuration is also modified.

The association between the forwarded attribute and its root attribute is done using a property named

__root_att

belonging to the forwarded attribute. This property value is simply the name of the root attribute. Muti-
control system is supported and this __root_att attribute property value can be something like tango://my_tango_host:10000/my/favorite/dev/the_root_attribute.
The name of the root attribute is included in attribute configuration.

It is forbidden to poll a forwarded attribute and one exception is thrown if such a case happens. Polling
has to be done on the root attribute. Nevertheless, if the root attribute is polled, a request to read the
forwarded attribute with the DeviceProxy object source parameter set to CACHE_DEVICE or CACHE
will get its data from the root attribute polling buffer.

If you subscribe to event(s) on a forwarded attribute, the subscription is forwarded to the root attribute.
When the event is received by the forwarded attribute, the attribute name in the event data is modified to
reflect the forwarded attribute name and the event is pushed to the original client(s).

When a device with forwarded attribute is locked, the device to which the root attribute belongs is also
locked.

7.8.2 Coding
As explained in the chapter "Writing a Tango device server", each Tango class attribute is implemented
via a C++ class which has to inherit from either Attr, SpectrumAttr or ImageAttr according to the attribute
data format. For forwarded attribute, the related class has to inherit from the FwdAttr class whatever its
data format is. For classical attribute, the programmer can define in the Tango class code default value for
the attribute properties using one instance of the UserDefaultAttrProp class. For forwarded attribute, the
programmer has to create one instance of the UserDefaultFwdAttrProp class but only the attribute label
can be defined. One example of how to program a forwarded attribute is given below

1 class MyFwdAttr: public Tango::FwdAttr
2 {
3 public:
4 MyFwdAttr(const string &_n):FwdAttr(_n) {};
5 ~MyFwdAttr() {};
6 };

CHAPTER 7. ADVANCED FEATURES 182

7
8 void DevTestClass::attribute_factory(vector<Tango::Attr *> &att_list)
9 {
10 ...
11 MyFwdAttr *att1 = new MyFwdAttr("fwd_att_name");
12 Tango::UserDefaultFwdAttrProp att1_prop;
13 att1_prop.set_label("Gasp a fwd attribute");
14 att1->set_default_properties(att1_prop);
15 att_list.push_back(att1);
14 ...
15 }

Line 1 : The forwarded attribute class inherits from FwdAttr class.
Line 4-5 : Only constructor and destructor methods are required
Line 11 : The attribute object is created
Line 12-14 : A default value for the forwarded attribute label is defined.
Line 15: The forwarded attribute is added to the list of attribute
In case of error in the forwarded attribute configuration (for instance missing __root_att property), the

attribute is not created by the Tango kernel and is therefore not visible for the external world. The state
of the device to which the forwarded attribute belongs to is set to ALARM (if not already FAULT) and a
detailed error report is available in the device status. In case a device with forwarded attribute(s) is started
before the device(s) with the root attribute(s), the same principle is used: forwarded attribute(s) are not
created, device state is set to ALARM and device status is reporting the error. When the device(s) with the
root attribute will start, the forwarded attributes will automatically be created.

7.9 Transferring images
Some optimized methods have been written to optimize image transfer between client and server using the
attribute DevEncoded data type. All these methods have been merged in a class called EncodedAttribute.
Within this class, you will find methods to:

• Encode an image in a compressed way (JPEG) for images coded on 8 (gray scale), 24 or 32 bits

• Encode a grey scale image coded on 8 or 16 bits

• Encode a color image coded on 24 bits

• Decode images coded on 8 or 16 bits (gray scale) and returned a 8 or 16 bits grey scale image

• Decode color images transmitted using a compressed format (JPEG) and returns a 32 bits RGB image

The following code snippets are examples of how these methods have to be used in a server and in a client.
On the server side, creates an instance of the EncodedAttribute class within your object

1 class MyDevice::Tango::Device_4Impl
2 {
3 ...
4 Tango::EncodedAttribute jpeg;
5 ...
6 }

CHAPTER 7. ADVANCED FEATURES 183

In the code of your device, use an encoding method of the EncodedAttribute class

1 void MyDevice::read_Encoded_attr_image(Tango::Attribute &att)
2 {
3
4 jpeg.encode_jpeg_gray8(imageData,256,256,50.0);
5 att.set_value(&jpeg);
6 }

Line 4: Image encoding. The size of the image is 256 by 256. Each pixel is coded using 8 bits. The
encoding quality is defined to 50 in a scale of 0 - 100. imageData is the pointer to the image data (pointer
to unsigned char)

Line 5: Set the value of the attribute using a Attribute::set_value() method.
On the client side, the code is the following (without exception management)

1
2 DeviceAttribute da;
3 EncodedAttribute att;
4 int width,height;
5 unsigned char *gray8;
6
7 da = device.read_attribute("Encoded_attr_image");
8 att.decode_gray8(&da,&width,&height,&gray8);
9
10 delete [] gray8;
11 ...

The attribute named Encoded_attr_image is read at line7. The image is decoded at line 8 in a 8 bits
gray scale format. The image data are stored in the buffer pointed to by "gray8". The memory allocated by
the image decoding at line 8 is returned to the system at line 10.

7.10 Device server with user defined event loop
Sometimes, it could be usefull to write your own process event handling loop. For instance, this feature
can be used in a device server process where the ORB is only one of several components that must perform
event handling. A device server with a graphical user interface must allow the GUI to handle windowing
events in addition to allowing the ORB to handle incoming requests. These types of device server therefore
perform non-blocking event handling. They turn the main thread of control over each of the vvarious
event-handling sub-systems while not allowing any of them to block for significants period of time. The
Tango::Util class has a method called server_set_event_loop() to deal with such a case. This method has
only one argument which is a function pointer. This function does not receive any argument and returns
a boolean. If this boolean is true, the device server process exits. The device server core will call this
function in a loop without any sleeping time between the call. It is the user responsability to implement
in this function some kind of sleeping mechanism in order not to make this loop too CPU consuming.
The code of this function is executed by the device server main thread. The following piece of code is an
example of how you can use this feature.

CHAPTER 7. ADVANCED FEATURES 184

1
2 bool my_event_loop()
3 {
4 bool ret;
5
6 some_sleeping_time();
7
8 ret = handle_gui_events();
9

10 return ret;
11 }
12
13 int main(int argc,char *argv[])
14 {
15 Tango::Util *tg;
16 try
17 {
18 // Initialise the device server
19 //--
20 tg = Tango::Util::init(argc,argv);
21
22 tg->set_polling_threads_pool_size(5);
23
24 // Create the device server singleton
25 // which will create everything
26 //--
27 tg->server_init(false);
28
29 tg->server_set_event_loop(my_event_loop);
30
31 // Run the endless loop
32 //--
33 cout << "Ready to accept request" << endl;
34 tg->server_run();
35 }
36 catch (bad_alloc)
37 {
38 ...

The device server main event loop is set at line 29 before the call to the Util::server_run() method. The
function used as server loop is defined between lines 2 and 11.

7.11 Device server using file as database
For device servers not able to access the Tango database (most of the time due to network route or security
reason), it is possible to start them using file instead of a real database. This is done via the device server

-file=<file name>

command line option. In this case,

CHAPTER 7. ADVANCED FEATURES 185

• Getting, setting and deleting class properties

• Getting, setting and deleting device properties

• Getting, setting and deleting class attribute properties

• Getting, setting and deleting device attribute properties

are handled using the specified file instead of the Tango database. The file is an ASCII file and follows a
well-defined syntax with predefined keywords. The simplest way to generate the file for a specific device
server is to use the Jive application. See [21] to get Jive documentation. The Tango database is not only
used to store device configuration parameters, it is also used to store device network access parameter (the
CORBA IOR). To allow an application to connect to a device hosted by a device server using file instead
of database, you need to start it on a pre-defined port, and you must use one of the underlying ORB option
called endPoint like

myserver myinstance_name -file=/tmp/MyServerFile -ORBendPoint giop:tcp::<port number>

to start your device server. The device name passed to the client application must also be modified in order
to refect the non-database usage. See C.1 to learn about Tango device name syntax. Nevertheless, using
this Tango feature prevents some other features to be used :

• No check that the same device server is running twice.

• No device or attribute alias name.

• In case of several device servers running on the same host, the user must manually manage a list of
already used network port.

7.12 Device server without database
In some very specific cases (Running a device server within a lab during hardware development...), it
could be very useful to have a device server able to run even if there is no database in the control system.
Obviously, running a Tango device server without a database means loosing Tango features. The lost
features are :

• No check that the same device server is running twice.

• No device configuration via properties.

• No event generated by the server.

• No memorized attributes

• No device attribute configuration via the database.

• No check that the same device name is used twice within the same control system.

• In case of several device servers running on the same host, the user must manually manage a list of
already used network port.

To run a device server without a database, the -nodb command line option must be used. One problem
when running a device server without the database is to pass device name(s) to the device server. Within
Tango, it is possible to define these device names at two different levels :

1. At the command line with the -dlist option: In case of device server with several device pattern
implementation, the device name list given at command line is only for the last device pattern created
in the class_factory() method. In the device name list, the device name separator is the comma
character.

CHAPTER 7. ADVANCED FEATURES 186

2. At the device pattern implementation level: In the class inherited from the Tango::DeviceClass class
via the re-definition of a well defined method called device_name_factory()

If none of these two possibilities is used, the tango core classes defined one default device name for each
device pattern implementation. This default device name is NoName. Device definition at the command
line has the highest priority.

7.12.1 Example of device server started without database usage
Without database, you need to start a Tango device server on a pre-defined port, and you must use one of
the underlying ORB option called endPoint like

myserver myinstance_name -ORBendPoint giop:tcp::<port number> -nodb -dlist a/b/c

The following is two examples of starting a device server not using the database when the device_name_factory()
method is not re-defined.

• StepperMotor et -nodb -dlist id11/motor/1,id11/motor/2
This command line starts the device server with two devices named id11/motor/1 and id11/motor/2

• StepperMotor et -nodb
This command line starts a device server with one device named NoName

When the device_name_factory() method is re-defined within the StepperMotorClass class.

1 void StepperMotorClass::device_name_factory(vector<string> &list)
2 {
3 list.push_back("sr/cav-tuner/1");
4 list.push_back("sr/cav-tuner/2");
5 }

• StepperMotor et -nodb
This commands starts a device server with two devices named sr/cav-tuner/1 and sr/cav-tuner/2.

• StepperMotor et -nodb -dlist id12/motor/1
Starts a device server with only one device named id12/motor/1

7.12.2 Connecting client to device within a device server started without database
In this case, the host and port on which the device server is running are part of the device name. If the
device name is a/b/c, the host is mycomputer and the port 1234, the device name to be used by client is

mycomputer:1234/a/b/c#dbase=no

See appendix C.1 for all details about Tango object naming.

7.13 Multiple database servers within a Tango control system
Tango uses MySQL as database and allows access to this database via a specific Tango device server. It
is possible for the same Tango control system to have several Tango database servers. The host name and
port number of the database server is known via the TANGO_HOST environment variable. If you want to
start several database servers in order to prevent server crash, use the following TANGO_HOST syntax

TANGO_HOST=<host_1>:<port_1>,<host_2>:<port_2>,<host_3>:<port_3>

All calls to the database server will automatically switch to a running servers in the given list if the one
used dies.

CHAPTER 7. ADVANCED FEATURES 187

7.14 The Tango controlled access system

7.14.1 User rights definition
Within the Tango controlled system, you give rights to a user. User is the name of the user used to log-in
the computer where the application trying to access a device is running. Two kind of users are defined:

1. Users with defined rights

2. Users without any rights defined in the controlled system. These users will have the rights associated
with the pseudo-user called "All Users"

The controlled system manages two kind of rights:

• Write access meaning that all type of requests are allowed on the device

• Read access meaning that only read-like access are allowed (write_attribute, write_read_attribute
and set_attribute_config network calls are forbidden). Executing a command is also forbidden ex-
cept for commands defined as "Allowed commands". Getting a device state or status using the
command_inout call is always allowed. The definition of the allowed commands is done at the de-
vice class level. Therefore, all devices belonging to the same class will have the allowed commands
set.

The rights given to a user is the check result splitted in two levels:

1. At the host level: You define from which hosts the user may have write access to the control system
by specifying the host name. If the request comes from a host which is not defined, the right will
be Read access. If nothing is defined at this level for the user, the rights of the "All Users" user
will be used. It is also possible to specify the host by its IP address. You can define a host family
using wide-card in the IP address (eg. 160.103.11.* meaning any host with IP address starting with
160.103.11). Only IP V4 is supported.

2. At the device level: You define on which device(s) request are allowed using device name. Device
family can be used using widecard in device name like domin/family/*

Therefore, the controlled system is doing the following checks when a client try to access a device:

• Get the user name

• Get the host IP address

• If rights defined at host level for this specific user and this IP address, gives user temporary write
acccess to the control system

• If nothing is specified for this specific user on this host, gives to the user a temporary access right
equal to the host access rights of the "All User" user.

• If the temporary right given to the user is write access to the control system

– If something defined at device level for this specific user

* If there is a right defined for the device to be accessed (or for the device family), give user
the defined right

* Else
· If rights defined for the "All Users" user for this device, give this right to the user
· Else, give user the Read Access for this device

– Else

* If there is a right defined for the device to be accessed (or for the device family) for the
"All User" user, give user this right

CHAPTER 7. ADVANCED FEATURES 188

* Else, give user the Read Access right for this device

• Else, access right will be Read Access

Then, when the client tries to access the device, the following algorithm is used:

• If right is Read Access

– If the call is a write type call, refuse the call

– If the call is a command execution

* If the command is one of the command defined in the "Allowed commands" for the device
class, send the call

* Else, refuse the call

All these checks are done during the DeviceProxy instance constructor except those related to the device
class allowed commands which are checked during the command_inout call.

To simplify the rights management, give the "All Users" user host access right to all hosts ("*.*.*.*")
and read access to all devices ("*/*/*"). With such a set-up for this user, each new user without any rights
defined in the controlled access will have only Read Access to all devices on the control system but from
any hosts. Then, on request, gives Write Access to specific user on specific host (or family) and on specific
device (or family).

The rights managements are done using the Tango Astor[19] tool which has some graphical windows
allowing to grant/revoke user rights and to define device class allowed commands set. The following
window dump shows this Astor window.

CHAPTER 7. ADVANCED FEATURES 189

In this example, the user "taurel" has Write Access to the device "sr/d-ct/1" and to all devices belonging
to the domain "fe" but only from the host "pcantares" He has read access to all other devices but always
only from the host pcantares. The user "verdier" has write access to the device "sys/dev/01" from any host
on the network "160.103.5" and Read Access to all the remaining devices from the same network. All the
other users has only Read Access but from any host.

CHAPTER 7. ADVANCED FEATURES 190

7.14.2 Running a Tango control system with the controlled access
All the users rights are stored in two tables of the Tango database. A dedicated device server called Tan-
goAccessControl access these tables without using the classical Tango database server. This TangoAc-
cessControl device server must be configured with only one device. The property Services belonging to
the free object CtrlSystem is used to run a Tango control system with its controlled access. This property
is an array of string with each string describing the service(s) running in the control system. For controlled
access, the service name is "AccessControl". The service instance name has to be defined as "tango". The
device name associated with this service must be the name of the TangoAccessControl server device. For
instance, if the TangoAccessControl device server device is named sys/access_control/1, one element of
the Services property of the CtrlSystem object has to be set to

AccessControl/tango:sys/access_control/1

If the service is defined but without a valid device name corresponding to the TangoAccessControl
device server, all users from any host will have write access (simulating a Tango control system without
controlled access). Note that this device server connects to the MySQL database and therefore may need the
MySQL connection related environment variables MYSQL_USER and MYSQL_PASSWORD described
in A.12.3.3

Even if a controlled access system is running, it is possible to by-pass it if, in the environment of the
client application, the environment variable SUPER_TANGO is defined to "true". If for one reason or
another, the controlled access server is defined but not accessible, the device right checked at that time will
be Read Access.

Appendix A

Reference part

This chapter is only part of the TANGO device server reference guide. To get reference documen-
tation about the C++ library classes, see [8]. To get reference documentation about the Java classes,
also see [8].

A.1 Device parameter
A black box, a device description field, a device state and status are associated with each TANGO device.

A.1.1 The device black box
The device black box is managed as a circular buffer. It is possible to tune the buffer depth via a device
property. This property name is

device name->blackbox_depth

A default value is hard-coded to 50 if the property is not defined. This black box depth property is retrieved
from the Tango property database during the device creation phase.

A.1.2 The device description field
There are two ways to intialise the device description field.

• At device creation time. Some constructors of the DeviceImpl class supports this field as parameter.
If these constructor are not used, the device description field is set to a default value which is A Tango
device.

• With a property. A description field defines with this method overrides a device description defined
at construction time. The property name is

device name->description

A.1.3 The device state and status
Some constructors of the DeviceImpl class allows the initialisation of device state and/or status or device
creation time. If these fields are not defined, a default value is applied. The default state is Tango::UNKOWN,
the default status is Not Initialised.

A.1.4 The device polling
Seven device properties allow the polling tunning. These properties are described in the following table

191

APPENDIX A. REFERENCE PART 192

Property name property rule default value
poll_ring_depth Polling buffer depth 10

cmd_poll_ring_depth Cmd polling buffer depth
attr_poll_ring_depth Attr polling buffer depth

poll_old_factor "Data too old" factor 4
min_poll_period Minimun polling period

cmd_min_poll_period Min. polling period for cmd
attr_min_poll_period Min. polling period for attr

The rule of the poll_ring_depth property is obvious. It defines the polling ring depth for all the device
polled command(s) and attribute(s). Nevertheless, when filling the polling buffer via the fill_cmd_polling_buffer()
(or fill_attr_polling_buffer()) method, it could be helpfull to define specific polling ring depth for a com-
mand (or an attribute). This is the rule of the cmd_poll_ring_depth and attr_poll_ring_depth properties.
For each polled object with specific polling depth (command or attribute), the syntax of this property is
the object name followed by the ring depth (ie State,20,Status,15). If one of these properties is defined,
for the specific command or attribute, it will overwrite the value set by the poll_ring_depth property. The
poll_old_factor property allows the user to tune how long the data recorded in the polling buffer are valid.
Each time some data are read from the polling buffer, a check is done between the date when the data were
recorded in the polling buffer and the date when the user request these data. If the interval is greater than
the object polling period multiply by the value of the poll_old_factor factory, an exception is returned to
the caller. These two properties are defined at device level and therefore, it is not possible to tune this
parameter for each polled object (command or attribute). The last 3 properties are dedicated to define
a polling period minimum threshold. The property min_poll_period defines in (mS) a device minimum
polling period. Property cmd_min_poll_period defines (in mS) a minimum polling period for a specific
command. The syntax of this property is the command name followed by the minimum polling period
(ie MyCmd,400). Property attr_min_poll_period defines (in mS) a minimum polling period for a specific
attribute. The syntax of this property is the attribute name followed by the minimum polling period (ie
MyAttr,600). These two properties has a higher priority than the min_poll_period property. By default
these three properties are not defined mening that there is no minimun polling period.

Four other properties are used by the Tango core classes to manage the polling thread. These properties
are :

• polled_cmd to memorize the name of the device polled command

• polled_attr to memorize the name of the device polled attribute

• non_auto_polled_cmd to memorize the name of the command which shoule not be polled automati-
cally at the first request

• non_auto_polled_attr to memorize the name of the attribute which should not be polled automatically
at the first request

You don’t have to change these properties values by yourself. They are automatically created/modi-
fied/deleted by Tango core classes.

A.1.5 The device logging
The Tango Logging Service (TLS) uses device properties to control device logging at startup (static con-
figuration). These properties are described in the following table

Property name property rule default value

APPENDIX A. REFERENCE PART 193

logging_level Initial device logging level WARN
logging_target Initial device logging target No default

logging_rft Logging rolling file threshold 20 Mega bytes
logging_path Logging file path /tmp/tango-<logging name> or

C:/tango-<logging name> (Windows)

• The logging_level property controls the initial logging level of a device. Its set of possible values is:
"OFF", "FATAL", "ERROR", "WARN", "INFO" or "DEBUG". This property is overwritten by the
verbose command line option (-v).

• The logging_target property is a multi-valued property containing the initial target list. Each entry
must have the following format: target_type::target_name (where target_type is one of the supported
target types and target_name, the name of the target). Supported target types are: console, file and
device. For a device target, target_name must contain the name of a log consumer device (as defined
in A.9). For a file target, target_name is the name of the file to log to. If omitted the device’s name
is used to build the file name (domain_family_member.log). Finally, target_name is ignored in the
case of a console target. The TLS does not report any error occurred while trying to setup the initial
targets.

– Logging_target property example :

logging_target = ["console", "file", "file::/home/me/mydevice.log", "device::tmp/log/1"]

In this case, the device will automatically logs to the standard output, to its default file (which
is something like domain_family_member.log), to a file named mydevice.log and located in
/home/me. Finally, the device logs are also sent to a log consumer device named tmp/log/1.

• The logging_rft property specifies the rolling file threshold (rft), of the device’s file targets. This
threshold is expressed in Kb. When the size of a log file reaches the so-called rolling-file-threshold
(rft), it is backuped as "current_log_file_name" + "_1" and a new current_log_file_name is opened.
Obviously, there is only one backup file at a time (i.e. any existing backup is destroyed before
the current log file is backuped). The default threshold is 20 Mb, the minimum is 500 Kb and the
maximum is 1000 Mb.

• The logging_path property overwrites the TANGO_LOG_PATH environment variable. This property
can only be applied to a DServer class device and has no effect on other devices.

A.2 Device attribute
Attribute are configured with two kind of parameters: Parameters hard-coded in source code and modifiable
parameters

A.2.1 Hard-coded device attribute parameters
Seven attribute parameters are defined at attribute creation time in the Tango class source code. Obviously,
these parameters are not modifiable except with a new source code compilation. These parameters are

Parameter name Parameter description

APPENDIX A. REFERENCE PART 194

name Attribute name
data_type Attribute data type

data_format Attribute data format
writable Attribute read/write type

max_dim_x Maximum X dimension
max_dim_y Maximum Y dimension

writable_attr_name Associated write attribute
level Attribute display level

root_attr_name Root attribute name

A.2.1.1 The Attribute data type

Thirteen data types are supported. These data types are

• Tango::DevBoolean

• Tango::DevShort

• Tango::DevLong

• Tango::DevLong64

• Tango::DevFloat

• Tango::DevDouble

• Tango::DevUChar

• Tango::DevUShort

• Tango::DevULong

• Tango::DevULong64

• Tango::DevString

• Tango::DevState

• Tango::DevEncoded

A.2.1.2 The attribute data format

Three data format are supported for attribute

Format Description
Tango::SCALAR The attribute value is a single number

Tango::SPECTRUM The attribute value is a one dimension number
Tango::IMAGE The attribute value is a two dimension number

APPENDIX A. REFERENCE PART 195

A.2.1.3 The max_dim_x and max_dim_y parameters

These two parameters defined the maximum size for attributes of the SPECTRUM and IMAGE data format.

data format max_dim_x max_dim_y
Tango::SCALAR 1 0

Tango::SPECTRUM User Defined 0
Tango::IMAGE User Defined User Defined

For attribute of the Tango::IMAGE data format, all the data are also returned in a one dimension array.
The first array is value[0],[0], array element X is value[0],[X-1], array element X+1 is value[1][0] and so
forth.

A.2.1.4 The attribute read/write type

Tango supports four kind of read/write attribute which are :

• Tango::READ for read only attribute

• Tango::WRITE for writable attribute

• Tango::READ_WRITE for attribute which can be read and write

• Tango::READ_WITH_WRITE for a readable attribute associated to a writable attribute (For a power
supply device, the current really generated is not the wanted current. To handle this, two attributes are
defined which are generated_current and wanted_current. The wanted_current is a Tango::WRITE
attribute. When the generated_current attribute is read, it is very convenient to also get the wanted_current
attribute. This is exactly what the Tango::READ_WITH_WRITE attribute is doing)

When read, attribute values are always returned within an array even for scalar attribute. The length of this
array and the meaning of its elements is detailed in the following table for scalar attribute.

Name Array length Array[0] Array[1]
Tango::READ 1 Read value
Tango::WRITE 1 Last write value

Tango::READ_WRITE 2 Read value Last write value
Tango::READ_WITH_WRITE 2 Read value Associated attributelast write value

When a spectrum or image attribute is read, it is possible to code the device class in order to send only
some part of the attribute data (For instance only a Region Of Interest for an image) but never more than
what is defined by the attribute configuration parameters max_dim_x and max_dim_y. The number of data
sent is also transferred with the data and is named dim_x and dim_y. When a spectrum or image attribute
is written, it is also possible to send only some of the attribute data but always less than max_dim_x for
spectrum and max_dim_x * max_dim_y for image. The following table describe how data are returned for
spectrum attribute. dim_x is the data size sent by the server when the attribute is read and dim_x_w is the
data size used during the last attribute write call.

APPENDIX A. REFERENCE PART 196

Name Array length Array[0->dim_x-1] Array[dim_x -> dim_x + dim_x_w -1]
Tango::READ dim_x Read values
Tango::WRITE dim_x_w Last write values

Tango::READ_WRITE dim_x + dim_x_w Read value Last write values
Tango::READ_WITH_WRITE dim_x + dim_x_w Read value Associated attributelast write values

The following table describe how data are returned for image attribute. dim_r is the data size sent by the
server when the attribute is read (dim_x * dim_y) and dim_w is the data size used during the last attribute
write call (dim_x_w * dim_y_w).

Name Array length Array[0->dim_r-1] Array[dim_r-> dim_r + dim_w -1]
Tango::READ dim_r Read values
Tango::WRITE dim_w Last write values

Tango::READ_WRITE dim_r + dim_w Read value Last write values
Tango::READ_WITH_WRITE dim_r + dim_w Read value Associated attributelast write values

Until a write operation has been performed, the last write value is initialized to 0 for scalar attribute of
the numeriacal type, to "Not Initialised" for scalar string attribute and to true for scalar boolean attribute.
For spectrum or image attribute, the last write value is initialized to an array of one element set to 0 for
numerical type, to an array of one element set to true for boolean attribute and to an array of one element
set to "Not initialized" for string attribute

A.2.1.5 The associated write attribute parameter

This parameter has a meaning only for attribute with a Tango::READ_WITH_WRITE read/write type.
This is the name of the associated write attribute.

A.2.1.6 The attribute display level parameter

This parameter is only an help for graphical application. It is a C++ enumeration starting at 0. The code
associated with each attribute display level is defined in the following table (Tango::DispLevel).

name Value
Tango::OPERATOR 0

Tango::EXPERT 1

This parameter allows a graphical application to support two types of operation :

• An operator mode for day to day operation

• An expert mode when tuning is necessary

According to this parameter, a graphical application knows if the attribute is for the operator mode or for
the expert mode.

APPENDIX A. REFERENCE PART 197

A.2.1.7 The root attribute name parameter

In case the attribute is a forwarded one, this parameter is the name of the associated root attribute. In case
of classical attribute, this string is set to "Not specified".

A.2.2 Modifiable attribute parameters
Each attribute has a configuration set of 20 modifiable parameters. These can be grouped in three different
purposes:

1. General purpose parameters

2. Alarm related parameters

3. Event related parameters

A.2.2.1 General purpose parameters

Eight attribute parameters are modifiable at run-time via a device call or via the property database.

Parameter name Parameter description
description Attribute description

label Attribute label
unit Attribute unit

standard_unit Conversion factor to MKSA unit
display_unit The attribute unit in a printable form

format How to print attribute value
min_value Attribute min value
max_value Attribute max value

enum_labels Enumerated labels
memorized Attribute memorization

The description parameter describes the attribute. The label parameter is used by graphical application
to display a label when this attribute is used in a graphical application. The unit parameter is the attribute
value unit. The standard_unit parameter is the conversion factor to get attribute value in MKSA units.
Even if this parameter is a number, it is returned as a string by the device get_attribute_config call. The
display_unit parameter is the string used by graphical application to display attribute unit to application
user. The enum_labels parameter is defined only for attribute of the DEV_ENUM data type. This is a
vector of strings with one string for each enumeration label. It is an ordered list.

A.2.2.1.1 The format attribute parameter This parameter specifies how the attribute value should be
printed. It is not valid for string attribute. This format is a string of C++ streams manipulators separated by
the ; character. The supported manipulators are :

• fixed

• scientific

• uppercase

• showpoint

• showpos

APPENDIX A. REFERENCE PART 198

• setprecision()

• setw()

Their definition are the same than for C++ streams. An example of format parameter is

scientific;uppercase;setprecision(3)

. A class called Tango::AttrManip has been written to handle this format string. Once the attribute format
string has been retrieved from the device, its value can be printed with

cout << Tango::AttrManip(format) << value << endl;

.

A.2.2.1.2 The min_value and max_value parameters These two parameters have a meaning only for
attribute of the Tango::WRITE read/write type and for numerical data types. Trying to set the value of an
attribute to something less than or equal to the min_value parameter is an error. Trying to set the value
of the attribute to something more or equal to the max_value parameter is also an error. Even if these
parameters are numbers, they are returned as strings by the device get_attribute_config() call.

These two parameters have no meaning for attribute with data type DevString, DevBoolean or DevState.
An exception is thrown in case the user try to set them for attribute of these 3 data types.

A.2.2.1.3 The memorized attribute parameter This parameter describes the attribute memorization.
It is an enumeration with the following values:

• NOT_KNOWN : The device is too old to return this information.

• NONE : The attribute is not memorized

• MEMORIZED : The attribute is memorized

• MEMORIZED_WRITE_INIT : The attribute is memorized and the memorized value is applied at
device initialization time.

A.2.2.2 The alarm related configuration parameters

Six alarm related attribute parameters are modifiable at run-time via a device call or via the property
database.

Parameter name Parameter description
min_alarm Attribute low level alarm
max_alarm Attribute high level alarm

min_warning Attribute low level warning
max_warning Attribute high level warning

delta_t delta time for RDS alarm (mS)
delta_val delta value for RDS alarm (absolute)

These parameters have no meaning for attribute with data type DevString, DevBoolean or DevState.
An exception is thrown in case the user try to set them for attribute of these 3 data types.

A.2.2.2.1 The min_alarm and max_alarm parameters These two parameters have a meaning only
for attribute of the Tango::READ, Tango::READ_WRITE and Tango::READ_WITH_WRITE read/write

APPENDIX A. REFERENCE PART 199

type and for numerical data type. When the attribute is read, if its value is something less than or equal
to the min_alarm parameter or if it is something more or equal to the max_alarm parameter, the attribute
quality factor will be set to Tango::ATTR_ALARM and if the device state is Tango::ON, it is switched
to Tango::ALARM. Even if these parameters are numbers, they are returned as strings by the device
get_attribute_config() call.

A.2.2.2.2 The min_warning and max_warning parameters These two parameters have a meaning
only for attribute of the Tango::READ, Tango::READ_WRITE and Tango::READ_WITH_WRITE read-
/write type and for numerical data type. When the attribute is read, if its value is something less than or
equal to the min_warning parameter or if it is something more or equal to the max_warning parameter,
the attribute quality factor will be set to Tango::ATTR_WARNING and if the device state is Tango::ON, it
is switched to Tango::ALARM. Even if these parameters are numbers, they are returned as strings by the
device get_attribute_config() call.

A.2.2.2.3 The delta_t and delta_val parameters These two parameters have a meaning only for at-
tribute of the Tango::READ_WRITE and Tango::READ_WITH_WRITE read/write type and for numerical
data type. They specify if and how the RDS alarm is used. When the attribute is read, if the difference
between its read value and the last written value is something more than or equal to the delta_val parameter
and if at least delta_val milli seconds occurs since the last write operation, the attribute quality factor will
be set to Tango::ATTR_ALARM and if the device state is Tango::ON, it is switched to Tango::ALARM.
Even if these parameters are numbers, they are returned as strings by the device get_attribute_config() call.

A.2.2.3 The event related configuration parameters

Six event related attribute parameters are modifiable at run-time via a device call or via the property
database.

Parameter name Parameter description
rel_change Relative change triggering change event
abs_change Absolute change triggering change event

period Period for periodic event
archive_rel_change Relative change for archive event
archive_abs_change Absolute change for archive event

archive_period Period for change archive event

A.2.2.3.1 The rel_change and abs_change parameters Rel_change is a property with a maximum of
2 values (comma separated). It specifies the increasing and decreasing relative change of the attribute value
(w.r.t. the value of the previous change event) which will trigger the event. If the attribute is a spectrum or
an image then a change event is generated if any one of the attribute value’s satisfies the above criterium.
It’s the absolute value of these values which is taken into account. If only one value is specified then it is
used for the increasing and decreasing change.

Abs_change is a property of maximum 2 values (comma separated). It specifies the increasing and
decreasing absolute change of the attribute value (w.r.t the value of the previous change event) which will
trigger the event. If the attribute is a spectrum or an image then a change event is generated if any one
of the attribute value’s satisfies the above criterium. If only one value is specified then it is used for the
increasing and decreasing change. If no values are specified then the relative change is used.

APPENDIX A. REFERENCE PART 200

A.2.2.3.2 The periodic period parameter The minimum time between events (in milliseconds). If no
property is specified then a default value of 1 second is used.

A.2.2.3.3 The archive_rel_change, archive_abs_change and archive_period parameters archive_rel_change
is an array property of maximum 2 values which specifies the positive and negative relative change w.r.t.
the previous attribute value which will trigger the event. If the attribute is a spectrum or an image then
an archive event is generated if any one of the attribute value’s satisfies the above criterium. If only one
property is specified then it is used for the positive and negative change. If no properties are specified then
a default fo +-10% is used

archive_abs_change is an array property of maximum 2 values which specifies the positive and negative
absolute change w.r.t the previous attribute value which will trigger the event. If the attribute is a spectrum
or an image then an archive event is generated if any one of the attribute value’s satisfies the above criterium.
If only one property is specified then it is used for the positive and negative change. If no properties are
specified then the relative change is used.

archive_period is the minimum time between archive events (in milliseconds). If no property is speci-
fied, no periodic archiving events are send.

A.2.3 Setting modifiable attribute parameters
A default value is given to all modifiable attribute parameters by the Tango core classes. Nevertheless,
it is possible to modify these values in source code at attribute creation time or via the database. Values
retrieved from the database have a higher priority than values given at attribute creation time. The attribute
parameters are therefore initialized from:

1. The Database

2. If nothing in database, from the Tango class default

3. If nothing in database nor in Tango class default, from the library default value

The default value set by the Tango core library are

Parameter type Parameter name Library default value
description "No description"

label attribute name
unit One empty string

general standard_unit "No standard unit"
purpose display_unit "No display unit"

format 6 characters with 2 decimal
min_value "Not specified"
max_value "Not specified"
min_alarm "Not specified"
max_alarm "Not specified"

alarm min_warning "Not specified"
parameters max_warning "Not specified"

delta_t "Not specified"
delta_val "Not specified"

rel_change "Not specified"
abs_change "Not specified"

event period 1000 (mS)
parameters archive_rel_change "Not specified"

archive_abs_change "Not specified"
archive_period "Not specified"

APPENDIX A. REFERENCE PART 201

It is possible to set modifiable parameters via the database at two levels :

1. At class level

2. At device level. Each device attribute have all its modifiable parameters sets to the value defined at
class level. If the setting defined at class level is not correct for one device, it is possible to re-define
it.

If we take the example of a class called BumperPowerSupply with three devices called sr/bump/1, sr/bump/2
and sr/bump/3 and one attribute called wanted_current. For the first two bumpers, the max_value is equal
to 500. For the third one, the max_value is only 400. If the max_value parameter is defined at class level
with the value 500, all devices will have 500 as max_value for the wanted_current attribute. It is necessary
to re-defined this parameter at device level in order to have the max_value for device sr/bump/3 set to 400.

For the description, label, unit, standard_unit, display_unit and format parameters, it is possible to
return them to their default value by setting them to an empty string.

A.2.4 Resetting modifiable attribute parameters
It is possible to reset attribute parameters to their default value at any moment. This could be done via
the network call available through the DeviceProxy::set_attribute_config() method family. This call takes
attribute parameters as strings. The following table describes which string has to be used to reset attribute
parameters to their default value. In this table, the user default are the values given within Pogo in the "Prop-
erties" tab of the attribute edition window (or in in Tango class code using the Tango::UserDefaultAttrProp
class).

Input string Action
"Not specified" Reset to library default

"" (empty string) Reset to user default if any. Otherwise, reset to library default

"NaN" Reset to Tango class default if any
Otherwise, reset to user default (if any) or to library default

Let’s take one exemple: For one attribute belonging to a device, we have the following attribute
parameters:

Parameter name Def. class Def. user Def. lib
standard_unit No standard unit

min_value 5 Not specified
max_value 50 Not specified
rel_change 5 10 Not specified

The string "Not specified" sent to each attribute parameter will set attribute parameter value to "No
standard unit" for standard_unit, "Not specified" for min_value, "Not specified" for max_value and "Not
specified" as well for rel_change. The empty string sent to each attribute parameter will result with "No
stanadard unit" for standard_unit, 5 for min_value, "Not specified" for max_value and 10 for rel_change.

APPENDIX A. REFERENCE PART 202

The string "NaN" will give "No standard unit" for standard_unit, 5 for min_value, 50 for max_value and 5
for rel_change.

C++ specific: Instead of the string "Not specified" and "NaN", the preprocessor define AlrmValueNot-
Spec and NotANumber can be used.

A.3 Device pipe
Pipe are configured with two kind of parameters: Parameters hard-coded in source code and modifiable
parameters

A.3.1 Hard-coded device pipe parameters
Three pipe parameters are defined at pipe creation time in the Tango class source code. Obviously, these
parameters are not modifiable except with a new source code compilation. These parameters are

Parameter name Parameter description
name Pipe name

writable Pipe read/write type
disp_level Pipe display level

A.3.1.1 The pipe read/write type.

Tango supports two kinds of read/write pipe which are :

• Tango::PIPE_READ for read only pipe

• Tango::PIPE_READ_WRITE for pipe which can be read and written

A.3.1.2 The pipe display level parameter

This parameter is only an help for graphical application. It is a C++ enumeration starting at 0. The code
associated with each pipe display level is defined in the following table (Tango::DispLevel).

name Value
Tango::OPERATOR 0

Tango::EXPERT 1

This parameter allows a graphical application to support two types of operation :

• An operator mode for day to day operation

• An expert mode when tuning is necessary

According to this parameter, a graphical application knows if the pipe is for the operator mode or for the
expert mode.

APPENDIX A. REFERENCE PART 203

A.3.2 Modifiable pipe parameters
Each pipe has a configuration set of 2 modifiable parameters. These parameters are modifiable at run-time
via a device call or via the property database.

Parameter name Parameter description
description Pipe description

label Pipe label

The description parameter describes the pipe. The label parameter is used by graphical application to
display a label when this pipe is used in a graphical application.

A.3.3 Setting modifiable pipe parameters
A default value is given to all modifiable pipe parameters by the Tango core classes. Nevertheless, it is
possible to modify these values in source code at pipe creation time or via the database. Values retrieved
from the database have a higher priority than values given at pipe creation time. The pipe parameters are
therefore initialized from:

1. The Database

2. If nothing in database, from the Tango class default

3. If nothing in database nor in Tango class default, from the library default value

The default value set by the Tango core library are

Parameter name Library default value
description "No description"

label pipe name

It is possible to set modifiable parameters via the database at two levels :

1. At class level

2. At device level. Each device pipe have all its modifiable parameters sets to the value defined at class
level. If the setting defined at class level is not correct for one device, it is possible to re-define it.

This is the same principle than the one used for attribute configuration modifiable parameters.

A.3.4 Resetting modifiable pipe parameters
It is possible to reset pipe parameters to their default value at any moment. This could be done via the net-
work call available through the DeviceProxy::set_pipe_config() method family. It uses the same principle
than the one used for resetting modifiable attribute pipe parameters. Refer to their documentation if you
want to know details about this feature.

APPENDIX A. REFERENCE PART 204

A.4 Device class parameter
A device documentation field is also defined at Tango device class level. It is defined as Tango device class
level because each device belonging to a Tango device class should have the same behaviour and therefore
the same documentation. This field is store in the DeviceClass class. It is possible to set this field via a
class property. This property name is

class name->doc_url

and is retrieved when instance of the DeviceClass object is created. A default value is defined for this field.

A.5 The device black box
This black box is a help tool to ease debugging session for a running device server. The TANGO core
software records every device request in this black box. A tango client is able to retrieve the black box
contents with a specific CORBA operation availabble for every device. Each black box entry is returned as
a string with the following information :

• The date where the request has been executed by the device. The date format is dd/mm/yyyy
hh24:mi:ss:SS (The last field is the second hundredth number).

• The type of CORBA requests. In case of attributes, the name of the requested attribute is returned.
In case of operation, the operation type is returned. For “command_inout” operation, the command
name is returned.

• The client host name

A.6 Automatically added commands
As already mentionned in this documentation, each Tango device supports at least three commands which
are State, Status and Init. The following array details command input and output data type

Command name Input data type Output data type
State void Tango::DevState
Status void Tango::DevString

Init void void

A.6.1 The State command
This command gets the device state (stored in its device_state data member) and returns it to the caller.
The device state is a variable of the Tango_DevState type (packed into a CORBA Any object when it is
returned by a command)

A.6.2 The Status command
This command gets the device status (stored in its device_status data member) and returns it to the caller.
The device status is a variable of the string type.

APPENDIX A. REFERENCE PART 205

A.6.3 The Init command
This commands re-initialise a device keeping the same network connection. After an Init command exe-
cuted on a device, it is not necessary for client to re-connect to the device. This command first calls the
device delete_device() method and then execute its init_device() method. For C++ device server, all the
memory allocated in the init_device() method must be freed in the delete_device() method. The language
device desctructor automatically calls the delete_device() method.

A.7 DServer class device commands
As already explained in 6.1.7.2, each device server process has its own Tango device. This device sup-
ports the three commands previously described plus 32 commands which are DevRestart, RestartServer,
QueryClass, QueryDevice, Kill, QueryWizardClassProperty, QueryWizardDevProperty, QuerySubDevice,
the polling related commands which are StartPolling, StopPolling, AddObjPolling, RemObjPolling, Up-
dObjPollingPeriod, PolledDevice and DevPollStatus, the device locking related commands which are
LockDevice, UnLockDevice, ReLockDevices and DevLockStatus, the event related commands called
EventSubscriptionChange, ZmqEventSubscriptionChange and EventConfirmSubscription and finally the
logging related commands which are AddLoggingTarget, RemoveLoggingTarget, GetLoggingTarget, Get-
LoggingLevel, SetLoggingLevel, StopLogging and StartLogging. The following table give all commands
input and output data types

Command name Input data type Output data type
State void Tango::DevState
Status void Tango::DevString

Init void void
DevRestart Tango::DevString void

RestartServer void void
QueryClass void Tango::DevVarStringArray

QueryDevice void Tango::DevVarStringArray
Kill void void

QueryWizardClassProperty Tango::DevString Tango::DevVarStringArray
QueryWizardDevProperty Tango::DevString Tango::DevVarStringArray

QuerySubDevice void Tango::DevVarStringArray
StartPolling void void
StopPolling void void

AddObjPolling Tango::DevVarLongStringArray void
RemObjPolling Tango::DevVarStringArray void

UpdObjPollingPeriod Tango::DevVarLongStringArray void
PolledDevice void Tango::DevVarStringArray
DevPollStatus Tango::DevString Tango::DevVarStringArray
LockDevice Tango::DevVarLongStringArray void

UnLockDevice Tango::DevVarLongStringArray Tango::DevLong
ReLockDevices Tango::DevVarStringArray void
DevLockStatus Tango::DevString Tango::DevVarLongStringArray

EventSubscribeChange Tango::DevVarStringArray Tango::DevLong
ZmqEventSubscriptionChange Tango::DevVarStringArray Tango::DevVarLongStringArray

EventConfirmSubscription Tango::DevVarStringArray void
AddLoggingTarget Tango::DevVarStringArray void

RemoveLoggingTarget Tango::DevVarStringArray void
GetLoggingTarget Tango::DevString Tango::DevVarStringArray

APPENDIX A. REFERENCE PART 206

GetLoggingLevel Tango::DevVarStringArray Tango::DevVarLongStringArray
SetLoggingLevel Tango::DevVarLongStringArray void

StopLogging void void
StartLogging void void

The device description field is set to “A device server device”. Device server started with the -file
command line option also supports a command called QueryEventChannelIOR. This command is used
interanally by the Tango kernel classes when the event system is used with device server using database on
file.

A.7.1 The State command
This device state is always set to ON

A.7.2 The Status command
This device status is always set to “The device is ON” followed by a new line character and a string
describing polling thread status. This string is either “The polling is OFF” or “The polling is ON” according
to polling state.

A.7.3 The DevRestart command
The DevRestart command restart a device. The name of the device to be re-started is the command input
parameter. The command destroys the device by calling its destructor and re-create it from its constructor.

A.7.4 The RestartServer command
The DevRestartServer command restarts all the device pattern(s) embedded in the device server process.
Therefore, all the devices implemented in the server process are destroyed and re-built1. The network
connection between client(s) and device(s) implemented in the device server process is destroyed and re-
built.

Executing this command allows a complete restart of the device server without stopping the process.

A.7.5 The QueryClass command
This command returns to the client the list of Tango device class(es) embedded in the device server. It
returns only class(es) implemented by the device server programmer. The DServer device class name
(implemented by the TANGO core software) is not returned by this command.

A.7.6 The QueryDevice command
This command returns to the client the list of device name for all the device(s) implemented in the device
server process. Each device name is returned using the following syntax :

<class name>::<device name>

The name of the DServer class device is not returned by this command.

1Their black-box is also destroyed and re-built

APPENDIX A. REFERENCE PART 207

A.7.7 The Kill command
This command stops the device server process. In order that the client receives a last answer from the
server, this command starts a thread which will after a short delay, kills the device server process.

A.7.8 The QueryWizardClassProperty command
This command returns the list of property(ies) defined for a class stored in the device server process prop-
erty wizard. For each property, its name, a description and a default value is returned.

A.7.9 The QueryWizardDevProperty command
This command returns the list of property(ies) defined for a device stored in the device server process
property wizard. For each property, its name, a description and a default value is returned.

A.7.10 The QuerySubDevice command
This command returns the list of sub-device(s) imported by each device within the server. A sub-device is a
device used (to execute command(s) and/or to read/write attribute(s)) by one of the device server process
devices. There is one element in the returned strings array for each sub-device. The syntax of each string is
the device name, a space and the sub-device name. In case of device server process starting threads using
a sub-device, it is not possible to link this sub-device to any process devices. In such a case, the string
contains only the sub-device name

A.7.11 The StartPolling command
This command starts the polling thread

A.7.12 The StopPolling command
This command stops the polling thread

A.7.13 The AddObjPolling command
This command adds a new object in the list of object(s) to be polled. The command input parameters are
embedded within a Tango::DevVarLongStringArray data type with one long data and three strings. The
input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
svalue[1] Object type (“command“ or “attribute“)
svalue[2] Object name
lvalue[0] polling period in mS

The object type string is case independent. The object name string (command name or attribute name)
is case dependant. This command does not start polling if it is stopped. This command is not allowed in
case the device is locked and the command requester is not the lock owner.

APPENDIX A. REFERENCE PART 208

A.7.14 The RemObjPolling command
This command removes an object of the list of polled objects. The command input data type is a Tango::DevVarStringArray
with three strings. These strings meaning are :

String Meaning
string[0] Device name
string[1] Object type (“command“ or “attribute“)
string[2] Object name

The object type string is case independent. The object name string (command name or attribute name)
is case dependant. This command is not allowed in case the device is locked and the command requester is
not the lock owner.

A.7.15 The UpdObjPollingPeriod command
This command changes the polling period for a specified object. The command input parameters are
embedded within a Tango::DevVarLongStringArray data type with one long data and three strings. The
input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
svalue[1] Object type (“command“ or “attribute“)
svalue[2] Object name
lvalue[0] new polling period in mS

The object type string is case independent. The object name string (command name or attribute name)
is case dependant. This command does not start polling if it is stopped. This command is not allowed in
case the device is locked and the command requester is not the lock owner.

A.7.16 The PolledDevice command
This command returns the name of device which are polled. Each string in the Tango::DevVarStringArray
returned by the command is a device name which has at least one command or attribute polled. The list is
alphabetically sorted.

A.7.17 The DevPollStatus command
This command returns a polling status for a specific device. The input parameter is a device name. Each
string in the Tango::DevVarStringArray returned by the command is the polling status for each polled
device objects (command or attribute). For each polled objects, the polling status is :

• The object name

• The object polling period (in mS)

• The object polling ring buffer depth

APPENDIX A. REFERENCE PART 209

• The time needed (in mS) for the last command execution or attribute reading

• The time since data in the ring buffer has not been updated. This allows a check of the polling thread

• The delta time between the last records in the ring buffer. This allows checking that the polling
period is respected by the polling thread.

• The exception parameters in case of the last command execution or the last attribute reading failed.

A new line character is inserted between each piece of information.

A.7.18 The LockDevice command
This command locks a device for the calling process. The command input parameters are embedded within
a Tango::DevVarLongStringArray data type with one long data and one string. The input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
lvalue[0] Lock validity

A.7.19 The UnLockDevice command
This command unlocks a device. The command input parameters are embedded within a Tango::DevVarLongStringArray
data type with one long data and one string. The input parameters are:

Command parameter Parameter meaning
svalue[0] Device name
lvalue[0] Force flag

The force flag parameter allows a client to unlock a device already locked by another process (for admin
usage only)

A.7.20 The ReLockDevices command
This command re-lock devices. The input argument is the list of devices to be re-locked. It’s an error to
re-lock a device which is not already locked.

A.7.21 The DevLockStatus command
This command returns a device locking status to the caller. Its input parameter is the device name. The
output parameters are embedded within a Tango::DevVarLongStringArray data type with three strings and
six long. These data are

Command parameter Parameter meaning

APPENDIX A. REFERENCE PART 210

svalue[0] Locking string
svalue[1] CPP client host IP address or "Not defined"
svalue[2] Java VM main class for Java client or "Not defined"
lvalue[0] Lock flag (1 if locked, 0 othterwise)
lvalue[1] CPP client host IP address or 0 for Java locker
lvalue[2] Java locker UUID part 1or 0 for CPP locker
lvalue[3] Java locker UUID part 2 or 0 for CPP locker
lvalue[4] Java locker UUID part 3 or 0 for CPP locker
lvalue[5] Java locker UUID part 4 or 0 for CPP locker

A.7.22 The EventSubscriptionChange command (C++ server only)
This command is used as a piece of the "heartbeat" system between an event client and the device server
generating the event. There is no reason to generate events if there is no client which has subscribed to
it. It is used by the DeviceProxy::subscribe_event() method and one of the event thread on the client side
to inform the server to keep on generating events for the attribute in question. It reloads the subscription
timer with the current time. Events are not generated when there are no clients subscribed within the last
10 minutes. The input parameters are:

Command parameter Parameter meaning
argin[0] Device name
argin[1] Attribute name
argin[2] action ("subscribe" or "unsubsribe")
argin[3] event name ("change", "periodic", "archive","attr_conf")

The command output data is the simply the Tango release used by the device server process. This is
necessary for compatibility reason.

A.7.23 The ZmqEventSubscriptionChange command
This command is used as a piece of the "heartbeat" system between an event client and the device server
generating the event when client and/or device server uses Tango release 8 or above. There is no reason to
generate events if there is no client which has subscribed to it. It is used by the DeviceProxy::subscribe_event()
method and one of the event thread on the client side to inform the server to keep on generating events for
the attribute in question. It reloads the subscription timer with the current time. Events are not generated
when there are no clients subscribed within the last 10 minutes. The input parameters are the same than
the one used for the EventSubscriptionChange command. They are:

Command in parameter Parameter meaning
argin[0] Device name
argin[1] Attribute name
argin[2] action ("subscribe" or "unsubsribe")
argin[3] event name ("change", "periodic", "archive","attr_conf")

APPENDIX A. REFERENCE PART 211

The command output parameters aer all the necessary data to build one event connection between a
client and the device server process generating the events. This means:

Command out parameter Parameter meaning
svalue[0] Heartbeat ZMQ socket connect end point
svalue[1] Event ZMQ socket connect end point
lvalue[0] Tango lib release used by device server
lvalue[1] Device IDL release
lvalue[2] Subscriber HWM
lvalue[3] Rate (Multicasting related)
lvalue[4] IVL (Multicasting related)

A.7.24 The EventConfirmSubscription command
This command is used by client to regularly notify to device server process their interest in receiving
events. If this command is not received, after a delay of 600 sec (10 mins), event(s) will not be sent any
more. The input parameters for the EventConfirmSubscription command must be a multiple of 3. They are
3 parameters for each event confirmed by this command. Per event, these parameters are:

Command in parameter Parameter meaning
argin[x] Device name

argin[x + 1] Attribute name
argin[x + 2] Event name

A.7.25 The AddLoggingTarget command
This command adds one (or more) logging target(s) to the specified device(s). The command input param-
eter is an array of string logically composed of {device_name, target_type::target_name} groups where the
elements have the following semantic:

• device_name is the name of the device which logging behavior is to be controlled. The wildcard "*"
is supported to apply the modification to all devices encapsulated within the device server (e.g. to
ask all devices to log to the same device target).

• target_type::target_name: target_type is one of the supported target types and target_name, the name
of the target. Supported target types are: console, file and device. For a device target, target_name
must contain the name of a log consumer device (as defined in A.9). For a file target, target_name
is the full path to the file to log to. If omitted the device’s name is used to build the file name
(domain_family_member.log). Finally, target_name is ignored in the case of a console target and
can be omitted.

This command is not allowed in case the device is locked and the command requester is not the lock owner.

APPENDIX A. REFERENCE PART 212

A.7.26 The RemoveLoggingTarget command
Remove one (or more) logging target(s) from the specified device(s).The command input parameter is an
array of string logically composed of {device_name, target_type::target_name} groups where the elements
have the following semantic:

• device_name: the name of the device which logging behavior is to be controlled. The wildcard "*"
is supported to apply the modification to all devices encapsulated within the device server (e.g. to
ask all devices to stop logging to a given device target).

• target_type::target_name: target_type is one of the supported target types and target_name, the name
of the target. Supported target types are: console, file and device. For a device target, target_name
must contain the name of a log consumer device (as defined in A.9). For a file target, target_name
is the full path to the file to log to. If omitted the device’s name is used to build the file name
(domain_family_member.log). Finally, target_name is ignored in the case of a console target and
can be omitted.

The wildcard "*" is supported for target_name. For instance, RemoveLoggingTarget (["*", "device::*"])
removes all the device targets from all the devices running in the device server. This command is not
allowed in case the device is locked and the command requester is not the lock owner.

A.7.27 The GetLoggingTarget command
Returns the current target list of the specified device. The command parameter device_name is the name
of the device which logging target list is requested. The list is returned as a DevVarStringArray containing
target_type::target_name elements.

A.7.28 The GetLoggingLevel command
Returns the logging level of the specified devices. The command input parameter device_list contains
the names of the devices which logging target list is requested. The wildcard "*" is supported to get the
logging level of all the devices running within the server. The string part of the result contains the name of
the devices and its long part contains the levels. Obviously, result.lvalue[i] is the current logging level of
the device named result.svalue[i].

A.7.29 The SetLoggingLevel command
Changes the logging level of the specified devices. The string part of the command input parameter contains
the device names while its long part contains the logging levels. The set of possible values for levels is:
0=OFF, 1=FATAL, 2=ERROR, 3=WARNING, 4=INFO, 5=DEBUG.

The wildcard "*" is supported to assign all devices the same logging level. For instance, SetLoggin-
gLevel (["*"] [3]) set the logging level of all the devices running within the server to WARNING. This
command is not allowed in case the device is locked and the command requester is not the lock owner.

A.7.30 The StopLogging command
For all the devices running within the server, StopLogging saves their current logging level and set their
logging level to OFF.

A.7.31 The StartLogging command
For each device running within the server, StartLogging restores their logging level to the value stored
during a previous StopLogging call.

APPENDIX A. REFERENCE PART 213

A.8 DServer class device properties
This device has two properties related to polling threads pool management plus another one for the choice
of polling algorithm. These properties are described in the following table

Property name property rule default value
polling_threads_pool_size Max number of thread in the polling pool 1
polling_threads_pool_conf Polling threads pool configuration

polling_before_9 Choice of the polling algorithm false

The rule of the polling_threads_pool_size is to define the maximun number of thread created for the
polling threads pool size. The rule of the polling_threads_pool_conf is to define which thread in the pool
is in charge of all the polled object(s) of which device. This property is an array of strings with one string
per used thread in the pool. The content of the string is simply a device name list with device name splitted
by a comma. Example of polling_threads_pool_conf property for 3 threads used:

dserver/<ds exec name>/<inst. name>/polling_threads_pool_conf-> the/dev/01
the/dev/02,the/dev/06
the/dev/03

Thread number 2 is in charge of 2 devices. Note that there is an entry in this list only for the used threads
in the pool.

The rule of the polling_before_9 property is to select the polling algorithm which was used in Tango
device server process before Tango release 9.

A.9 Tango log consumer

A.9.1 The available Log Consumer
One implementation of a log consumer associated to a graphical user interface is available within Tango.
It is a standalone java application called LogViewer based on the publicly available chainsaw application
from the log4j package. It supports two way of running which are:

• The static mode: In this mode, LogViewer is started with a parameter which is the name of the log
consumer device implemented by the application. All messages sent by devices with a logging target
type set to device and with a logging target name set to the same device name than the device name
passed as application parameter will be displayed (if the logging level allows it).

• The dynamic mode: In this mode, the name of the log consumer device implemented by the applica-
tion is build at application startup and is dynamic. The user with the help of the graphical interface
chooses device(s) for which he want to see log messages.

A.9.2 The Log Consumer interface
A Tango Log Consumer device is nothing but a tango device supporting the following tango command :

void log (Tango::DevVarStringArray details)

where details is an array of string carrying the log details. Its structure is:

• details[0] : the timestamp in millisecond since epoch (01.01.1970)

APPENDIX A. REFERENCE PART 214

• details[1] : the log level

• details[2] : the log source (i.e. device name)

• details[3] : the log message

• details[4] : the log NDC (contextual info) - Not used but reserved

• details[5] : the thread identifier (i.e. the thread from which the log request comes from)

These log details can easily be extended. Any tango device supporting this command can act as a device
target for other devices.

A.10 Control system specific
It is possible to define a few control system parameters. By control system, we mean for each set of
computers having the same database device server (the same TANGO_HOST environment variable)

A.10.1 The device class documentation default value
Each control system may have it’s own default device class documentation value. This is defined via a class
property. The property name is

Default->doc_url

It’s retrieved if the device class itself does not define any doc_url property. If the Default->doc_url property
is also not defined, a hard-coded default value is provided.

A.10.2 The services definition
The property used to defined control system services is named Services and belongs to the free object
CtrlSystem. This property is an array of strings. Each string defines a service available within the control
system. The syntax of each service definition is

Service name/Instance name:service device name

A.10.3 Tuning the event system buffers (HWM)
Starting with Tango release 8, ZMQ is used for the event based communication between clients and device
server processes. ZMQ implementation provides asynchronous communication in the sense that the data to
be transmitted is first stored in a buffer and then really sent on the network by dedicated threads. The size
of this buffers (on client and device server side) is called High Water Mark (HWM) and is tunable. This is
tunable at several level.

1. The library set a default value of 1000 for both buffers (client and device server side)

2. Control system properties used to tune these size are named DSEventBufferHwm (device server
side) and EventBufferHwm (client side). They both belongs to the free object CtrlSystem. Each
property is the max number of events storable in these buffer.

3. At client or device server level using the library calls Util::set_ds_event_buffer_hwm() documented
in [24] or ApiUtil::set_event_buffer_hwm() documented in ??

4. Using environment variables TANGO_DS_EVENT_BUFFER_HWM or TANGO_EVENT_BUFFER_HWM

APPENDIX A. REFERENCE PART 215

A.10.4 Allowing NaN when writing attributes (floating point)
A property named WAttrNaNAllowed belonging to the free object CtrlSystem allows a Tango control
system administrator to allow or disallow NaN numbers when writing attributes of the DevFloat or De-
vDouble data type. This is a boolean property and by default, it’s value is taken as false (Meaning NaN
values are rejected).

A.10.5 Tuning multicasting event propagation
Starting with Tango 8.1, it is possible to transfer event(s) between devices and clients using a multicast pro-
tocol. The properties MulticastEvent, MulticastRate, MulticastIvl and MulticastHops also belonging
to the free object CtrlSystem allow the user to configure which events has to be sent using multicasting
and with which parameters. See chapter "Advanced features/Using multicast protocol to transfer events"
to get details about these properties.

A.10.6 Summary of CtrlSystem free object properties
The following table summarizes properties defined at control system level and belonging to the free object
CtrlSystem

Property name property rule default value
Services List of defined services No default

DsEventBufferHwm DS event buffer high water mark 1000
EventBufferHwm Client event buffer high water mark 1000

WAttrNaNAllowed Allow NaN when writing attr. false
MulticastEvent List of multicasting events No default
MulticastRate Rate for multicast event transport 80
MulticastIvl Time to keep data for re-transmission 20

MulticastHops Max number of eleemnts to cross 5

A.11 C++ specific

A.11.1 The Tango master include file (tango.h)
Tango has a master include file called

tango.h

This master include file includes the following files :

• Tango configuration include file : tango_config.h

• CORBA include file : idl/tango.h

• Some network include files for WIN32 : winsock2.h and mswsock.h

• C++ streams include file :

– iostream, sstream and fstream

• Some standard C++ library include files : memory, string and vector

• A long list of other Tango include files

APPENDIX A. REFERENCE PART 216

A.11.2 Tango specific pre-processor define
The tango.h previously described also defined some pre-processor macros allowing Tango release to be
checked at compile time. These macros are:

• TANGO_VERSION_MAJOR

• TANGO_VERSION_MINOR

• TANGO_VERSION_PATCH

For instance, with Tango release 8.1.2, TANGO_VERSION_MAJOR will be set to 8 while TANGO_VERSION_MINOR
will be 1 and TANGO_VERSION_PATCH will be 2.

A.11.3 Tango specific types
Operating system free type

Some data type used in the TANGO core software have been defined. They are described in the following
table.

Type name C++ name
TangoSys_MemStream stringstream

TangoSys_OMemStream ostringstream
TangoSys_Pid int

TangoSys_Cout ostream

These types are defined in the tango_config.h file

A.11.3.1 Template command model related type

As explained in 6.4.8, command created with the template command model uses static casting. Many type
definition have been written for these casting.

Class name Command allowed method (if any) Command execute method
TemplCommand Tango::StateMethodPtr Tango::CmdMethPtr

TemplCommandIn Tango::StateMethodPtr Tango::CmdMethPtr_xxx
TemplCommandOut Tango::StateMethodPtr Tango::xxx_CmdMethPtr

TemplCommandInOut Tango::StateMethodPtr Tango::xxx_CmdMethPtr_yyy

The Tango::StateMethPtr is a pointer to a method of the DeviceImpl class which returns a boolean
and has one parameter which is a reference to a const CORBA::Any obect.

The Tango::CmdMethPtr is a pointer to a method of the DeviceImpl class which returns nothing and
needs nothing as parameter.

The Tango::CmdMethPtr_xxx is a pointer to a method of the DeviceImpl class which returns nothing
and has one parameter. xxx must be set according to the method parameter type as described in the next
table

APPENDIX A. REFERENCE PART 217

Tango type short cut (xxx)
Tango::DevBoolean Bo

Tango::DevShort Sh
Tango::DevLong Lg
Tango::DevFloat Fl

Tango::DevDouble Db
Tango::DevUshort US
Tango::DevULong UL
Tango::DevString Str

Tango::DevVarCharArray ChA
Tango::DevVarShortArray ShA
Tango::DevVarLongArray LgA
Tango::DevVarFloatArray FlA

Tango::DevVarDoubleArray DbA
Tango::DevVarUShortArray USA
Tango::DevVarULongArray ULA
Tango::DevVarStringArray StrA

Tango::DevVarLongStringArray LSA
Tango::DevVarDoubleStringArray DSA

Tango::DevState Sta

For instance, a pointer to a method which takes a Tango::DevVarStringArray as input parameter must
be statically casted to a Tango::CmdMethPtr_StrA, a pointer to a method which takes a Tango::DevLong
data as input parameter must be statically casted to a Tango::CmdMethPtr_Lg.

The Tango::xxx_CmdMethPtr is a pointer to a method of the DeviceImpl class which returns data of
one of the Tango type and has no input parameter. xxx must be set according to the method return data type
following the same rules than those described in the previous table. For instance, a pointer to a method
which returns a Tango::DevDouble data must be statically casted to a Tango::Db_CmdMethPtr.

The Tango::xxx_CmdMethPtr_yyy is a pointer to a method of the DeviceImpl class which returns
data of one of the Tango type and has one input parameter of one of the Tango data type. xxx and yyy must
be set according to the method return data type and parameter type following the same rules than those
described in the previous table. For instance, a pointer to a method which returns a Tango::DevDouble data
and which takes a Tango::DevVarLongStringArray must be statically casted to a Tango::Db_CmdMethPtr_LSA.

All those type are defined in the tango_const.h file.

A.11.4 Tango device state code
The Tango::DevState type is a C++ enumeration starting at 0. The code associated with each state is defined
in the following table.

State name Value
Tango::ON 0
Tango::OFF 1

Tango::CLOSE 2
Tango::OPEN 3

Tango::INSERT 4
Tango::EXTRACT 5

APPENDIX A. REFERENCE PART 218

Tango::MOVING 6
Tango::STANDBY 7

Tango::FAULT 8
Tango::INIT 9

Tango::RUNNING 10
Tango::ALARM 11

Tango::DISABLE 12
Tango::UNKNOWN 13

A strings array called Tango::DevStateName can be used to get the device state as a string. Use the
Tango device state code as index into the array to get the correct string.

A.11.5 Tango data type
A “define” has been created for each Tango data type. This is summarized in the following table

Type name Type code Value
Tango::DevBoolean Tango::DEV_BOOLEAN 1

Tango::DevShort Tango::DEV_SHORT 2
Tango::DevLong Tango::DEV_LONG 3
Tango::DevFloat Tango::DEV_FLOAT 4

Tango::DevDouble Tango::DEV_DOUBLE 5
Tango::DevUShort Tango::DEV_USHORT 6
Tango::DevULong Tango::DEV_ULONG 7
Tango::DevString Tango::DEV_STRING 8

Tango::DevVarCharArray Tango::DEVVAR_CHARARRAY 9
Tango::DevVarShortArray Tango::DEVVAR_SHORTARRAY 10
Tango::DevVarLongArray Tango::DEVVAR_LONGARRAY 11
Tango::DevVarFloatArray Tango::DEVVAR_FLOATARRAY 12

Tango::DevVarDoubleArray Tango::DEVVAR_DOUBLEARRAY 13
Tango::DevVarUShortArray Tango::DEVVAR_USHORTARRAY 14
Tango::DevVarULongArray Tango::DEVVAR_ULONGARRAY 15
Tango::DevVarStringArray Tango::DEVVAR_STRINGARRAY 16

Tango::DevVarLongStringArray Tango::DEVVAR_LONGSTRINGARRAY 17
Tango::DevVarDoubleStringArray Tango::DEVVAR_DOUBLESTRINGARRAY 18

Tango::DevState Tango::DEV_STATE 19
Tango::ConstDevString Tango::CONST_DEV_STRING 20

Tango::DevVarBooleanArray Tango::DEVVAR_BOOLEANARRAY 21
Tango::DevUChar Tango::DEV_UCHAR 22
Tango::DevLong64 Tango::DEV_LONG64 23

Tango::DevULong64 Tango::DEV_ULONG64 24
Tango::DevVarLong64Array Tango::DEVVAR_LONG64ARRAY 25

Tango::DevVarULong64Array Tango::DEVVAR_ULONG64ARRAY 26
Tango::DevInt Tango::DEV_INT 27

Tango::DevEncoded Tango::DEV_ENCODED 28
Tango::DevEnum Tango::DEV_ENUM 29

Tango::DevPipeBlob Tango::DEV_PIPE_BLOB 30
Tango::DevVarStateArray Tango::DEVVAR_STATEARRAY 31

APPENDIX A. REFERENCE PART 219

For command which do not take input parameter, the type code Tango::DEV_VOID (value = 0) has
been defined.

A strings array called Tango::CmdArgTypeName can be used to get the data type as a string. Use the
Tango data type code as index into the array to get the correct string.

A.11.6 Tango command display level
Like attribute, Tango command has a display level. The Tango::DispLevel type is a C++ enumeration
starting at 0. The code associated with each command display level is already described in page 196

As for attribute, this parameter allows a graphical application to support two types of operation :

• An operator mode for day to day operation

• An expert mode when tuning is necessary

According to this parameter, a graphical application knows if the command is for the operator mode or for
the expert mode.

A.12 Device server process option and environment variables

A.12.1 Classical device server
The synopsis of a device server process is

ds_name instance_name [OPTIONS]

The supported options are :

• -h, -? -help
Print the device server synopsis and a list of instance name defined in the database for this device
server. An instance name in not mandatory in the command line to use this option

• -v[trace level]
Set the verbose level. If no trace level is given, a default value of 4 is used

• -file=<file name path>
Start a device server using an ASCII file instead of the Tango database.

• -nodb
Start a device server without using the database.

• -dlist <device name list>
Give the device name list. This option is supported only with the -nodb option.

• ORB options (started with -ORBxxx)
Options directly passed to the underlying ORB. Should be rarely used except the -ORBendPoint
option for device server not using the database

A.12.2 Device server process as Windows service
When used as a Windows service, a Tango device server supports several new options. These options are :

• -i
Install the service

APPENDIX A. REFERENCE PART 220

• -s
Install the service and choose the automatic startup mode

• -u
Un-install the service

• -dbg
Run in console mode to debug service. The service must have been installed prior to use it.

Note that these options must be used after the device server instance name.

A.12.3 Environment variables
A few environment variables can be used to tune a Tango control system. TANGO_HOST is the most
important one but on top it, some Tango features like Tango logging service or controlled access (if used)
can be tuned using environment variable. If these environment variables are not defined, the software
searches in the file $HOME/.tangorc for its value. If the file is not defined or if the environment variable
is also not defined in this file, the software searches in the file /etc/tangorc for its value. For Windows,
the file is $TANGO_ROOT/tangorc TANGO_ROOT being the mandatory environment variable of the
Windows binary distribution.

A.12.3.1 TANGO_HOST

This environment variable is the anchor of the system. It specifies where the Tango database server is
running. Most of the time, its syntax is

TANGO_HOST=<host>:<port>

host is the name of the computer where the database server is running and port is th eport number on which
it is litenning. If you want to have a Tango control system which has several database servers (but only one
database) in order to survive a database server crashes, use the following syntax

TANGO_HOST=<host_1>:<port_1>,<host_2>:<port_2>,<host_3>:<port_3>

Obviously, host_1 is the name of the computer where the first database server is running, port_1 is the port
number on which this server is listenning. host_2 is the name of the computer where the second database
server is running and port_2 is its port number. All access to database will automatically switch from one
server to another one in the list if the one which was used has died.

A.12.3.2 Tango Logging Service (TANGO_LOG_PATH)

The TANGO_LOG_PATH environment variable can be used to specify the log files location. If not set it
defaults to /tmp/tango-<user logging name> under Unix and C:/tango-<user logging name> under Win-
dows. For a given device-server, the files are actually saved into $TANGO_LOG_PATH/{ server_name}/{
server_instance_name}. This means that all the devices running within the same process log into the same
directory.

A.12.3.3 The database and controlled access server (MYSQL_USER, MYSQL_PASSWORD, MYSQL_HOST
and MYSQL_DATABASE)

The Tango database server and the controlled access server (if used) need to connect to the MySQL
database. They are using four environment variables called MYSQL_USER, MYSQL_PASSWORD to
know which user/password they must use to access the database, MYSQL_HOST in case the MySQL
database is running on another host and MYSQL_DATABASE to specify the name of the database to con-
nect to. The MYSQL_HOST environment variable allows you to specify the host and port number where
MySQL is running. Its syntax is

host:port

APPENDIX A. REFERENCE PART 221

The port definition is optional. If it is not specified, the default MySQL port will be used. If these envi-
ronment variables are not defined, they will connect to the DBMS using the "root" login on localhost with
the MySQL default port number (3306). The MYSQL_DATABASE environment variable has to be used
in case your are using the same Tango Database device server executable code to connect to several Tango
databases each of them having a different name.

A.12.3.4 The controlled access

Even if a controlled access system is running, it is possible to by-pass it if in the environment of the client
application the environment variable SUPER_TANGO is defined to "true".

A.12.3.5 The event buffer size

If required, the event buffer used by the ZMQ software could be tuned using environment variables. These
variables are named TANGO_DS_EVENT_BUFFER_HWM for the event buffer on a device server side
and TANGO_EVENT_BUFFER_HWM for the event buffer on the client size. Both of them are a number
which is the maximum number of events which could be stored in these buffers.

Appendix B

The TANGO IDL file : Module Tango

The fundamental idea of a device as a network object which has methods and data has been retained for
TANGO. In TANGO objects are real C++/Java objects which can be instantiated and accessed via their
methods and data by the client as if they were local objects. This interface is defined in CORBA IDL. The
fundamental interface is Device. All TANGO control objects will be of this type i.e. they will implement
and offer the Device interface. Some wrapper classes group in an API will hide the calls to the Device
interface from the client so that the client will only see the wrapper classes. All CORBA details will be
hidden from the client as far as possible.

B.1 Aliases
AttributeConfigList

typedef sequence<AttributeConfig> AttributeConfigList;

AttributeConfigList_2

typedef sequence<AttributeConfig_2> AttributeConfigList_2;

AttributeConfigList_3

typedef sequence<AttributeConfig_3> AttributeConfigList_3;

AttributeConfigList_5

typedef sequence<AttributeConfig_5> AttributeConfigList_5;

AttributeDimList

typedef sequence<AttributeDim> AttributeDimList;

AttributeValueList

typedef sequence<AttributeValue> AttributeValueList;

AttributeValueList_3

222

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 223

typedef sequence<AttributeValue_3> AttributeValueList_3;

AttributeValueList_4

typedef sequence<AttributeValue_4> AttributeValueList_4;

AttributeValueList_5

typedef sequence<AttributeValue_5> AttributeValueList_5;

AttrQualityList

typedef sequence<AttrQuality> AttrQualityList;

CppClntIdent

typedef unsigned long CppClntIdent;

DevAttrHistoryList

typedef sequence<DevAttrHistory> DevAttrHistoryList;

DevAttrHistoryList_3

typedef sequence<DevAttrHistory_3> DevAttrHistoryList_3;

DevBoolean

typedef boolean DevBoolean;

DevCmdHistoryList

typedef sequence<DevCmdHistory> DevCmdHistoryList

DevCmdInfoList

typedef sequence<DevCmdInfo> DevCmdInfoList;

DevCmdInfoList_2

typedef sequence<DevCmdInfo_2> DevCmdInfoList_2;

DevDouble

typedef double DevDouble;

DevErrorList

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 224

typedef sequence<DevError> DevErrorList;

DevErrorListList

typedef sequence<DevErrorList> DevErrorListList;

DevFloat

typedef float DevFloat;

DevLong

typedef long DevLong;

DevShort

typedef short DevShort;

DevString

typedef string DevString;

DevULong

typedef unsigned long DevULong;

DevUShort

typedef unsigned short DevUShort;

DevVarCharArray

typedef sequence<octet> DevVarCharArray;

DevVarDoubleArray

typedef sequence<double> DevVarDoubleArray;

DevVarEncodedArray

typedef sequence<DevEncoded> DevVarEncodedArray;

DevVarFloatArray

typedef sequence<float> DevVarFloatArray;

DevVarLongArray

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 225

typedef sequence<long> DevVarLongArray;

DevVarPipeDataEltArray

typedef sequence<DevPipeDataElt> DevVarPipeDataEltArray;

DevVarShortArray

typedef sequence<short> DevVarShortArray;

DevVarStateArray
typedef sequence<DevState> DevVarStateArray;

DevVarStringArray

typedef sequence<string> DevVarStringArray;

DevVarULongArray

typedef sequence<unsigned long> DevVarULongArray;

DevVarUShortArray

typedef sequence<unsigned short> DevVarUShortArray;

EltInArrayList

typedef sequence<EltInArray> EltInArrayList;

JavaUUID

typedef unsigned long long JavaUUID[2];

PipeConfigList
typedef sequence<PipeConfig> PipeConfigList;

NamedDevErrorList
typedef sequence<NamedDevError> NamedDevErrorList;

TimeValList

typedef sequence<TimeVal> TimeValList;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 226

B.2 Enums
AttrDataFormat

enum AttrDataFormat
{

SCALAR,
SPECTRUM,
IMAGE,
FMT_UNKNOWN

};

AttributeDataType

enum AttributeDataType
{

ATT_BOOL,
ATT_SHORT,
ATT_LONG,
ATT_LONG64,
ATT_FLOAT,
ATT_DOUBLE,
ATT_UCHAR,
ATT_USHORT,
ATT_ULONG,
ATT_ULONG64,
ATT_STRING,
ATT_STATE,
DEVICE_STATE,
ATT_ENCODED,
ATT_NO_DATA

};

AttrQuality

enum AttrQuality
{

ATTR_VALID,
ATTR_INVALID,
ATTR_ALARM,
ATTR_CHANGING,
ATTR_WARNING

};

AttrWriteType

enum AttrWriteType
{

READ,
READ_WITH_WRITE,
WRITE,
READ_WRITE,
WT_UNKNOWN

};

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 227

DispLevel

enum DispLevel
{

OPERATOR,
EXPERT,
DL_UNKNOWN

};

DevSource

enum DevSource
{

DEV,
CACHE,
CACHE_DEV

};

DevState

enum DevState
{

ON,
OFF,
CLOSE,
OPEN,
INSERT,
EXTRACT,
MOVING,
STANDBY,
FAULT,
INIT,
RUNNING,
ALARM,
DISABLE,
UNKNOWN

};

ErrSeverity

enum ErrSeverity
{

WARN,
ERR,
PANIC

};

LockerLanguage

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 228

enum LockerLanguage
{

CPP,
JAVA

};

PipeWriteType
enum PipeWriteType
{

PIPE_READ,
PIPE_READ_WRITE,
PIPE_WT_UNKNOWN

};

B.3 Structs
ArchiveEventProp

struct ArchiveEventProp
{

string rel_change;
string abs_change;
string period;
DevVarStringArray extensions;

};

AttributeAlarm
struct AttributeAlarm
{

string min_alarm;
string max_alarm;
string min_warning;
string max_warning;
string delta_t;
string delta_val;
DevVarStringArray extensions;

};

AttDataReady
struct AttributeAlarm
{

string name;
long data_type;
long ctr;

};

AttributeConfig
struct AttributeConfig
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
long data_type;
long max_dim_x;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 229

long max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;
string min_value;
string max_value;
string min_alarm;
string max_alarm;
string writable_attr_name;
DevVarStringArray extensions;

};

AttributeConfig_2

struct AttributeConfig_2
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
long data_type;
long max_dim_x;
long max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;
string min_value;
string max_value;
string min_alarm;
string max_alarm;
string writable_attr_name;
DispLevel level;
DevVarStringArray extensions;

};

AttributeConfig_3

struct AttributeConfig_3
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
long data_type;
long max_dim_x;
long max_dim_y;
string description;
string label;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 230

string unit;
string standard_unit;
string display_unit;
string format;
string min_value;
string max_value;
string writable_attr_name;
DispLevel level;
AttributeAlarm alarm;
EventProperties event_prop;
DevVarStringArray extensions;
DevVarStringArray sys_extensions;

};

AttributeConfig_5

struct AttributeConfig_5
{

string name;
AttrWriteType writable;
AttrDataFormat data_format;
long data_type;
boolean memorized;
boolean mem_init;
long max_dim_x;
long max_dim_y;
string description;
string label;
string unit;
string standard_unit;
string display_unit;
string format;
string min_value;
string max_value;
string writable_attr_name;
DispLevel level;
string root_attr_name;
DevVarStringArray enum_labels;
AttributeAlarm att_alarm;
EventProperties event_prop;
DevVarStringArray extensions;
DevVarStringArray sys_extensions;

};

AttributeDim

struct AttributeDim
{

long dim_x;
long dim_y;

};

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 231

AttributeValue

struct AttributeValue
{

any value;
AttrQuality quality;
TimeVal time;
string name;
long dim_x;
long dim_y;

};

AttributeValue_3

struct AttributeValue_3
{

any value;
AttrQuality quality;
TimeVal time;
string name;
AttributeDim r_dim;
AttributeDim w_dim;
DevErrorList err_list;

};

AttributeValue_4

struct AttributeValue_4
{

AttrValUnion value;
AttrQuality quality;
AttrDataFormat data_format;
TimeVal time;
string name;
AttributeDim r_dim;
AttributeDim w_dim;
DevErrorList err_list;

};

AttributeValue_5

struct AttributeValue_5
{

AttrValUnion value;
AttrQuality quality;
AttrDataFormat data_format;
long data_type;
TimeVal time;
string name;
AttributeDim r_dim;
AttributeDim w_dim;
DevErrorList err_list;

};

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 232

ChangeEventProp

struct ChangeEventProp
{

string rel_change;
string abs_change;
DevVarStringArray extensions;

};

DevAttrHistory

struct DevAttrHistory
{

boolean attr_failed;
AttributeValue value;
DevErrorList errors;

};

DevAttrHistory_3

struct DevAttrHistory_3
{

boolean attr_failed;
AttributeValue_3 value;

};

DevAttrHistory_4

struct DevAttrHistory_4
{

string name;
TimeValList dates;
any value;
AttrQualityList quals;
EltInArrayList quals_array;
AttributeDimList r_dims;
EltInArrayList r_dims_array;
AttributeDimList w_dims;
EltInArrayList w_dims_array;
DevErrorListList errors;
EltInArrayList errors_array;

};

DevAttrHistory_5

struct DevAttrHistory_5
{

string name;
AttrDataFormat data_format;
long data_type;
TimeValList dates;
any value;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 233

AttrQualityList quals;
EltInArrayList quals_array;
AttributeDimList r_dims;
EltInArrayList r_dims_array;
AttributeDimList w_dims;
EltInArrayList w_dims_array;
DevErrorListList errors;
EltInArrayList errors_array;

};

DevCmdHistory

struct DevCmdHistory
{

TimeVal time;
boolean cmd_failed;
any value;
DevErrorList errors;

};

DevCmdHistory_4

struct DevCmdHistory_4
{

TimeValList dates;
any value;
AttributeDimList dims;
EltInArrayList dims_array;
DevErrorListList errors;
EltInArrayList errors_array;
long cmd_type;

};

DevCmdInfo

struct DevCmdInfo
{

string cmd_name;
long cmd_tag;
long in_type;
long out_type;
string in_type_desc;
string out_type_desc;

};

DevCmdInfo_2

struct DevCmdInfo_2
{

string cmd_name;
DispLevel level;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 234

long cmd_tag;
long in_type;
long out_type;
string in_type_desc;
string out_type_desc;

};

DevEncoded

struct DevEncoded
{

DevString encoded_format;
DevVarCharArray encoded_data;

};

DevError

struct DevError
{

string reason;
ErrSeverity severity;
string desc;
string origin;

};

DevInfo

struct DevInfo
{

string dev_class;
string server_id;
string server_host;
long server_version;
string doc_url;

};

DevInfo_3

struct DevInfo_3
{

string dev_class;
string server_id;
string server_host;
long server_version;
string doc_url;
string dev_type;

};

DevIntrChange

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 235

struct DevIntrChange
{

boolean dev_started;
DevCmdInfoList_2 cmds;
AttributeConfigList_5 atts;

};

DevPipeBlob

struct DevPipeBlob
{

string name;
DevVarPipeDataEltArray blob_data;

};

DevPipeData

struct DevPipeData
{

string name;
TimeVal time;
DevPipeBlob data_blob;

};

DevPipeDataElt

struct DevPipeDataElt
{

string name;
AttrValUnion value;
DevVarPipeDataEltArray inner_blob;
string inner_blob_name;

};

DevVarDoubleStringArray

struct DevVarDoubleStringArray
{

DevVarDoubleArray dvalue;
DevVarStringArray svalue;

};

DevVarLongStringArray

struct DevVarLongStringArray
{

DevVarLongArray lvalue;
DevVarStringArray svalue;

};

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 236

EltInArray

struct EltInArray
{

long start;
long nb_elt;

};

EventProperties

struct EventProperties
{

ChangeEventProp ch_event;
PeriodicEventProp per_event;
ArchiveEventProp arch_event;

};

JavaClntIdent

struct JavaClntIdent
{

string MainClass;
JavaUUID uuid;

};

NamedDevError

struct NamedDevError
{

string name;
long index_in_call;
DevErrorList err_list;

};

PeriodicEventProp

struct PeriodicEventProp
{

string period;
DevVarStringArray extensions;

};

PipeConfig

struct PipeConfig
{

string name;
string description;
string label;
DispLevel level;
PipeWriteType writable;
DevVarStringArray extensions;

};

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 237

TimeVal

struct TimeVal
{

long tv_sec;
long tv_usec;
long tv_nsec;

};

ZmqCallInfo

struct ZmqCallInfo
{

long version;
unsigned long ctr;
string method_name;
DevVarCharArray oid;
boolean call_is_except;

};

B.4 Unions
AttrValUnion

union AttrValUnion switch (AttributeDataType)
{
case ATT_BOOL:

DevVarBooleanArray bool_att_value;
case ATT_SHORT:

DevVarShortArray short_att_value;
case ATT_LONG:

DevVarLongArray long_att_value;
case ATT_LONG64:

DevVarLong64Array long64_att_value;
case ATT_FLOAT:

DevVarFloatArray float_att_value;
case ATT_DOUBLE:

DevVarDoubleArray double_att_value;
case ATT_UCHAR

DevVarCharArray uchar_att_value;
case ATT_USHORT:

DevVarUShortArray ushort_att_value;
case ATT_ULONG:

DevVarULongArray ulong_att_value;
case ATT_ULONG64:

DevVarULong64Array ulong64_att_value;
case ATT_STRING:

DevVarStringArray string_att_value;
case ATT_STATE:

DevVarStateArray state_att_value;
case DEVICE_STATE:

DevState dev_state_att;
case ATT_ENCODED:

DevVarEncodedArray encoded_att_value;

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 238

case ATT_NO_DATA:
DevBoolean union_no_data;

};

ClntIdent
union ClntIdent switch (LockerLanguage)
{
case CPP:

CppClntIdent cpp_clnt;
case JAVA:

JavaClntIdent java_clnt;
};

B.5 Exceptions
DevFailed

exception DevFailed
{

DevErrorList errors;
};

MultiDevFailed
exception MultiDevFailed
{

NamedDevErrorList errors;
};

B.6 Interface Tango::Device
The fundamental interface for all TANGO objects. Each Device is a network object which can be accessed
locally or via network. The network protocol on the wire will be IIOP. The Device interface implements
all the basic functions needed for doing generic synchronous and asynchronous I/O on a device. A Device
object has data and actions. Data are represented in the form of Attributes. Actions are represented in the
form of Commands. The CORBA Device interface offers attributes and methods to access the attributes
and commands. A client will either use these methods directly from C++ or Java or access them via
wrapper classes implemented in a API. The Device interface describes only the remote network interface.
Implementation features like threads, command security, priority etc. are dealt with in server side of the
device server model.

B.6.1 Attributes
adm_name

readonly attribute string adm_name;
adm_name (readonly) - administrator device unique ascii identifier

description

readonly attribute string description;
description (readonly) - general description of device

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 239

name

readonly attribute string name;
name (readonly) - unique ascii identifier

state

readonly attribute DevState state;
state (readonly) - device state

status

readonly attribute string status;
status (readonly) - device state as ascii string

B.6.2 Operations
black_box

DevVarStringArray black_box(in long number)
raises(DevFailed);

read list of last N commands executed by clients

Parameters:
number – of commands to return

Returns:
list of command and clients

command_inout

any command_inout(in string command, in any argin)
raises(DevFailed);

execute a command on a device synchronously with no input parameter and one one output parameter

Parameters:
command – ascii string e.g. "On"
argin – command input parameter e.g. float

Returns:
command result.

command_list_query

DevCmdInfoList command_list_query()
raises(DevFailed);

query device to see what commands it supports

Returns:
list of commands and their types

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 240

command_query

DevCmdInfo command_query(in string command)
raises(DevFailed);

query device to see command argument

Parameters:
command – name

Returns:
command and its types

get_attribute_config

AttributeConfigList get_attribute_config(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute configurations read

info

DevInfo info()
raises(DevFailed);

return general information about object e.g. class, type, ...

Returns:
device info

ping

void ping()
raises(DevFailed);

ping a device to see if it alive

read_attributes

AttributeValueList read_attributes(in DevVarStringArray names)
raises(DevFailed);

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute values read

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 241

set_attribute_config

void set_attribute_config(in AttributeConfigList new_conf)
raises(DevFailed);

set the configuration for a variable list of attributes from the device

Parameters:
new_conf – list of attribute configuration to be set

write_attributes

void write_attributes(in AttributeValueList values)
raises(DevFailed);

write a variable list of attributes to a device

Parameters:
values – list of attribute values to write

B.7 Interface Tango::Device_2
interface Device_2 inherits from Tango::Device

The updated Tango device interface. It inherits from Tango::Device and therefore supports all at-
tribute/operation defined in the Tango::Device interface. Two CORBA operations have been modified to
support more parameters (command_inout_2 and read_attribute_2). Three CORBA operations now retrun
a different data type (command_list_query_2, command_query_2 and get_attribute_config)

B.7.1 Operations
command_inout_2

any command_inout_2(in string command, in any argin, in DevSource source)
raises(DevFailed);

execute a command on a device synchronously with no input parameter and one one output parameter

Parameters:
command – ascii string e.g. "On"
argin – command input parameter
source – data source

Returns:
command result.

command_inout_history_2

DevCmdHistoryList command_inout_history_2(in string command, in long n)
raises(DevFailed);

Get command result history from polling buffer. Obviously, the command must be polled.

Parameters:

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 242

command – ascii string e.g. "On"
n – record number

Returns:
list of command result (or exception parameters if the command failed).

command_list_query_2

DevCmdInfoList_2 command_list_query_2()
raises(DevFailed);

query device to see what commands it supports

Returns:
list of commands and their types

command_query_2

DevCmdInfo_2 command_query_2(in string command)
raises(DevFailed);

query device to see command argument

Parameters:
command – name

Returns:
command and its types

get_attribute_config_2

AttributeConfigList_2 get_attribute_config_2(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute configurations read

read_attributes_2

AttributeValueList read_attributes_2(in DevVarStringArray names, in DevSource source)
raises(DevFailed)

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute values read

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 243

read_attribute_history_2

DevAttrHistoryList read_attributes_history_2(in string name, in long n)
raises(DevFailed)

Get attribute value history from polling buffer. Obviously, the attribute must be polled.

Parameters:
name – Attribute name to read history
n – Record number

Returns:
list of attribute value (or exception parameters if the attribute failed).

B.8 Interface Tango::Device_3
interface Device_3 inherits from Tango::Device_2

The updated Tango device interface for Tango release 5. It inherits from Tango::Device_2 and there-
fore supports all attribute/operation defined in the Tango::Device_2 interface. Six CORBA operations
now return a different data type (read_attributes_3, write_attributes_3, read_attribute_history_3, info_3,
get_attribute_config_3 and set_attribute_config_3)

B.8.1 Operations
read_attributes_3

AttributeValueList_3 read_attributes_3(in DevVarStringArray names, in DevSource source)
raises(DevFailed);

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read
source – data source

Returns:
list of attribute values read

write_attributes_3

void write_attributes_3(in AttributeValueList values)
raises(DevFailed, MultiDevFailed);

write a variable list of attributes to a device

Parameters:
values – list of attribute values to write

read_attribute_history_3

DevAttrHistoryList_3 read_attributes_history_3(in string name, in long n)
raises(DevFailed)

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 244

Get attribute value history from polling buffer. Obviously, the attribute must be polled.

Parameters:
name – Attribute name to read history
n – Record number

Returns:
list of attribute value (or exception parameters if the attribute failed).

info_3

DevInfo_3 info()
raises(DevFailed);

return general information about object e.g. class, type, ...

Returns:
device info

get_attribute_config_3

AttributeConfigList_3 get_attribute_config_3(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute configurations read

set_attribute_config_3

void set_attribute_config_3(in AttributeConfigList_3 new_conf)
raises(DevFailed);

set the configuration for a variable list of attributes from the device

Parameters:
new_conf – list of attribute configuration to be set

B.9 Interface Tango::Device_4
interface Device_4 inherits from Tango::Device_3

The updated Tango device interface for Tango release 7. It inherits from Tango::Device_3 and therefore
supports all attribute/operation defined in the Tango::Device_3 interface.

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 245

B.9.1 Operations
read_attributes_4

AttributeValueList_4 read_attributes_4(in DevVarStringArray names, in DevSource source,in ClntI-
dent cl_ident)

raises(DevFailed);

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read
source – data source
cl_ident – client identificator

Returns:
list of attribute values read

write_attributes_4

void write_attributes_3(in AttributeValueList_4 values, in ClniIdent cl_ident)
raises(DevFailed, MultiDevFailed);

write a variable list of attributes to a device

Parameters:
values – list of attribute values to write
cl_ident – client identificator

command_inout_4

any command_inout_4(in string command, in any argin, in DevSource source, In ClntIdent cl_ident)
raises(DevFailed);

Execute a command on a device synchronously with one input parameter and one one output parameter

Parameters:
command – ascii string e.g. "On"
argin – command input parameter
source – data source
cl_ident – client identificator

Returns:
command result

read_attribute_history_4

DevAttrHistory_4 read_attributes_history_4(in string name, in long n)
raises(DevFailed)

Get attribute value history from polling buffer. Obviously, the attribute must be polled.

Parameters:
name – Attribute name to read history
n – Record number

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 246

Returns:
Attribute value (or exception parameters if the attribute failed) coded in a structure.

command_inout_history_4

DevCmdHistory_4 command_inout_history_4(in string command, in long n)
raises(DevFailed);

Get command value history from polling buffer. Obviously, the command must be polled.

Parameters:
name – Command name to read history
n – Record number

Returns:
Command value (or exception paramteters) coded in a structure

write_read_attribute_4

AttributeValueList_4 write_read_attribute_4(in AttributeValueList_4 values, in ClntIdent cl_ident)
raises(DevFailed,MultiDevFailed);

Write then read a variable list of attributes from a device

Parameters:
values – list of attribute values to write
cl_ident – client identificator

Returns:
list of attribute values read

set_attribute_config_4

void set_attribute_config_4(in AttributeConfigList_3 new_conf, in ClntIdent cl_ident)
raises(DevFailed);

set the configuration for a variable list of attributes from the device

Parameters:
new_conf – list of attribute configuration to be set
cl_ident – client identificator

Interface Tango::Device_4
interface Device_4 inherits from Tango::Device_3

The updated Tango device interface for Tango release 7. It inherits from Tango::Device_3 and therefore
supports all attribute/operation defined in the Tango::Device_3 interface.

B.10 Interface Tango::Device_5
interface Device_5 inherits from Tango::Device_4

The updated Tango device interface for Tango release 9. It inherits from Tango::Device_4 and therefore
supports all attribute/operation defined in the Tango::Device_4 interface.

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 247

B.10.1 operations
get_attribute_config_5

AttributeConfigList_5 get_attribute_config_5(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of attributes from a device

Parameters:
name – list of attribute names to read

Returns:
list of attribute configurations read

set_attribute_config_5

void set_attribute_config_5(in AttributeConfigList_5 new_conf, in ClntIdent cl_ident)
raises(DevFailed);

set the configuration for a variable list of attributes from the device

Parameters:
new_conf – list of attribute configuration to be set
cl_ident – client identificator

read_attributes_5
AttributeValueList_5 read_attributes_5(in DevVarStringArray names, in DevSource source,in ClntI-

dent cl_ident)
raises(DevFailed);

read a variable list of attributes from a device

Parameters:
name – list of attribute names to read
source – data source
cl_ident – client identificator

Returns:
list of attribute values read

write_read_attributes_5
AttributeValueList_5 write_read_attributes_5(in AttributeValueList_4 values, in DevVarStringArray

r_names, in ClntIdent cl_ident)
raises(DevFailed,MultiDevFailed);

Write then read a variable list of attributes from a device

Parameters:
values – list of attribute values to write
r_names – list of attribute to read
cl_ident – client identificator

Returns:
list of attribute values read

read_attribute_history_5

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 248

DevAttrHistory_5 read_attributes_history_5(in string name, in long n)
raises(DevFailed)

Get attribute value history from polling buffer. Obviously, the attribute must be polled.

Parameters:
name – Attribute name to read history
n – Record number

Returns:
Attribute value (or exception parameters if the attribute failed) coded in a structure.

get_pipe_config_5
PipeConfigList get_pipe_config_5(in DevVarStringArray names)
raises(DevFailed);

read the configuration for a variable list of pipes from a device

Parameters:
name – list of pipe names to read

Returns:
list of pipe configurations

set_pipe_config_5
void set_pipe_config_5(in PipeConfigList new_conf, in ClntIdent cl_ident)
raises(DevFailed);

set the configuration for a variable list of pipes from the device

Parameters:
new_conf – list of pipe configuration to be set
cl_ident – client identificator

read_pipe_5
DevPipeData read_pipe_5(in string name, in ClntIdent cl_ident)
raises(DevFailed);

read a pipe from a device

Parameters:
name – pipe name to read
cl_ident – client identificator

Returns:
Pipe value

write_pipe_5

void write_pipe_5(in DevPipeData value, in ClniIdent cl_ident)
raises(DevFailed);

write a pipe to a device

Parameters:
value – new pipe value to write

APPENDIX B. THE TANGO IDL FILE : MODULE TANGO 249

cl_ident – client identificator

write_read_pipe_5
DevPipeData write_read_pipe_5(in DevPipeData value, in ClntIdent cl_ident)
raises(DevFailed);

Write then read a pipe from a device

Parameters:
value – New pipe value to write
cl_ident – client identificator

Returns:
pipe values read

Appendix C

Tango object naming (device, attribute
and property)

C.1 Device name
A Tango device name is a three fields name. The field separator is the / character. The first field is named
domain, the second field is named family and the last field is named member.A tango device name looks
like

domain/family/member

It is a hierarchical notation. The member specifies which element within a family. The family specifies
which kind of equipment within a domain. The domain groups devices related to which part of the accel-
erator/experiment they belongs to. At ESRF, some of the machine control system domain name are SR for
the storage ring, TL1 for the transfer line 1 or SY for the synchrotron booster. For experiment, ID11 is
the domain name for all devices belonging to the experiment behind insertion device 11. Here are some
examples of Tango device name used at the ESRF :

• sr/d-ct/1 : The current transformer. The domain part is sr for storage ring. The family part is d-ct for
diagnostic/current transformer and the member part is 1

• fe/v-pen/id11-1 : A Penning gauge. The domain part is fe for front-end. The family part is v-pen for
vacuum/penning and the member name is id11-1 to specify that this is the first gauge on the front-end
part after the insertion device 11

C.2 Full object name
The device name as described above is not enough to cover all Tango usage like device server without
database or device access for multi control system. With the naming schema, we must also be able to name
attribute and property. Therefore, the full naming schema is

[protocol://][host:port/]device_name[/attribute][->property][#dbase=xx]

The protocol, host, port, attribute, property and dbase fields are optional. The meaning of these fields are
:

protocol : Specifies which protocol is used (Tango or Taco). Tango is the default

dbase=xx : The supported value for xx is yes and no. This field is used to specify that the device is a
device served by a device server started with or without database usage. The default value is
dbase=yes

250

APPENDIX C. TANGO OBJECT NAMING (DEVICE, ATTRIBUTE AND PROPERTY) 251

host:port : This field has different meaning according to the dbase value. If dbase=yes (the default), the
host is the host where the control system database server is running and port is the database
server port. It has a higher priority than the value defined by the TANGO_HOST environment
variable. If dbase=no, host is the host name where the device server process serving the device
is running and port is the device server process port.

attribute : The attribute name

property : The property name

The host:port and dbase=xx fields are necessary only when creating the DeviceProxy object used to re-
motely access the device. The -> characters are used to specify a property name.

C.2.1 Some examples
C.2.1.1 Full device name examples

• gizmo:20000/sr/d-ct/1 : Device sr/d-ct/1 running in a specified control system with the database
server running on a host called gizmo and using the port number 20000. The TANGO_HOST envi-
ronment variable will not be used.

• tango://freak:2345/id11/rv/1#dbase=no : Device served by a device server started without database.
The server is running on a host called freak and use port number 2345. //freak:2345/id11/rv/1#dbase=no
is also possible for the same device.

• Taco://sy/ps-ki/1 : Taco device sy/ps-ki/1

C.2.1.2 Attribute name examples

• id11/mot/1/Position : Attribute position for device id11/mot/1

• sr/d-ct/1/Lifetime : Attribute lifetime for Tango device sr/d-ct/1

C.2.1.3 Attribute property name

• id11/rv/1/temp->label : Property label for attribute temp for device id11/rv/1.

• sr/d-ct/1/Lifetime->unit : The unit property for the Lifetime attribute of the sr/d-ct/1 device

C.2.1.4 Device property name

• sr/d-ct/1->address : the address property for device sr/d-ct/1

C.2.1.5 Class property name

• Starter->doc_url : The doc_url property for a class called Starter

C.3 Device and attribute name alias
Within Tango, each device or attribute can have an alias name defined in the database. Every time a device
or an attribute name is requested by the API’s, it is possible to use the alias. The alias is simply an open
string stored in the database. The rule of the alias is to give device or attribute name a name more natural
from the physicist point of view. Let’s imagine that for experiment, the sample position is described by
angles called teta and psi in physics book. It is more natural for physicist when they move the motor related
to sample position to use teta and psi rather device name like idxx/mot/1 or idxx/mot/2. An attribute alias is a
synonym for the four fields used to name an attribute. For instance, the attribute Current of a power-supply
device called sr/ps/dipole could have an alias DipoleCurrent. This alias can be used when creating an

APPENDIX C. TANGO OBJECT NAMING (DEVICE, ATTRIBUTE AND PROPERTY) 252

instance of a AttributeProxy class instead of the full attribute name which is sr/ps/dipole/Current. Device
alias name are uniq within a Tango control system. Attribute alias name are also uniq within a Tango
control system.

C.4 Reserved words and characters, limitations
From the naming schema described above, the reserved characters are :,#,/ and the reserved string is : ->.
On top of that, the dbt_update tool (tool to fulfill database from the content of a file) reserved the device
word

The device name, its domain, member and family fields and its alias are stored in the Tango database.
The default maximum size for these items are :

Item max length
device name 255
domain field 85
family field 85

member field 85
device alias name 255

The device name, the command name, the attribute name, the property name, the device alias name and
the device server name are case insensitive.

Appendix D

Starting a Tango control system

D.1 Without database
When used without database, there is no additional process to start. Simply starts device server using the
-nodb option (and eventually the -dlist option) on specific port. See 7.12 to find informations on how to
start/write Tango device server not using the database.

D.2 With database
Starting the Tango control system simply means starting its database device server on a well defined host
using a well defined port. Use the host name and the port number to build the TANGO_HOST environment
variable. See 6.6.2 to find how starting a device server on a specific host. Obviously, the underlying
database software (MySQL) must be started before the Tango database device server. The Tango database
server connects to MySQL using a default logging name set to "root". You can change this behaviour with
the MYSQL_USER and MYSQL_PASSWORD environment variables. Define them before starting the
database server.

If you are using the Tango administration graphical tool called Astor, you also need to start a specific
Tango device server called Starter on each host where Tango device server(s) are running. See [19] for
Astor documentation. This starter device server is able to start even before the Tango database device server
is started. In this case, it will enter a loop in which it periodically tries to access the Tango database device.
The loop exits and the server starts only if the database device access succeed.

D.3 With database and event

D.3.1 For Tango releases lower than 8
On top of what is described in the previous chapter, using event means using CORBA Notification service.
Start one Notification Service daemon on each host where device server(s) used via events are running. The
Notification Service daemon event channel factory IOR has to be registered in the Tango database. This
is done with the notifd2db command. The notification daemon is a process with a high thread number.
By default, Unix like operating systems reserve a big amount of memory for each thread stack (8 MByte
for Linux/Ubuntu, 10 MByte for Linux/RedHat 4). If your process has several hundreds of threads, this
could generate a too high memory requirement on virtual memory and even exceed the maximun allowed
memory per process (3 GBytes on Linux for 32 bits computer). The notification service daemon works
very well with a value of only 2 Mybtes for thread stack. The Unix command line "ulimit -s 2048" asks the
operating system to give 2 Mbytes for each thread stack. Example of starting and registering a Notification
Service daemon on a UNIX like operating system

253

APPENDIX D. STARTING A TANGO CONTROL SYSTEM 254

1 ulimit -s 2048
2 notifd -n -DDeadFilterInterval=300 &
3 notifd2db

The Notification Service daemon is started at line 2. Its "-DDeadFilterInterval" option is used to specify
some internal cleaning of dead objects within the notification service. The "-n" option is used to disable
the use of the CORBA Naming Service for registering the default event channel factory. The registration
of the Notification Service daemon in the Tango database is done at line 2.

It differs on a Windows computer

1 notifd -n -DDeadFilterInterval=300 -DFactoryIORFileName=C:\Temp\evfact.ior &
2 notifd2db C:\Temp\evfact.ior

D.3.2 For release 8 and above
A new event system has been implemented starting with Tango release 8. With this new event system, the
CORBA Notification service is not needed any more. This means that as soon as all Tango device server
processes running on a host and all clients using events from their devices used Tango 8, it is not required
to start any process other than the device servers and the clients. You can forget the previous sub-chapter!

D.4 With file used as database
When used with database on file, there is no additional process to start. Simply starts device server using
the -file option specifying file name port. See 7.11 to find informations on how to start Tango device server
using database on file.

D.5 With file used as database and event

D.5.1 For Tango releases lower than 8
Using event means using CORBA Notification service. Start one Notification Service daemon on the host
where device server(s) using events are running. The Notification Service daemon event channel factory
IOR has to be registered in the file(s) use as database. This is done with the notifd2db command. Example
of starting and registering a Notification Service daemon on a UNIX like operating system

1 notifd -n -DDeadFilterInterval=300 &
2 notifd2db -o /var/myfile.res

The Notification Service daemon is started at line 1. Its "-n" option is used to disable the use of
the CORBA Naming Service for registering the default event channel factory. The registration of the
Notification Service daemon in the file used as database is done at line 2 with its -o command line option.

It differs on a Windows computer because the name of the file used by the CORBA notification service
to store its channel factory IOR must be specified using its -D command line option. This file name has
also to be passed to the notifd2db command.

APPENDIX D. STARTING A TANGO CONTROL SYSTEM 255

1 notifd -n -DDeadFilterInterval=300 -DFactoryIORFileName=C:\Temp\evfact.ior &
2 notifd2db C:\Temp\evfact.ior -o C:\Temp\myfile.res

D.5.2 For release 8 and above
A new event system has been implemented starting with Tango release 8. With this new event system, the
CORBA Notification service is not needed any more. This means that as soon as all clients using events
from devices embedded in the device server use Tango 8, it is not required to start any process other than
the device server and its clients.

D.6 With the controlled access
Using the Tango controlled access means starting a specific device server called TangoAccessControl. By
default, this server has to be started with the instance name set to "1" and its device name is "sys/ac-
cess_control/1". The command line to start this device server is:

TangoAccessControl 1

This server connects to MySQL using a default logging name set to "root". You can change this behaviour
with the MYSQL_USER and MYSQL_PASSWORD environment variables. Define them before starting
the controlled access device server. This server also uses the MYSQL_HOST environment variable if you
need to connect it to some MySQL server running on another host. The syntax of this environment varaible
is "host:port". Port is optional and if it is not defined, the MySQL default port is used (3306). If it is not
defined at all, a connection to the localhost is made. This controlled access system uses the Tango database
to retrieve user rights and it is not possible to run it in a Tango control system running without database.

Appendix E

The notifd2db utility

E.1 The notifd2db utility usage (For Tango releases lower than 8)
The notifd2db utility is used to pass to Tango the necessary information for the Tango servers or clients to
build connection with the CORBA notification service. Its usage is:

notifd2db [notifd2db_IOR_file] [host] [-o Device_server_database_file_name] [-h]

The [notifd2db_IOR_file] parameter is used to specify the file name used by the notification service
to store its main IOR. This parameter is not mandatoty. Its default value is /tmp/rdfact.ior. The [host]
parameter is ued to specify on which host the notification service should be exported. The default value
is the host on which the command is run. The [-o Device_server_database_file_name] is used in case of
event and device server started with the file as database (the -file device server command line option). The
file name used here must be the file name used by the device server in its -file option. The [-h] option is
just to display an help message. Notifd2db utility usage example:

notifd2db

to register notification service on the current host using the default notifictaion service IOR file name.

notifd C:\Temp\nd.ior

to register a notification service with IOR file named C:\Temp\nd.ior.

notifd -o /var/my_ds_file.res

to register notification service in the /var/my_ds_file.res file used by a device server started with the device
server -file command line option.

256

Appendix F

The property file syntax

F.1 Property file usage
A property file is a file where you store all the property(ies) related to device(s) belonging to a specific
device server process. In this file, one can find:

• Which device(s) has to be created for each Tango class embedded in the device server process

• Device(s) properties

• Device(s) attribute properties

This type of file is not required by a Tango control system. These informations are stored in the Tango
database and having them also in a file could generate some data duplication issues. Nevertheless, in some
cases, it could very very helpful to generate this type of file. These cases are:

1. If you want to run a device server process on a host which does not have access to the Tango control
system database. In such a case, the user can generate the file from the database content and run the
device server process using this file as database (-file option of device server process)

2. In case of massive property changes where no tool will be more adapted than your favorite text editor.
In such a case, the user can generate a file from the database content, change/add/modify file contents
using his favorite tool and then reload file content into the database.

Jive[21] is the tool provided to generate and load a property file. To generate a device server process
properties file, select your device server process in the "Server" tab, right click and select "Save Server
Data". A file selection window pops up allowing you to choose your file name and path. To reload a file in
the Tango database, click on "File" then "Load Property File".

F.2 Property file syntax

1 #---
2 # SERVER TimeoutTest/manu, TimeoutTest device declaration
3 #---
4
5 TimeoutTest/manu/DEVICE/TimeoutTest: "et/to/01",\
6 "et/to/02",\
7 "et/to/03"
8
9

257

APPENDIX F. THE PROPERTY FILE SYNTAX 258

10 # --- et/to/01 properties
11
12 et/to/01->StringProp: Property
13 et/to/01->ArrayProp: 1,\
14 2,\
15 3
16 et/to/01->attr_min_poll_period: TheAttr,\
17 1000
18 et/to/01->AnotherStringProp: "A long string"
19 et/to/01->ArrayStringProp: "the first prop",\
20 "the second prop"
21
22 # --- et/to/01 attribute properties
23
24 et/to/01/TheAttr->display_unit: 1.0
25 et/to/01/TheAttr->event_period: 1000
26 et/to/01/TheAttr->format: %4d
27 et/to/01/TheAttr->min_alarm: -2.0
28 et/to/01/TheAttr->min_value: -5.0
29 et/to/01/TheAttr->standard_unit: 1.0
30 et/to/01/TheAttr->__value: 111
31 et/to/01/BooAttr->event_period: 1000doc_url
32 et/to/01/TestAttr->display_unit: 1.0
33 et/to/01/TestAttr->event_period: 1000
34 et/to/01/TestAttr->format: %4d
35 et/to/01/TestAttr->standard_unit: 1.0
36 et/to/01/DbAttr->abs_change: 1.1
37 et/to/01/DbAttr->event_period: 1000
38
39 CLASS/TimeoutTest->InheritedFrom: Device_4Impl
40 CLASS/TimeoutTest->doc_url: "http://www.esrf.fr/some/path"

Line 1 - 3: Comments. Comment starts with the ’#’ character
Line 4: Blank line
Line 5 - 7: Devices definition. "DEVICE" is the keyword to declare a device(s) definition sequence.

The general syntax is:

<DS name>/<inst name>/DEVICE/<Class name>: dev1,dev2,dev3

Device(s) name can follow on next line if the last line character is ’\’ (see line 5,6). The ’"’ characters
around device name are generated by the Jive tool and are not mandatory.

Line 12: Device property definition. The general device property syntax is

<device name>-><property name>: <property value>

In case of array, the array element delimiter is the character ’,’. Array definition can be splitted on several
lines if the last line character is ’\’. Allowed characters after the ’:’ delimiter are space, tabulation or
nothing.

Line 13 - 15 and 16 - 17: Device property (array)
Line 18: A device string property with special characters (spaces). The ’"’ character is used to delimit

the string
Line 24 - 37: Device attribute property definition. The general device attribute property syntax is

<device name>/<attribute name>-><property name>: <property value>

APPENDIX F. THE PROPERTY FILE SYNTAX 259

Allowed characters after the ’:’ delimiter are space, tabulation or nothing.
Line 39 - 40: Class property definition. The general class property syntax is

CLASS/<class name>-><property name>: <property value>

"CLASS" is the keyword to declare a class property definition. Allowed characters after the ’:’ delimiter
are space, tabulation or nothing. On line 40, the ’"’ characters around the property value are mandatory
due to the ’/’ character contains in the property value.

List of pictures

• Cover page: From http://www.juliaetandres.com

• on page 10: By O. Chevre from http://www.forteresses.free.fr

• on page 21: From http://www.photo-evasion.com licence "Creative Commons"

• on page 31: By R. STEINMANN © ECK2000

• on page 66: By R. STEINMANN © ECK2000

• on page 86: By R. STEINMANN © ECK2000

• on page 160: By O. Chevre from http://www.forteresses.free.fr

• on page 190: By R. STEINMANN © ECK2000

260

Bibliography

[1] OMG home page

[2] "Advanced CORBA programming with C++" by M.Henning and S.Vinosky (Addison-Wesley 1999)

[3] TANGO home page

[4] ALBA home page

[5] Soleil home page

[6] MySQL home page

[7] "MySQL and mSQL" by Randy Jay Yarger, George Reese and Tim King (O’Reilly 1999)

[8] Tango classes on-line documentation

[9] "C++ programming language" third edition by Stroustrup (Addison-Wesley)

[10] "Design Patterns" by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (Addison-Wesley
1995)

[11] omniORB home page

[12] The Common Object Request Broker: Architecture and Specification Revision 2.3 available from
OMG home page

[13] Java Pro - June 1999 : Plugging memory leak by Tony Leung

[14] CVS WEB page - http://www.cyclic.com

[15] POGO home page

[16] JacORB home page

[17] Tango ATK reference on-line documentation

[18] The Notification Service specification available from OMG home page - http://www.omg.org

[19] ASTOR home page

[20] Elettra home page

[21] JIVE home page

[22] Tango ATK Tutorials

[23] ZMQ home page

[24] Tango class development reference documentation

261

http://www.omg.org
http://www.tango-controls.org
http://www.cells.es
http://www.synchrotron-soleil.fr
http://www.mysql.com
http://www.tango-controls.org/device-servers
http://omniorb.sourceforge.net
http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/pogo_doc/index.html
http://www.jacorb.org
http://www.esrf.eu/computing/cs/tango/tango_doc/atk_doc/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/astor_doc/index.html
http://www.elettra.trieste.it
http://www.esrf.eu/computing/cs/tango/tango_doc/tools_doc/jive_doc/index.html
http://www.esrf.eu/computing/cs/tango/tango_doc/atk_tutorial/Tutorials.pdf
http://www.zeromq.org
http://www.esrf.eu/computing/cs/tango/tango_doc/kernel_doc/cpp_doc/index.html

Index

-WIN32-WINNT, 152
-v, 121
<<, 121
__root_att, 181

abs-change, 39, 199
AddLoggingTarget, 102, 205, 211
AddObjPolling, 102, 165, 205, 207
adm-name, 101
administration, 25, 101
ALARM, 99, 162, 199
alarm, 93, 99
ALBA, 13
alias, 23, 251
allways-executed-hook, 99, 100
always-executed-hook, 91, 95, 99, 133, 138
any, 109, 110, 114
ApiUtil, 33
archive, 37
archive-abs-change, 40, 200
archive-period, 40, 200
archive-rel-change, 40, 200
Astor, 253
asynchronous, 34, 39
Attr, 90, 94, 131
ATTR-ALARM, 161, 162, 199
attr-min-poll-period, 166, 192
attr-poll-ring-depth, 192
ATTR-VALID, 137
ATTR-WARNING, 161, 199
AttrConfEventData, 41
AttrConfEventDataList, 43
AttrHistoryStack, 170
attribte-list, 69
Attribute, 90, 93, 136
attribute, 15, 19, 20, 22–24, 27, 36, 55, 57, 90, 92,

93, 99, 118, 135, 137, 193
attribute-factory, 92, 97, 124, 127
AttributeList, 70, 83, 84
AttributeProxy, 33, 36
attributes, 69, 79, 84

black-box, 23, 25, 90, 191, 204, 239

C++11, 150

CallBack, 33, 41, 43
callback, 34, 35
change, 37
class-factory, 102, 104, 123
cmd-min-poll-period, 166, 192
cmd-poll-ring-depth, 192
CmdArgTypeName, 219
CmdHistoryStack, 170
Command, 88, 90, 91, 96, 110, 129
command, 23, 24, 88, 91, 92, 94, 99, 126, 129, 156
command-factory, 92, 96, 97, 104, 124, 155
command-handler, 24, 92, 98, 129
command-inout, 24, 47, 52, 55, 90, 98, 239
command-inout(), 39
command-inout-4, 245
command-inout-async, 24, 90
command-inout-history-2, 169, 241, 243
command-inout-history-4, 246
command-inout-history-X, 26
command-list, 69
command-list-query, 25, 239
command-query, 25, 240
CommandList, 70, 83, 84
commands, 69, 79, 85
compiling, 149
console, 139
consumer, 27, 213
controlled-access, 27, 187
CORBA, 13, 22, 90, 98, 103, 157, 204
core, 69
create-DevVarLongArray, 113
create-DevVarStringArray, 114
CtrlSystem, 178, 180, 190, 214, 215

data-format, 194
data-type, 194
Database, 33
database, 23, 27, 184, 185, 253, 254
DataElement, 62
DataReadyEventData, 42
DataReadyEventDataList, 43
DbClass, 33, 93
DbData, 33
DbDevice, 33, 91
DbServer, 33

262

INDEX 263

DeadFilterInterval, 254
debug, 121
delet-device, 95
delete-device, 99, 133, 134
delta-t, 162, 199
delta-val, 162, 199
description, 25, 191, 197, 203
dev-name, 48, 55, 57
dev-state, 95, 133, 138
dev-status, 95, 133, 138
DevEncoded, 182
DevEnum, 106, 162
DevError, 115
DevFailed, 115
device, 69
device-factory, 92, 96, 97, 104, 124, 127
DeviceAttribute, 33
DeviceClass, 88, 92, 95, 97, 124, 126, 129, 153
DeviceData, 33
DeviceImpl, 88, 90, 94, 127, 131, 134, 153
DevicePipe, 33, 35, 60
DevicePipeBlob, 35, 60
DeviceProxy, 33, 66
DevIntrChangeEventData, 42
DevIntrChangeEventDataList, 43
DevLockStatus, 102, 205, 209
DevPollStatus, 102, 165, 205, 208
DevRestart, 101, 205
DevStateName, 218
dim-x, 195
dim-y, 195
disp_level, 202
display-unit, 197
DispLevel, 196, 202
dlist, 185
DLL, 152
documentation, 92, 204
DServer, 101, 103, 205
DsEventBufferHwm, 214
dvalue, 108

Elettra, 13
enable-exception(), 49, 55
encoded-data, 108
encoded-format, 108
EncodedAttribute, 182
enum_labels, 197
Enumeration, 162
error, 115
ESRF, 12, 13
evebt-subscribe, 44
event, 29, 36, 39, 40, 82, 83, 86, 147, 148, 177, 199
event-loop, 183
event-period, 40

EventBufferHwm, 214
EventConfirmSubscription, 205, 211
EventData, 41
EventDataList, 43
EventSubscriptionChange, 102, 205, 210
Except, 115, 116
exception, 49, 52, 55, 58, 115
executable, 101, 146
execute, 90–92, 96, 99, 129–131
exit, 155
ExitInstance, 142, 143
export-device, 127
extract, 92, 111, 130

file, 184
fill-attr-polling-buffer, 170, 192
fill-cmd-polling-buffer, 170, 192
format, 197
forward, 47, 48, 52, 58
forwarded-attribute, 181
FwdAttr, 181

gcc, 149
gdb, 149
get-attribute-config, 24, 240
get-device, 47
get-err-stack, 57
get-events, 41, 42
get-group, 47
get-pipe-config, 24
GetLoggingLevel, 102, 205, 212
GetLoggingTarget, 102, 205, 212
graphical, 140, 143
Group, 33
group, 28, 45–47, 55, 57
GroupAttrReply, 49, 55
GroupAttrReplyList, 55
GroupCmdReply, 47, 49, 55
GroupCmdReplyList, 47, 48
GroupReply, 49, 55

has-failed, 48, 49, 52, 55, 57
HWM, 214

IDL, 22, 104
IMAGE, 194
image, 75
ImageAttr, 90, 94, 131
info, 25, 240, 244
inherit, 155, 156
inheritance, 88, 91, 96, 118, 126, 156
Init, 97, 99, 120, 204
init, 103, 123, 124, 126
init-device, 90, 95, 99, 133, 134

INDEX 264

InitInstance, 142
insert, 92, 111, 112, 130
instance, 101, 124
INumberScalarListener, 82
IOR, 27
is-allowed, 24, 90–92, 94, 96, 99, 129, 131
ivl, 179

jdraw, 78
JPEG, 182

Kill, 102, 205, 207

label, 197, 203
length, 107
level, 194, 196, 202
linking, 150, 151
Linux, 149
listener, 82, 84, 86
local, 157
LockDevice, 102, 205, 209
Locking, 65
logger, 147
logging, 26, 116, 121, 141
logging-level, 193
logging-path, 193
logging-rft, 193
logging-target, 193
LogViewer, 116
lvalue, 108

main, 122
max-alarm, 161, 198
max-dim-x, 195
max-dim-y, 195
max-value, 198
max-warning, 161, 199
memorized, 180, 198
memory, 17–19, 109, 112–114
MFC, 142–144, 149
min-alarm, 161, 198
min-poll-period, 166, 192
min-value, 198
min-warning, 161, 199
model, 69, 75, 82
Model-View-Controller, 68
MultiAttribute, 90, 93
MulticastEvent, 178, 215
MulticastHops, 180, 215
multicasting, 30, 178
MulticastIvl, 180, 215
MulticastRate, 180, 215
MVC, 68
MySQL, 27

MYSQL-DATABASE, 220
MYSQL-HOST, 220, 255
MYSQL-PASSWORD, 190, 220, 253, 255
MYSQL-USER, 190, 220, 253, 255

name, 23, 25, 90, 91
namespace, 104, 122, 124
naming, 88
nodb, 185
notifd2db, 253, 254
Notification Service, 29, 36, 253, 254
NTService, 146, 148
NumberImageViewer, 75
NumberScalarListViewer, 75
NumberSpectrumViewer, 75

obj-name, 48, 55, 57
OMG, 22
omniNotify, 29, 36
omniORB, 150, 152
operation, 22, 23, 90
ORB, 22

pattern, 88, 90, 155
period, 200
periodic, 37
ping, 25, 240
pipe, 23, 24, 26, 34, 60, 157, 202
PipeEventData, 42
PipeEventDataList, 43
Pogo, 15
poll-old-factor, 192
poll-ring-depth, 192
PolledDevice, 102, 165, 205, 208
polling, 26, 34, 165
polling-threads-pool-conf, 167, 213
polling-threads-pool-size, 167, 213
polling_before_9, 169, 213
port, 153, 185, 186
print-exception, 115
properties, 23, 27, 91, 93, 138
Publish/Subscribe, 30
pull, 34
push, 34

QueryClass, 102, 205, 206
QueryDevice, 102, 205, 206
QueryEventChannelIOR, 206
QuerySubDevice, 205, 207
QueryWizardClassProperty, 207
QueryWizardDevProperty, 205, 207
QueyWizardClassProperty, 205

rate, 179
RDS, 161, 199

INDEX 265

re-throw-exception, 115
READ, 195, 202
read, 90
read-attr-hardware, 20, 91, 99, 135
read-attribute, 55, 131
read-attribute-history-2, 169, 243
read-attribute-history-4, 245
read-attribute-history-5, 247
read-attribute-history-X, 26
read-attributes, 20, 24, 91, 99, 240
read-pipe, 24
read-Position, 135
READ-WITH-WRITE, 195
READ-WRITE, 195, 202
reconnection, 66
refresh, 84
refresher, 83
register-signal, 153
rel-change, 39, 199
ReLockDevices, 102, 205, 209
RemObjPolling, 102, 165, 166, 205, 208
remove, 47
RemoveLoggingTarget, 102, 205, 212
resource, 142, 146
RestartServer, 102, 205
root-attribute, 181, 197

SCALAR, 194
scalar, 75
ScalarListViewer, 70, 75
sequence, 105–107, 109, 113, 114
serialization, 174, 175
server, 23, 26, 101, 155, 157
server-cleanup, 123
server-init, 103, 123, 140, 144, 146
server-run, 103, 104, 123
server-set-event-loop, 183
service, 146, 148, 219
Services, 190, 214
set-attribute-config, 24, 241, 244
set-attribute-config-4, 246
set-attribute-config-5, 247
set-default-properties, 128
set-disp-level, 129, 131
set-in-type-desc, 129
set-main-window-text, 140
set-out-type-desc, 129
set-pipe-config, 24
set-pipe-config-5, 248
set-polling-threads-pool-size, 168
set-server-version, 141
set-transparency-reconnection, 66
set-value, 137
set-value-date-quality, 137

SetLoggingLevel, 102, 205, 212
setModel, 75, 77, 82
signal, 91, 92, 153, 155
signal-handler, 153, 155
SimpleScalarViewer, 75
singleton, 88, 95–97, 102, 126
Soleil, 13
SPECTRUM, 194
spectrum, 75
SpectrumAttr, 90, 94, 131
splash, 69
standard-unit, 197
start, 146, 148
Starter, 253
StartLogging, 102, 205, 212
StartPolling, 102, 165, 205, 207
State, 91, 95, 97, 99, 105, 120, 133, 204
state, 25, 26, 90, 91, 99, 120, 191, 217
Status, 91, 95, 97, 99, 120, 133, 204
status, 25, 26, 90, 91, 99, 191
StopLogging, 102, 205, 212
StopPolling, 102, 165, 205, 207
string-alloc, 106
string-dup, 18–20, 106, 109, 114
string-free, 106, 114
subscribe, 83
subscribe-event, 40
SUPER-TANGO, 190, 221
svalue, 108
synchronous, 34
Synoptic, 78, 79
synoptic, 81
SynopticFileViewer, 78, 79

TACO, 13
TANGO-DS-EVENT-BUFFER-HWM, 214, 221
Tango-Event, 83
TANGO-EVENT-BUFFER-HWM, 214, 221
TANGO-HOST, 152, 186, 220
TANGO-LOG-PATH, 193, 220
TANGO-ROOT, 220
TANGO-VERSION-MAJOR, 216
TANGO-VERSION-MINOR, 216
TANGO-VERSION-PATCH, 216
tango.h, 215
Tango::ConstDevString, 112
Tango::DevEncoded, 108
Tango::DevFloat, 16
Tango::DevState, 105, 108
Tango::DevString, 17, 106, 112
Tango::DevVarDoubleStringArray, 18, 105, 108, 115
Tango::DevVarLongArray, 16, 107, 113
Tango::DevVarLongStringArray, 105, 108, 115
Tango::DevVarStringArray, 17, 107, 114

INDEX 266

TangoAccessControl, 190, 255
tangorc, 220
TDSOM, 22, 23
template, 88, 91, 118, 126
TemplCommand, 90, 91, 216
TemplCommandIn, 90, 91, 216
TemplCommandInOut, 90, 91, 126, 135, 216
TemplCommandOut, 90, 91, 216
thread, 42, 66, 153, 173, 176, 183
throw-exception, 115, 116
TimedAttrData, 170
TimedCmdData, 170
tooltip, 79

ulimit, 253
unit, 197
UnLockDevice, 102, 205, 209
unregister-signal, 153
unsubscribe-event, 42
UpdObjPollingPeriod, 102, 165, 205, 208
URL, 92
UserDefaultFwdAttrProp, 181
Util, 102, 103, 123, 140, 141, 145

verbose, 121, 140
viewer, 69, 75, 82, 86

WAttribute, 90, 93
WAttrNaNAllowed, 215
widget, 69
WIN32, 152
Win32, 144
Windows, 139, 151
WinMain, 144, 146
writable, 93, 194, 202
writable-attr-name, 194
WRITE, 195
write, 90
write-attr-hardware, 91, 100, 137
write-attribute, 57, 60
write-attributes, 24, 91, 100, 241
write-pipe, 24
write-read-attribute, 24
write-read-pipe, 24

ZMQ, 13, 30, 36, 149, 214, 221
ZmqEventSubscriptionChange, 102, 205, 210

	Introduction
	Introduction to device server
	Device server history

	Getting Started
	A C++ TANGO client
	A TANGO device server
	The commands and attributes code
	The DevSimple command
	The DevArray command
	The DevString command
	The DevStrArray command
	The DevStruct command
	The three attributes

	The TANGO device server model
	Introduction to CORBA
	The model
	The device
	The commands
	The TANGO attributes
	The TANGO pipes
	Command, attributes or pipes ?
	The CORBA attributes
	The remaining CORBA operations
	The special case of the device state and status
	The device polling

	The server
	The Tango Logging Service
	The database
	The controlled access
	The Application Programmers Interfaces
	Rules of the API
	Communication between client and server using the API
	Tango events

	Writing a TANGO client using TANGO APIs
	Introduction
	Getting Started
	Basic Philosophy
	Data types
	Request model
	Synchronous model
	Asynchronous model

	Events
	Introduction
	Event definition
	Event types
	Event filtering (Removed in Tango release 8 and above)
	Application Programmer's Interface
	Configuring events
	change
	periodic
	archive

	C++ Clients
	Subscribing to events
	The CallBack class
	Unsubscribing from an event
	Extract buffered event data
	Example

	Group
	Getting started with Tango group
	Forward or not forward?
	Executing a command
	Obtaining command results
	Case 1: a command, no argument
	A few words on error handling and data extraction
	Case 2: a command, one argument
	Case 3: a command, several arguments

	Reading attribute(s)
	Obtaining attribute values
	A few words on error handling and data extraction

	Writing an attribute
	Obtaining acknowledgement
	Case 1: one value for all devices
	Case 2: a specific value per device

	Reading/Writing device pipe
	Reading a pipe
	Extracting data with pipe content prior knowledge
	Extracting data in a generic way (without prior knowledge)
	Error management

	Writing a pipe
	Error management

	Device locking
	Reconnection and exception
	Thread safety
	Compiling and linking a Tango client

	TangoATK Programmer's Guide
	Introduction
	Assumptions

	The key concepts of TangoATK
	Minimize development time
	Minimize bugs in applications
	Attributes and commands from different devices
	Avoid code duplication

	The real getting started
	Single device applications
	Multi device applications
	More on displaying attributes
	Connecting an attribute to a viewer
	Synoptic viewer

	A short note on the relationship between models and viewers
	Listeners

	The key objects of TangoATK
	The Refreshers
	What happens on a refresh

	The DeviceFactory
	The AttributeFactory and the CommandFactory
	The AttributeList and the CommandList
	The Attributes
	The hierarchy

	The Commands
	Events and listeners

	Writing a TANGO device server
	The device server framework
	Naming convention and programming language
	The device pattern
	The Tango base class (DeviceImpl class)
	Description
	Contents

	The DbDevice class
	The Command class
	Description of the inheritance model
	Description of the template model
	Contents

	The DeviceClass class
	Description
	Contents

	The DbClass class
	The MultiAttribute class
	Description
	Contents

	The Attribute class
	Description
	Contents

	The WAttribute class
	Description
	Contents

	The Attr class
	The SpectrumAttr class
	The ImageAttr class
	The StepperMotor class
	Description
	Definition

	The StepperMotorClass class
	Description
	Definition

	The DevReadPosition class
	Description
	Definition

	The PositionAttr class
	Description
	Definition

	Startup of a device pattern
	Command execution sequence
	The automatically added commands
	Reading/Writing attributes
	Reading attributes
	Writing attributes

	The device server framework
	Vocabulary
	The DServer class
	The Tango::Util class
	Description
	Contents

	A complete device server
	Device server startup sequence

	Exchanging data between client and server
	Command / Attribute data types
	Using data types with C++
	Basic types
	Strings
	Sequences
	Structures
	The DevState data type

	Passing data between client and server
	C++ mapping for IDL any type
	Inserting/Extracting TANGO basic types
	Inserting/Extracting TANGO strings
	Inserting/Extracting TANGO sequences
	Inserting/Extracting TANGO structures
	Inserting/Extracting TANGO enumeration

	The insert and extract methods of the Command class

	C++ memory management
	For string
	For array/sequence
	For string array/sequence
	For Tango composed types

	Reporting errors
	Example of throwing exception

	The Tango Logging Service
	Logging Targets
	Logging Levels
	Sending TANGO Logging Messages
	Logging macros in C++
	C++ logging in the name of a device

	Writing a device server process
	Understanding the device
	Defining device commands
	Standard commands

	Choosing device state
	Device server utilities to ease coding/debugging
	The device server verbose option
	C++ utilities to ease device server coding

	Avoiding name conflicts
	The device server main function
	The DServer::class_factory method
	Writing the StepperMotorClass class
	The class declaration file
	The singleton related methods
	The command_factory method
	The device_factory method
	The attribute_factory method

	The DevReadPositionCmd class
	The class declaration file
	The class constructor
	The is_allowed method
	The execute method

	The PositionAttr class
	The class declaration file
	The class constructor
	The is_allowed method
	The read method

	The StepperMotor class
	The class declaration file
	The constructors
	The methods used for the DevReadDirection command
	The methods used for the Position attribute
	The methods used for the SetPosition attribute
	Retrieving device properties
	The remaining methods

	Device server under Windows
	The Tango device server graphical interface
	The device server main window
	The console window
	The help window

	MFC device server
	The InitInstance method
	The ExitInstance method
	Example of how to build a Windows device server MFC based

	Win32 application
	Device server as service
	The service class
	The main function
	Service options and messages
	Tango device server using MFC as Windows service

	Compiling, linking and executing a TANGO device server process
	Compiling and linking a C++ device server
	On UNIX like operating system
	Supported development tools
	Compiling
	Linking

	On Windows using Visual Studio

	Running a C++ device server

	Advanced programming techniques
	Receiving signal
	Using signal
	Exiting a device server gracefully

	Inheriting
	Writing the BClass
	Writing the B class
	Writing B class specific command
	Redefining A class command

	Using another device pattern implementation within the same server
	Device pipe
	Client reading a pipe
	Client writing a pipe

	Advanced features
	Attribute alarms
	The level alarms
	The Read Different than Set (RDS) alarm

	Enumerated attribute
	Usage in a Tango class
	Setting the labels with enumeration compile time knowledge
	Setting the labels without enumeration compile time knowledge
	Setting the attribute value

	Usage in a Tango client

	Device polling
	Introduction
	Configuring the polling system
	Configuring what has to be polled and how
	Configuring the polling threads pool
	Choosing polling algorithm

	Reading data from the polling buffer
	Retrieving command/attribute result history
	Externally triggered polling
	Filling polling buffer
	Setting and tuning the polling in a Tango class

	Threading
	Device server process
	Serialization model within a device server
	Attribute Serialization model

	Client process

	Generating events in a device server
	Using multicast protocol to transfer events
	Configuring events to use multicast transport
	Default multicast related properties

	Memorized attribute
	Forwarded attribute
	Definition
	Coding

	Transferring images
	Device server with user defined event loop
	Device server using file as database
	Device server without database
	Example of device server started without database usage
	Connecting client to device within a device server started without database

	Multiple database servers within a Tango control system
	The Tango controlled access system
	User rights definition
	Running a Tango control system with the controlled access

	Reference part
	Device parameter
	The device black box
	The device description field
	The device state and status
	The device polling
	The device logging

	Device attribute
	Hard-coded device attribute parameters
	The Attribute data type
	The attribute data format
	The max_dim_x and max_dim_y parameters
	The attribute read/write type
	The associated write attribute parameter
	The attribute display level parameter
	The root attribute name parameter

	Modifiable attribute parameters
	General purpose parameters
	The format attribute parameter
	The min_value and max_value parameters
	The memorized attribute parameter

	The alarm related configuration parameters
	The min_alarm and max_alarm parameters
	The min_warning and max_warning parameters
	The delta_t and delta_val parameters

	The event related configuration parameters
	The rel_change and abs_change parameters
	The periodic period parameter
	The archive_rel_change, archive_abs_change and archive_period parameters

	Setting modifiable attribute parameters
	Resetting modifiable attribute parameters

	Device pipe
	Hard-coded device pipe parameters
	The pipe read/write type.
	The pipe display level parameter

	Modifiable pipe parameters
	Setting modifiable pipe parameters
	Resetting modifiable pipe parameters

	Device class parameter
	The device black box
	Automatically added commands
	The State command
	The Status command
	The Init command

	DServer class device commands
	The State command
	The Status command
	The DevRestart command
	The RestartServer command
	The QueryClass command
	The QueryDevice command
	The Kill command
	The QueryWizardClassProperty command
	The QueryWizardDevProperty command
	The QuerySubDevice command
	The StartPolling command
	The StopPolling command
	The AddObjPolling command
	The RemObjPolling command
	The UpdObjPollingPeriod command
	The PolledDevice command
	The DevPollStatus command
	The LockDevice command
	The UnLockDevice command
	The ReLockDevices command
	The DevLockStatus command
	The EventSubscriptionChange command (C++ server only)
	The ZmqEventSubscriptionChange command
	The EventConfirmSubscription command
	The AddLoggingTarget command
	The RemoveLoggingTarget command
	The GetLoggingTarget command
	The GetLoggingLevel command
	The SetLoggingLevel command
	The StopLogging command
	The StartLogging command

	DServer class device properties
	Tango log consumer
	The available Log Consumer
	The Log Consumer interface

	Control system specific
	The device class documentation default value
	The services definition
	Tuning the event system buffers (HWM)
	Allowing NaN when writing attributes (floating point)
	Tuning multicasting event propagation
	Summary of CtrlSystem free object properties

	C++ specific
	The Tango master include file (tango.h)
	Tango specific pre-processor define
	Tango specific types
	Template command model related type

	Tango device state code
	Tango data type
	Tango command display level

	Device server process option and environment variables
	Classical device server
	Device server process as Windows service
	Environment variables
	TANGO_HOST
	Tango Logging Service (TANGO_LOG_PATH)
	The database and controlled access server (MYSQL_USER, MYSQL_PASSWORD, MYSQL_HOST and MYSQL_DATABASE)
	The controlled access
	The event buffer size

	The TANGO IDL file : Module Tango
	Aliases
	Enums
	Structs
	Unions
	Exceptions
	Interface Tango::Device
	Attributes
	Operations

	Interface Tango::Device_2
	Operations

	Interface Tango::Device_3
	Operations

	Interface Tango::Device_4
	Operations

	Interface Tango::Device_5
	operations

	Tango object naming (device, attribute and property)
	Device name
	Full object name
	Some examples
	Full device name examples
	Attribute name examples
	Attribute property name
	Device property name
	Class property name

	Device and attribute name alias
	Reserved words and characters, limitations

	Starting a Tango control system
	Without database
	With database
	With database and event
	For Tango releases lower than 8
	For release 8 and above

	With file used as database
	With file used as database and event
	For Tango releases lower than 8
	For release 8 and above

	With the controlled access

	The notifd2db utility
	The notifd2db utility usage (For Tango releases lower than 8)

	The property file syntax
	Property file usage
	Property file syntax

