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This workshop

• Thanks to Armando Solé and Andy Götz for 
organizing this workshop!

• Nitty gritty details of data storage are often 
swept under the rug at conferences and 
workshops, yet play a huge role in practice.

• How does one try other analysis programs? 
How does one share data with other 
researchers?

2



X-ray microscopy group at Stony Brook

Jan Steinbrener, 
Lisseth Gavilan, 
Xiaojing Huang,  
Christian Holzner, 
Rachel Mak, Josh 
Turner, Johanna 
Nelson, Chris 
Jacobsen, Robert 
Towers.  Not 
shown: Sue Wirick, 
Chris Peltzer.

Phase contrast and 
fluorescence
Spectromicroscopy
XDM/CXDI
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Summer at Stony Brook: groups take turns sponsoring 
the 4:30 pm Friday beer keg

Moving to Northwestern University!



This talk

• Soft x-ray spectromicroscopy: what we do 
and how we process the data
– Principal components, clusters, and non-negative 

matrices

• Connections with problems in other fields
– X rays, electrons, satellites, shopping...

• Some thoughts on data formats
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Near-edge absorption fine structure (NEXAFS) or
X-ray absorption near-edge structure (XANES)

• Fine-tuning of the x-ray energy near an atom’s edge gives sensitivity to 
the chemical bonding state of atoms of that type

• First exploitation for chemical state transmission imaging: Ade, Zhang 
et al., Science 258, 972 (1992) – Stony Brook/X1A

Compared with UV “tickling” of molecular orbitals, core-
level electrons come from a single, well-defined state!
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C-XANES of amino acids
• K. Kaznacheyev et al., J. Phys. Chem. A 106, 3153 (2002)
• Experiment: K. Kaznacheyev et al., Stony Brook (now CLS)
• Theory: O. Plashkevych, H. Ågren et al., KTH Stockholm; A. 

Hitchcock, McMaster

Polymers: see e.g., Dhez, Ade, and Urquhart, JESRP 128, 85 (2003)
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Spectromicroscopy: nanoscale heterogeneity

Lu in hematite (T. Schäfer)

Use of XANES for imaging chemical speciation: 
Ade, Zhang et al., Science 258, 972 (1992).

Aligned spectral image sequences: Jacobsen et al., 
J. Microscopy 197, 173 (2000)

Spectrum per pixel: spectromicroscopy, spectrum 
imaging, hyperspectral imaging...



Spectromicroscopy data

• Spectrum per pixel: cube in x, y, and E
• But we will treat pixels as independent, without 

worrying about spatial correlations: p=ix+iy·Nx

• Thus we have data in energies n=1…N and 
pixels p=1…P

• We measure a data matrix DN×P:

8



We measure the optical density D=μt from I=I0exp[-μt], which gives 
us a matrix over n=1..N energies and p=1..P pixels of the data:

We wish we could interpret this in terms of a set of s=1..S 
components.  We would then have a matrix of their spectra

We would also have a matrix of their thicknesses
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Spectromicroscopy analysis
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• Again, data are spectra times thicknesses:

• Example: polymer blend.  We may know that we have two or three 
polymers present, with no reactive phases.

– Can measure spectra of all components from hand-selected regions  

– We therefore know  

– We can obtain thickness maps (images) by matrix inversion:

– Matrix              of all spectra can be inverted using singular matrix 
decomposition (SVD).  See e.g., Zhang et al., J. Struct. Biol. 116, 
335 (1996); Koprinarov et al., J. Phys. Chem. B 106, 5358 (2002).

10

Analysis with known spectra

or
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What if we don’t know the components or 
their spectra             ?

• “Natural” specimens, such as in biology or 
environmental science

• Reactive phases, rather than simple mixing
• Complexity!  300x300 pixel image contains 105 

spectra!
• Can we find the “organizer” from the data?



The “organizer”: components S
• If we know the s=1…S components (e.g., known 

pure compounds) and their spectra, we know           
and thus

• And if not? Can we uncover an “organizer” for 
our data anyway?  General problem: find S!
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Finding S: eigenvalues through covariance
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Principal component analysis (PCA)
Find set of 
components S that 
reflect intrinsic 
properties of the 
data

Scatterplot: pixels plotted based 
on signal at two different photon 
energies
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Principal component analysis (PCA)

1. Find the axis along which there is 
the greatest variance 

Find set of 
components S that 
reflect intrinsic 
properties of the 
data
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Principal component analysis (PCA)

1. Find the axis along which there is 
the greatest variance

2. Find an orthogonal axis of next 
greatest variance 

Find set of 
components S that 
reflect intrinsic 
properties of the 
data
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Principal component analysis (PCA)

1. Find the axis along which there is 
the greatest variance

2. Find an orthogonal axis of next 
greatest variance 

3. Gives a new coordinate system

Find set of 
components S that 
reflect intrinsic 
properties of the 
data
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Principal component analysis (PCA)

1. Find the axis along which there is 
the greatest variance

2. Find an orthogonal axis of next 
greatest variance 

3. Gives a new coordinate system
4. Rotate onto new, orthogonal 

coordinate system

Find set of 
components S that 
reflect intrinsic 
properties of the 
data



Are eigenvalues S enough? Are we done?

• We can find eigenvalues which give us one 
way to find an “organizer” S.

• But is it the right “organizer” S?
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PCA in spectromicroscopy: King et al., J. Vac. Sci. Tech. A 7, 3301 (1989); A. 
Osanna & C. Jacobsen, XRM99 proceedings; Bonnet et al., Ultramicroscopy 77, 
97 (1999).
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Eigenspectra and eigenimages

Find reduced number of 
significant components
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Find reduced number of 
significant components

Eigenspectra and eigenimages
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Find reduced number of 
significant components

Eigenspectra and eigenimages
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Find reduced number of 
significant components

Eigenspectra and eigenimages
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Eigenspectra get us something…
• Principal component analysis lets you reduce and 

orthogonalize the data set!
• Reduction: filter out spectral variations that are poorly 

correlated throughout the dataset (smells like photon 
noise!).  We went from N=140 energies to            =4 
components.

• Orthogonality might have nice consequences.

But we have a problem…
• Eigenspectra > 1 are abstract.  They have negative 

optical densities, so they are not readily interpretable.
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A well-known problem

We chose to follow an approach which is well 
known in the literature:

“You can’t always get what you want; but if you 
try sometimes, well you just might find you get 

what you need”

M. Jagger, K. Richards et al., Let it Bleed 1, 1 (1969) 



Finding useful organizers S

• Cluster analysis: pixels with common 
spectroscopic signatures yield CN×S

• Varimax: “rotate” CN×S to make all spectra 
positive.  Works well with discrete elemental 
signals in fluorescence, TOF-SIMS (P. Kotula, 
Sandia Labs).

• Non-negative matrix factorization: build CN×S 

from noise, constraining for positivity and a 
minimum set of S
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Cluster analysis: 
Euclidian distance learning algorithm

• Kohonen, Proc. IEEE 78, 
1464 (1990)

• Pixels are scattered 
according to weighting of 
each component

Start from PCA
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Cluster analysis: 
Euclidian distance learning algorithm

• Kohonen, Proc. IEEE 78, 
1464 (1990)

• Pixels are scattered 
according to weighting of 
each component

• Put down cluster centers at 
random positions.
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Cluster analysis: 
Euclidian distance learning algorithm

• Kohonen, Proc. IEEE 78, 
1464 (1990)

• Pixels are scattered 
according to weighting of 
each component

• Put down cluster centers at 
random positions.

• Iterate through all pixels, 
several times:
– Calculate distances from 

one pixel to all cluster 
centers.
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Cluster analysis: 
Euclidian distance learning algorithm

• Kohonen, Proc. IEEE 78, 
1464 (1990)

• Pixels are scattered 
according to weighting of 
each component

• Put down cluster centers at 
random positions.

• Iterate through all pixels, 
several times:
– Calculate distances from 

one pixel to all cluster 
centers.

– Pick shortest distance.  
– Move cluster center partway 

to pixel.



31

Cluster analysis: 
Euclidian distance learning algorithm

• Kohonen, Proc. IEEE 78, 
1464 (1990)

• Pixels are scattered 
according to weighting of 
each component

• Put down cluster centers at 
random positions.

• Iterate through all pixels, 
several times:
– Calculate distances from 

one pixel to all cluster 
centers.

– Pick shortest distance.  

– Move cluster center partway 
to pixel.

• Cluster pixels with their 
nearest cluster center
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Cluster analysis: human sperm
Biochemical organization of sperm revealed directly from data: enzyme-

rich region, DNA+histones, mitochondria and flagellar motor, lipid

H. Fleckenstein, M. Lerotic, Y. 
Sheynkin et al., Stony Brook.  
Human sperm, air-dried.

Red spots: negative values, because cluster 
spectra are not guaranteed to “span the set”
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Sporulation

Bacterial Sub-Cellular Features

Studies of uranium reduction by Clostridium sp. (B. Larson, Stony Brook; 
J.B. Gillow, A.J. Francis, BNL Applied Science)

Clostridium sp.
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Great!  But thickness versus chemistry?
• Scatterplots: each dot is a pixel.  Can only show weighting in 

two components at a time in a 2D plot.
• Bacterium Clostridium sp. (J.B. Gillow, A.J. Francis)
• For some samples, clustering is dominated by thickness 

variations rather than spectral differences!
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Different distance measure

• One compositional type should 
involve a constant ratio of 
components; radius from center is 
thickness
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Different distance measure

• One compositional type should 
involve a constant ratio of 
components; radius from center is 
thickness

• When Euclidean distance is used, 
clustering algorithm finds spherical 
clusters
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Different distance measure

• One compositional type should 
involve a constant ratio of 
components; radius from center is 
thickness

• When Euclidean distance is used, 
clustering algorithm finds spherical 
clusters

• To compensate for thickness, use 
cosine angle distance (θ) instead of 
Euclidean distance (d)
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Different distance measure

• One compositional type should 
involve a constant ratio of 
components; radius from center is 
thickness

• When Euclidean distance is used, 
clustering algorithm finds spherical 
clusters

• To compensate for thickness, use 
cosine angle distance (θ) instead of 
Euclidean distance (d)
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Clostridium sp. - reexamined

• Cluster analysis with cosine angle distance 
measure is much better!

• Now classifying by compositional (and not 
thickness) variations!



• Cluster analysis: pixels with common 
spectroscopic signatures yield CN×S

• Varimax: “rotate” CN×S to make all spectra 
positive.  Works well with discrete elemental 
signals in fluorescence, TOF-SIMS (P. Kotula, 
Sandia Labs).

• Non-negative matrix analysis: build CN×S from 
noise, constraining for positivity and a 
minimum set of S
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Finding useful organizers S
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Avoiding negativity: non-negative matrix analysis

Principal component analysis

Non-negative matrix analysis

Lee and Seung, Nature 401, 788 (1999)



NNMA: the goal

• Again we wish to find the organizer S:

• Our constraint: minimize                     with 
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Algorithms for NNMA
Fall into 3 main categories:

•  multiplicative update
      - prototype: Lee & Seung
      - requires more iterations to converge
      - not flexible -- once value hits zero, it stays zero for all subsequent
         iterations, even if result is not optimal

•  gradient descent
      - take steps ε in direction of negative gradient
      - convergence depends on ε

•  alternating least squares
      - can be very fast for unconstrained problems
      - non-negatively constrained least squares (NNLS) guaranteed
        to converge to local minimum
      - but NNLS more costly
      → Fast-combinatorial NNLS (FC-NNLS)?



Multiplicative update NNMA

• Iterative procedure:

• Fleckenstein and Jacobsen (unpublished), 
after Lee and Seung (1999)
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NNMA analysis of sperm
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Sees more subtle variations!
No more negatives!



NNMA: many, many iterations
• On a single processor, Lee and Seung NMF algorithm can be 

slow!
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Fast-Combinatorial NNLS
(Benthem & Keenan, 2005)

• For unconstrained problems, the “pseudoinverse” C† is the same 
for all columns of R:

      R = C†D
     so we only need to calculate C† once.

• For constrained problems, this is not the case.  Do we need to 
calculate n inverses for D with n columns?

• No...

Problem: find R in

CR = D
for which ||CR - D||F2 is minimized and subject to constraint

R ≥ 0



• At each iteration, first find columns of R sharing same zero 
positions:

     e.g. 

    Columns 1 and 3 both have their first elements equal zero.

• Pseudoinverse C† is the same for these columns, thus we can 
compute C† in a “column-parallel” way -- this is the “fast” part.

• Benthem also provides a method for identifying and grouping 
similar columns -- the “combinatorial” part.

• FC-NNLS looks like a promising algorithm for solving the NNMA 
problem -- but still work in progress!

Fast-Combinatorial NNLS (cont’d)
(Benthem & Keenan, 2005)
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Parallel computing

• Parallel nature of FC-NNLS                                        
algorithm may be well-suited to                                             
parallel computing architecture: 
NVidia CUDA, or OpenCL   →

• Each inverse calculation for each                                       
“group” of columns is independent.

• Each inverse calculation can be                                     
computed by a “block” of “threads”.

• Many blocks can execute in parallel, 
thus potentially speeding up the 
parallel algorithm even more...

NVidia Tesla S1070



This talk

• Soft x-ray spectromicroscopy: what we do 
and how we process the data
– Principal components, clusters, and non-negative 

matrices

• Connections with problems in other fields
– X rays, electrons, satellites, shopping...

• Some thoughts on data formats

50



Hyperspectral data in satellite imaging

• Image with multiple color filters; sort out 
vegetation types, or look for armored tanks in 
the desert

• Often time a small number of wavelengths: 
like ~5 to 128

• Large body of work, but not all of it is 
published!
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Near-edge spectroscopy: ELNES and XANES
ELNES (electron Energy Loss)
• Plural inelastic scattering
• Many elements at once - but plasmon 

modes are always excited (damage)
• ΔE was ~0.6 eV, but now 0.1 eV in 

some cases

XANES (X-ray Absorption)
• No plural scattering
• One element at a time - 

slow but less damage
• ΔE of 0.05-0.1 eV is 

common

Electrons ~1000x 
more damaging:
•Isaacson and 

Utlaut, Optik 50, 
213 (1978)

•Rightor et al., J. 
Phys. Chem. B 
101, 1950 (1997).



Spectrum imaging in EELS

• EELS: electron energy-loss spectroscopy

• “Spectrum-image: the next step in EELS 
digital acquisition and processing,” 
Jeanguillaume and Colliex, Ultramicroscopy 
28, 252 (1989)

• “Electron energy-loss spectrum-imaging,” 
Hunt and Williams, Ultramicroscopy 38, 47 
(1991)
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CARS: coherent anti-
Stokes Raman (visible 
light probe of what are 
normally infrared signals)
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Untangling complexity: single particle 
electron microscopy

Brink et al., PNAS 99, 138 (2002): many molecules of fatty acid 
synthase, in thin ice, at random orientations.

Goal: atomic-resolution EM.  Pioneers: Franck (Albany) and others.
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Labor of love…

• Shown here: film plates of 
acetylcholine receptor. 
Miyazawa, Fujiyoshi, and 
Unwin, Nature 423, 949 
(2003).

• AQP1: aquaporin-1, Murata, 
Mitsuoka, Hirai, Walz, Agre, 
Heymann, Engel, and 
Fujiyoshi, Nature 407, 599 
(2000).  (Agre: 2003 Nobel 
Prize in Chemistry)
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Multivariable statistical analysis
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Forming a tomographic dataset
Group similar projections, then iterate:

1. Correlate data to a view of a model

2. Tomographic reconstruction of data to 
obtain new model

Ludtke et al., J. Mol. Bio. 314, 253 (2001) Brink et al., PNAS 99, 138 (2002)
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Images grouped by θ

• Once images have been grouped by θ, we 
guess their viewing angle by comparing with 
projections from a first-guess model.

• Now do a tomographic reconstruction!

• With a better model, refine:
– Re-do classification of images to θ
– Guess again at projection angle

– Do a new tomographic reconstruction
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Single particle tomography example

• GroEL: a molecular chaperone to 
promote protein folding (essentially 
an inner sanctuary, hidden from 
chemical environment of a cell)

• Is there molecular-level variability in 
GroEL?

• Ludtke et al., J. Mol. Bio. 314, 253 
(2001)

Cryo-EM

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

X-ray crystallography 
blurred to 1.2 nm

Of special note: Miyazawa, Fujiyoshi, 
Stowell, and Unwin, “Nicotinic 
acetylcholine recepter at 4.6 Å resolution: 
transverse tunnels in the channel wall,” J. 
Mol. Biol. 288, 765 (1999)
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Challenges in electron microscopy
• Radiation damage limits information (and thus alignment) in any single 

image

• Contrast transfer function: what you see depends strongly on the focus!  
Must measure and correct for (except for zeroes)

-1, 3, and 6 μm defocus images
Bowen et al., Tomato bushy stunt virus
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Netflix Awards $1 Million Prize and Starts a New Contest

“Netflix, the movie rental company, has decided its million-dollar-prize 
competition was such a good investment that it is planning another one.  The 
company’s challenge, begun in October 2006, was both geeky and formidable: 
come up with a recommendation software that could do a better job accurately 
predicting the movies customers would like than Netflix’s in-house software, 
Cinematch. To qualify for the prize, entries had to be at least 10 percent better 
than Cinematch.”
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Making the future more simple
• With better synchrotron radiation instrumentation, 

we get richer data of more complex specimens! 

• We can learn from other fields how to find the 
patterns in rich, complex data.

• We can learn from each other!

– CCP4 in crystallography: shared data formats and 
data I/O routines, leading to mix-and-match 
analysis programs.
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This talk

• Soft x-ray spectromicroscopy: what we do 
and how we process the data
– Principal components, clusters, and non-negative 

matrices

• Connections with problems in other fields
– X rays, electrons, satellites, shopping...

• Some thoughts on data sharing
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Data storage

• First priority: data exchange, rather than 
original data storage

• Agreeing on HDF5 (or NeXus) is a great first 
step!
– In our lab: spectromicroscopy

– In our lab: coherent x-ray diffraction imaging/
diffraction microscopy

• But how is the HDF5 file organized?
– Ideally we don’t have to write a separate HDF5 

file read/write routine for each dataset!
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Commonality versus local details

• For portability, we want a minimum set of 
agreed-upon names and attributes

• For completeness, we want all the details of 
the experiment

• For history, we want to record all the 
processing steps that have been applied to 
the data

68



Portability

• Agree upon a generic group name for multi-
image data, such as /images or /main_array

• Assign an attribute to explain the type of data, 
such as /images/type=transmission or 
type=fluorescence or...

• Agree on simple minimal attribute names, such 
as energies= with attribute of “eV”

• Programs should skip fields they don’t 
understand, instead of crash
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Simplicity=portability

• The less we are required to specify in the file, 
the better.

• The more generic we can make the 
definitions, the better.

• Any program could look for /images and read 
them in without knowing the “physics” of the 
measurement.

• One can still store all the detailed, non-
generic information you want - just use 
additional non-generic HDF5 groups!
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Non-portability

• If you call the primary data group /maps 
or     /hyperspectra or... then one has to 
decide...

• If you use “wavelengths” or “keV” versus 
“energies” then one has to decide...

• If you use NeXuS conventions then you have 
problems sharing programs and data with 
electron microscopists, CARS microscopists, 
satellite imagers...

• Use HDF5 links to standardized names?
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Completeness

• Create a local group like /nsls_x1a to store all 
local beamline parameters, like what 
detector was used and its settings, motor 
positions, and so on.

• Include a version number, so that as a 
beamline evolves you can select what 
parameters are to be read based on the 
version number.
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History

• Create a group /history:
– Name and date of originally recorded raw data 

file

– Text lines that record processing steps carried out 
on the data

• This could be automatically added to by all 
analysis programs.

• Can one go to a graphical flow-chart 
representation of processing steps, such as is 
done in Amira for tomography data 
visualization?
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Conclusions

• Multidimensional data are all over the place!

• Lots of people have developed algorithms for 
simplification, classification, and analysis

• There could be more cross-fertilization of 
methods and software between different 
scientific communities - even beyond 
synchrotrons and neutron facilities!

• To communicate, we need a common 
language: HDF5 with agreed-upon naming 
conventions.
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