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Outline

• Problem

– Cocktail party

• Decorrelation components

• Independent components

• Applications 

– NMR spectroscopy, 

– Astrophysics, 

– Electron Energy Loss Spectroscopy
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Blind Source Separation Methodology

Mixture 
(A)

Separation

S0 = [S01, …, S0N]T

N = [N1, …, NN] T

X = AS0 + N S = [S1, …, SN]T

Observations Estimated sources

Sensor noise

Non observable sources
Physical model 
� X = AS + N   simplest case 

- Independent sources,

- Mixture :  linear, special non linear,
instantaneous, convolutiv,
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• Xi observations - Sj sources - Ni noise

• A= [aij] mixing matrix
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BSS – Generalities
)()( tsAtx ⋅=

Mixture
))(()( tsAFtx ⋅=

))(()( tsFtx =

Separe sources -> Objective fonction + Optimisation

Hypothesis 1. Sources are mutually independent

2. Sources are non gaussian except at least one

Wxy =Estimated Sources Vectors 

instantaneous linear

post non-linear

non-linear

Source -> random variable 

Second order statistics – insuffisant for the separation

Third order statistics – not really used

Forth order statistics – suffisant for the separation

ESRF Grenoble january 11-13 2010

• Sources can be reconstructed up to permutation and scaling factors .
• At most only one source is gaussian.
• Under-determined mixture, requires supplementary hypothesis
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Decorrelation, Y = AX + N
• PCA, searched sources are :

– Gaussian, zero mean (centered)
• Rotates the data from the centroid (unitary transformation) so that the variance is maximized along 

the first axis …
Goal : Dimension reduction, Denoising (weakest variance direction)

• Whitening (sphering), 
– PCA+ normalized  sources
The transformation is not unitary, the variance is the same in all directions

• Factorial Analysis
– Wanted sources  (gaussian, zero-mean, normalized), they have a physical meaning to 

interpret the data (less sources than observations and non correlated noise neither between 
them, nor with the sources).

• Projection pursuit
– Find interesting projections for sources interpretation
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•SOBI (Belouchrani & al.)  : Cross-correlations between data and shifted data, Joint diagonalization 
•f-SOBI (Nuzillard), Cross-correlations computed in the Fourier space 
•Maximum likelihood from the spectral density (Pham, Cardoso), analysis of  CMB (cosmic 
microwave background )



Independant Component Analysis (ICA)
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Hypothesis: (most common assumptions)
- Si are real processus statistically independent.

- Si are non-gaussian.

- Noise is negligible

- Matrix A is invertible.

Principe:

Central Limit theorem = the distribution of a sum of independent variables tends 
toward a gaussian distribution

�means that mixing variables provide a gaussian mixture

�idea:maximise the non-gaussianity of variables allow to separe them

� Contrast function: measure the non-gaussianity

� To Maximise a contrast function = to separe variables or to give independent 
variables.
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Statistical Independence (1/2)
Statistical Independence )()(),( jiji upupuup =
Fondamental constraint : non gaussian sources

Non-gaussianity measurement

Kurtosis

Gaussian variable

Drawback: it is sensitive to the noise ans to  aberrant values

3)()( 4 −= yEykurt

0)( =ykurt 0)( <ykurt 0)( >ykurt

sub-gaussian variable super-gaussian variable

Negentropy )()()( yHyHyJ gauss −=
Practically we use an approximation of the negentropy :

222 )])([)]([()( vGEyGEyJ −≈

ua
a

yG 1
1

1 coshlog
1

)( = )2/exp()( 2
2 uyG −−=
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Statistical Independence (2/2)
Likelihood function

)cosh(log2)(log 1 sspi −=+ α
Sub-gaussian variables

Mutual Information 
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Property: for a linear transformation Wxy =
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Super-gaussian variables

)cosh(log]2/[)(log 2
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1. Centering mXX −=
2. Whitening XEEDX T2/1−=

Pre-processings for BSS
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3. Filtering ASfASFXFXf ===
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ICA Algorithms (most popular)
• Comon’s approach

– PDF Edgeworth Approximation

– Cumulants 

• JADE (Cardoso & Souloumiac)
– Based on 4th order cumulants

– Joint Diagonalisation 

• Infomax (Bell & Sejnowski)
– ANN (neural network)

• FastICA (Oja & Hyvarynen)
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Constraint

• No constraint: to Mimimize the Likelihood � to solve F(W,H) = 1/2|| Y −WH||2F

• Constraint : Lagrange multiplier

MinW,H{|| Y −WH||2F + αJ1(W)+ βJ2(H)} where J1 and J2 are constraints
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Lee and Seung chose the quantities: 

       

     

Notation: Y data, W weight matrix, H sources, F is the criterion
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Spectral Analysis of small molecules in solution
D. Nuzillard, J.-M. Nuzillard, S. Bourg (LAM, Pharmacognosie, URCA)

• Nuclear Magnetic Resonance Spectroscopy 
– Interaction, excitation principe  
– Chemical displacement, response signal shape.

• Help to determine the structure of
– molecules in the composition of one mixture, 
– a solely molecule,
– molecules in the composition of many mixtures.

• Contributions
– Take into account experimental constraints,
– Developpement of  f-SOBI.
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Spectral Analysis of small molecules, NMR analysis
D. Nuzillard, J.-M. Nuzillard, S. Bourg (CReSTIC, Pharmacognosie, URCA)

• Raw data : 1-D, 2-D, 3-D signals

• Radio-frequency spectra produced by FT
– 60 to 800 MHz for 1H, 15 à 200 MHz for 13C,

– Frequency axis reflects the electronic environment,
• The possible values of σ are very close to each others and they do not 

depend on B0 ,

• The values of ν depend on B0. 

• Chemical displacement  in ppm : we  define a new variable  of  
frequency from a reference substance ,  TMS ( TetraMéthylSilane ) : 
Si(CH3)4.

610×−=
ref

ref

ν
ννδ
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α-glucose to β-glucose Isomerisation
A solely mixture in variable concentration

Mixtures Components
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• RMN 13C  spectra are recorded every 45 minutes,
• Temporal data are separated using SOBI,
• FT gives separated spectra.
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Molecule strcuture 13C Spectra 1-D

CH, CH2, CH3 Sub-spectra in mixture
CH3

CH

CH2
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Separated components 

Impulses parametered by their duration
Correspond to a rocking angle  θ of the aimantation of the sample
The intensity of rays depends on θ and on ‘n’ the number of H in each CHn 

3 angles θ not precisely known : about 45°, 90°, 135°

( ) )sin(.cos.n.II 1n
0 θθ= −
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Molecule Structure 
2-D correlation Spectra   1H - 13C

CH3 Component

CH2 Component CH Component

Mixtures 
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Analysis of a Mixture 

Semi-blind

Blind + ALS

References

Mixtures  :  β-sitosterol  and   Menthol
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Non orthogonal Spectra
Physical Constraint

Strategy 1
Separation on a orthogonal part
Application of the separation matrix on 
the set of spectra

Strategy 2
Blind Separation
Applications of the positivity 
constraints of sources and mixtures
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g

Many mixtures of many molecules, 
frequential variation due to the concentration

Spectres 

Pseudo spectra

Separated pseudo-spectra 

Reconstructed sources-spectra
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Separation in the spectral domain
f-SOBI

Presented to GRETI in 1999, Signal Processing 2003

• Spectral data have not the property of cross-correlation 
required by SOBI

• Their inverse TF possesses this property

• The separation of spectral data can be done by the 
following operations  IFT-SOBI-TF

• The algorithm f-SOBI, based on the FT of the correlation 
coefficients, allow to group these 3 steps in only one 
operation
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Conclusion on RMN spectroscopy
• Varied examples : Molecule structure, analysis of a 

solely mixture and of many maixtures,
• Take into account of constraints

– Frequential instabilities due to  
• The instrumentation,
• The  variation of the concentration of the chemicals,

– Positivity of the sources and of the mixtures.

• Separation in the Fourier  space of data
– Development off-SOBI

• A few information in the direct space
• Correlation more important in the Fourier space
• This is an alternative to SOBI for the choice of the correlation space
• Prove its efficientcy with others applications
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3C120 Radio-source composition
D. Nuzillard, A. Bijoui (CReSTIC, Observatoire de Nice)

• Multispectral anlysis in
astronomy
– Different wavelengths 
 � Different phenomena

• Independent physical 
phenomena
– Independent sources 
� Extraction of physical 
parameters through models.

• 3C120 Radiosource
• Observations HST, WFPC2 

– F547M (V1): OIII + Continuum
– F555W (V): F547M + Continuum 
– F675W (R): Hα + Continuum 
– F814W (I): weak rays + Continuum

Noisy images � photon noise
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3C120 images Separations

• Karhunen-Loève Transformation
Energy concentration in the first eigen vectors

• Best separation  with FastICA [th(y)]
Optimize a local criterion  of independance
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IM Selection : f-SOBI-16

• Observed Mutual Information  

• Empirical estimation  by a couple  of  
sources, the weakest

SAS et spatial Correlations

Visual selection : SOBI 2D-8

Cross-correlations space
SOBI : Data space

f-SOBI : Fourier space

f-SOBI 2-D : Fourier space, signals  2-D

SOBI 2-D : Data space, signals  2-D
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Sources Interpretation
• Source 1 : 

– Central region

• Source 2 :
– Ionised areas around the kernel
– OIII  Rays play the  most 

essential role

• Source 3 :
– Rings due to the spread fnction 

in the center in the Hα ray

Model with 2 components:
• A kernel very brillant 

• A gazeous area  

Explanatory tools adapted to the very big data bases of images (Data Mining)
hyperspectralobservations
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Improvement of the vision in diffusant media
S. Curila, A. Elhafid, M. Curila, D. Nuzillard, J. Padet

Legend

FastICA 1-8

1.defl,pow3

2.defl,tanh

3.defl,gauss

4.defl,skew

5.symm,pow3

6.symm,tanh

7.symm,gauss

8.symm,skew

9.SOBI

10.f-SOBI

11.f-SOBI2-D

12.SOBI2-D

13.NNSC

14.NMF

Non uniform perturbation

Uniform Perturbation

Original image Extracted Source Source obtained with 

additive information

Original Image Extrated Source Source obtained with 

additive information
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A new possibility for analysing series of electron energy 
loss spectra.

Noël Bonnet and Danielle Nuzillard 

•The two spectra far from the interface Si-SiO2 are 
known and a third unknown component is suspected 
close to the interface
•The aim is to infer the shape of the unknown 
spectrum and to deduce the variation of composition 
across the interface, i.e. the weights of the different 
spectra in the mixture.
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Two electron energy-
loss spectra

Two mixtures of the spectraRecovery of the two spectra, 
without applying constraints










6.0 4.0

2.0 8.0

Recovery of the two spectra, with 
application of a positivity constraint.

...










55.0 45.0

22.0 78.0









59.0 41.0

25.0 75.0

Simple demonstration

• The result could not be obtained from the raw spectra, but only from the derivative spectra
• EEL spectra are not composed of separated peaks. Raw EEL spectra do not fulfil the 
conditions for blind separation. They are not even uncorrelated. On the other hand, derivative 
spectra fulfil these conditions. 

•Blind separation was thus performed with the derivative spectra and the resulting spectra were 
then integrated. This is not a problem for subsequent quantification since derivation is a linear 
process.



A new possibility for analysing series of electron energy loss spectra.

Noël Bonnet and Danielle Nuzillard 
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A three-component mixture

•The two spectra far from the interface are known and a third unknown 
component is suspected close to the interface
•The aim is to infer the shape of the unknown spectrum and to deduce the 
variation of composition across the interface, i.e. the weights of the different 
spectra in the mixture.

















0.1 0.0 0.0

0.0 42.0 58.0

0.0 0.0 0.1

















0.96 0.04 0.0

0.08 0.34 0.58

0.10 0.0 90.0



A new possibility for analysing series of electron energy loss spectra.
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A series of 13 electron energy-loss spectra recorded across a Si-SiO2 interface, for an energy 
loss between 99 and 124 eV recorded at Orsay [Brun et al., 1996].

three expected components weight of these three components 
across the interface

three spectra recovered without 
the positivity constraint

Simulation

spectra recovered when using 
the positivity constraint

the weight of the three 
spectra across the interface

21 spectra (mixtures) used to 
recover the unknown spectrum

13 electron energy-loss spectra
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Conclusion

• Information diversity
• Choice of space representation

– Augmentation
– Selection

• Reduction / Compression
• Denoising

• Evaluation

• Tools

– Multi-resolution Analysis

– Time-frequency Analysis

– Classification / fusion

– Others …

Various 

data

Properties

Physical

Sources 
Pre-

processing
Post

processing
BSS

Evaluation
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Scheme


