
File Formats for N-
Dimensional Detector Data

Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

• areaDetector module
– Overview of architecture
– Drivers for detectors & cameras
– Plugins for real-time processing
– Plugins for file saving (netCDF, Nexus/HDF, others)
– Viewers and other clients

• Other applications
– MCA (ASCII, HDF)
– Tomography (netCDF, HDF)
– EPICS sscan/saveData (MDA)

• Demo
– Prosilica GigE camera streaming video to disk in HDF and

netCDF formats

Talk Outline

areaDetector - Motivation
• 2-D detectors are essential components of synchrotron beamlines

– Sample viewing cameras, x-ray diffraction and scattering detectors, x-ray
imaging, optical spectroscopy, etc.

• EPICS is a very commonly used control system on beamlines, (APS, DLS,
SLS, Shanghai, NSLS, NSLS-II, etc.)

• Need to control the detectors from EPICS (useful even on non-EPICS
beamlines, since other control systems like SPEC etc. can talk to EPICS)

• Previously several packages available, each typically restricted to a small set
of detectors (Flea, Pilatus, marCCD, etc.)

• Clear advantages to an architecture that can be used on any detector, re-using
many software components

• Providing EPICS control allows any higher-level client to control the
detector and access the data (SPEC, medm, IDL programs, Python scripts,
etc)

areaDetector - Goals
• Drivers for many detectors popular at synchrotron beamlines

– Handle detectors ranging from >500 frames/second to <1 frame/second

• Basic parameters for all detectors
– E.g. exposure time, start acquisition, etc.

– Allows generic clients to be used for many applications

• Easy to implement new detector
– Single device-driver C++ file to write. EPICS independent.

• Easy to implement detector-specific features
– Driver understands additional parameters beyond those in the basic set

• EPICS-independent at lower layers.

• Middle-level plug-ins to add capability like regions-of-interest
calculation, file saving, etc.

– Device independent, work with all drivers

– Below the EPICS layer for highest performance

• NDArray
– N-Dimensional array.

• Everything is done in N-dimensions (up to 10), rather than 2. This is needed
even for 2-D detectors to support color.

– This is what plug-ins callbacks receive from device drivers.

• NDAttribute
– Each NDArray has a list of associated attributes (metadata) that travel with

the array through the processing pileline. Attributes can come from driver
parameters or any EPICS PV; e.g. can store motor positions, temperature,
ring current, etc. with each frame.

• NDArrayPool
– Allocates NDArray objects from a freelist
– Plugins access in readonly mode, increment reference count
– Eliminates need to copy data when sending it to callbacks.

• Although written for 2-D detectors, these are completely applicable to
spectroscopy systems (X, Y, E) or (E, X, Y)

areaDetector – Data structures

ADBase
.template

Standard asyn device support
(device-independent)

Vendor API

Driver

Channel Access Clients (medm, IDL, ImageJ, SPEC, etc.)

EPICS areaDetector Architecture

xxxDriver
.template

Hardware

C++ Base classes
(NDArray,
asynPortDriver,
asynNDArrayDriver,
ADDriver,
NDPluginDriver)

Layer 5
Standard
EPICS records

Layer 4
EPICS device
support

Layer 3
Plug-ins

Layer 1
Hardware
API

Layer 2
Device
drivers

Layer 6
EPICS CA clients

StdArrays
File

(netCDF, TIFF, JPEG,
HDF)

NDPluginXXX.
template

Channel access

Record/device support

asynInt32, Float64, Octet

asynGenericPointer
(NDArray)

asynXXXArray

C library calls

NDPluginBase
.template

ROIColorConvert

C++ Class Hierarchy

Detector drivers
• ADDriver

– Base C++ class from which detector drivers derive. Handles details
of EPICS interfaces, and other common functions.

• Simulation driver
– Produces calculated images up to very high rates. Implements nearly

all basic parameters, including color. Useful as a model for real
detector drivers, and to test plugins and clients.

• Prosilica driver
– Gigabit Ethernet cameras, mono and color
– High resolution, high speed, e.g. 1360x1024 at 30 frames/second =

40MB/second.

• Firewire (IEEE-1396 DCAM)
– Vendor-independent Firewire camera drivers for Linux and

Windows

• Roper driver
– Princeton Instruments and Photometrics cameras controlled via

WinView

Detector drivers (continued)

• PVCAM driver
– Princeton Instruments and Photometrics cameras controlled via

PVCAM library

• Pilatus driver
– Pilatus pixel-array detectors.

• marCCD driver
– Rayonix (MAR-USA) CCD x-ray detectors

• ADSC driver
– ADSC CCD detectors

• mar345 driver
– marResearch mar345 online image plate

• Perkin-Elmer driver
– Perkin-Elmer amorphous silicon detectors

ADBase.adl – Generic control screen

• Works with any
detector

• Normally write custom
control for each
detector type to hide
unimplemented
features and expose
driver-specific features

Plugins
• Designed to perform real-time processing of data, running in the EPICS

IOC (not over EPICS Channel Access)
• Receive NDArray data over callbacks from drivers or other plugins
• Plug-ins can execute in their own threads (non-blocking) or in callback

thread (blocking)
– If non-blocking then NDArray data is queued

• Can drop images if queue is full

– If executing in callback thread, no queuing, but slows device driver

• Allows
– Enabling/disabling
– Throttling rate (no more than 0.5 seconds, etc)
– Changing data source for NDArray callbacks to another driver or plugin

• Some plugins are also sources of NDArray callbacks, as well as
consumers.

– Allows creating a data processing pipeline running at very high speed, each
in a difference thread, and hence in multiple cores on modern CPUs.

Plugins (continued)
• NDPlugInStdArrays

– Receives arrays (images) from device drivers, converts to standard arrays,
e.g. waveform records.

– This plugin is what EPICS channel access viewers normally talk to.

• NDPluginROI
– Performs region-of-interest calculations

– Select a subregion. Optionally bin, reverse in either direction, convert data
type.

– Optionally compute statistics on the region (min, max, mean, etc.)

– Optionally compute histogram of the region, make available as waveform
for client plotting.

• NDPluginColorConvert
– Convert from one color model to another (Bayer, RGB pixel, row or planar

interleave)

• NDPluginMJPEG
– MJPEG server that allows viewing images in a Web browser.

StdArrays and ROI plugin displays

Plugins: NDPluginFile
• Saves NDArrays to disk
• 3 modes:

– Single array per disk file
– Capture N arrays in memory, write to disk either multiple files or as a single

large file (for file formats that support this.)
– Stream arrays to a single large disk file

• File formats currently supported
– TIFF
– JPEG (with compression control)
– netCDF (popular self-describing binary format, supported by Unidata at UCAR)
– NeXus (standard file format for neutron and x-ray communities, based on HDF,

which is another popular self-describing binary format, richer than netCDF).

• In addition to file saving plugins, many vendor libraries also support saving
files (e.g. marCCD, mar345, Pilatus, etc.) and this is supported at the driver
level.

• File saving plugin can be used instead of or in addition to vendor file saving
– Can add additional metadata vendor does not support
– Could write JPEGS for Web display every minute, etc.

NDPluginFile display

Example: streaming 80 frames/second of 640x480 mono
video to netCDF file, no dropped frames.

NDPluginFile display

Example: capturing 54 frames/second of 640x480 RGB
video to Nexus/HDF file, no dropped frames.

Viewers

• areaDetector allows generic viewers to be written
that receive images as EPICS waveform records
over Channel Access

• Current viewers include:
– ImageJ plugin EPICS_AD_Display. ImageJ is a very

popular image analysis program, written in Java, derived
from NIH Image.

– IDL EPICS_AD_Display.

– IDL areaVision (Stephen Mudie from AS)

– MJPEG server allows image display in any Web browser

Driver and PluginAttributes Defined via
User-Created XML File

<?xml version="1.0" standalone="no" ?>
<Attributes >

<Attribute name =" AcquireTime "
type =" EPICS_PV"
source =" 13PS1:cam1:AcquireTime "
dbrtype =" DBR_NATIVE“
description =" Camera acquire time " />

<Attribute name =" CameraModel "
type =" PARAM"
source =" MODEL“
datatype =" STRING"
description =" CameraModel " />

<Attribute name =" FramesDropped "
type =" PARAM"
source =" PS_FRAMES_DROPPED"
datatype =" INT "
description =" FramesDropped " />

</ Attributes >

ImageJ Viewer

Performance Example with Pilatus driver
• SPEC used to collect 1000 points using trajectory scanning mode with the

Newport XPS motor controller. Hardware trigger of Pilatus from XPS.

• Relative scan of the chi axis from -2 degrees to +2 degrees with 1000 points at
.02 seconds/point

• Coordinated motion of the phi, kappa and omega axes.

• Theoretical time 20.0 second, actual time 20.8 seconds

• Includes time to save all 1000 images to disk (366 MB), Pilatus driver to read
each file, correct bad pixels and flat field, compute ROIs, and post the ROIs and
1000 images to EPICS.

Tomography Data
• Sector 13 at APS uses netCDF to store 3-D tomography data, both

normalized raw data and reconstructed images
• Portable, self-describing, very well supported by Unidata at UCAR

– We currently use netCDF “classic” (netCDF version 3)
– netCDF version 4 uses HDF5 as underlying format, but with netCDF API

• Use vendor format (Princeton SPE) for raw data – not ideal

• Sector 2 at APS uses HDF4
– Not satisfied with peformance relative to simple binary
– Not happy with trouble users have with translating to more common formats
– ImageJ requires C library to read, not available on Mac?
– Considering abandoning HDF …

• Trivial to import netCDF data into ImageJ with netCDF plugin and 4 line script
• USERS LIKE THIS!
baja:~/Data/Baker/Bt12>more /usr/local/ImageJ/plugins/_GSETomo.txt
run("Load NetCDF File");
run("XOR...", "value=1000000000000000 stack");
run("Calibrate...", "function=[Straight Line] unit=[Gray Value] text1=[0 65535] text2=[-32768 32767]");
run("Enhance Contrast", "saturated=0.5");

Tomography Data
baja:~/Data/Baker/Bt12>/usr/local/netcdf-3.6.3/ncdump/ncdump -h Bt12recon.volume
netcdf Bt12recon {
dimensions:

NX = 696 ;
NY = 696 ;
NZ = 520 ;

variables:
short VOLUME(NZ, NY, NX) ;

VOLUME:scale_factor = 2.e-06f ;

// global attributes:
:title = "Before heating" ;
:operator = "Rivers, Bai" ;
:camera = "CoolSnap, 5x objective, 65mm tube" ;
:sample = "Bt12" ;
:image_type = "RECONSTRUCTED" ;
:energy = 25.f ;
:dark_current = 101.f ;
:center = 342.701f ;
:x_pixel_size = 5.22f ;
:y_pixel_size = 5.22f ;
:z_pixel_size = 0.f ;
:angles = 0.f, 0.25f, 0.5f, 0.75f, 1.f, 1.25f, 1.5f, 1.75f, 2.f, 2.25f, 2.5f, 2.75f, 3.f, 3.25f, 3.5f, 3.75f, 4.f, 4.25f,

4.5f, 4.75f, 5.f, 5.25f, 5.5f, 5.75f, 6.f, 6.25f, 6.5f, 6.75f, 7.f, 7.25f, 7.5f, 7.75f, 8.f, 8.25f,…

MDA files
Binary, portable (XDR)

Non-standard, not well documented

Commonly used at APS for general scan data (sscan
record)

Metadata is not well organized, requires setup by user to
capture everything required for interpretation (MCA
calibration, etc.)

Should be replaced – not too difficult

IDL and Python browsers and visualization tools available

HDF4 was originally tried as file format but abandoned
for poor performance – use HDF5?

MCA files – legacy, ASCII (easy for users)
VERSION: 3.1

ELEMENTS: 16

DATE: APR 19, 2009 20:00:00.101

CHANNELS: 2048
ROIS: 12 12 12 12 12 12 12 12 12 13 12 12 12 2 12 12

REAL_TIME: 300.0005188 300.0005188 300.0005188 300.0005188 300.0005188 300.0005188 300.0005188 300.0005188300.0005188 300.0005188
300.0005188 300.0005188 300.0005188 300.0005188 300.0005188 300.0005188

LIVE_TIME: 300.1702576 294.7783508 293.2825623 295.9739075 288.4481506 291.3387756 300.1826782 292.4120483 290.4937744 292.0257568
293.1321106 292.1801147 290.0241699 300.1603699 294.2463989 292.7752991

CAL_OFFSET: -3.4999999e-001 -3.6593691e-002 -1.5307420e-001 5.1209070e-002 -1.2942410e-001 -7.9422943e-002 -1.6341200e-001 3.2899791e-004 -
1.6128260e-001 -4.7699928e-002 -1.3841900e-001 -6.9478489e-002 -1.1549980e-001 0.0000000e+000 3.6675561e-002 -1.8902750e-001

CAL_SLOPE: 1.7000001e-002 1.7440230e-002 1.5586490e-002 1.6970981e-002 1.4973060e-002 1.5056320e-002 1.6039200e-002 1.8031770e-002 1.6510570e-
002 1.5173850e-002 1.8110130e-002 1.4946350e-002 1.5717430e-002 2.2104000e+001 1.4986820e-002 1.5494210e-002

CAL_QUAD: 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000
0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000

TWO_THETA: 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000
10.0000000 10.0000000 10.0000000 10.0000000 10.0000000

ROI_0_LEFT: 226 202 233 202 241 237 228 193 221 233 200 238 229 1 230 237

ROI_0_RIGHT: 246 222 256 223 265 260 249 213 242 256 219 261 251 1 253 260

ROI_0_LABEL: Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Ca Ka & Cd
Ka & Ca Ka & Ca Ka &

ENVIRONMENT: S:SRcurrentAI.VAL="102.364" (Storage R ing Current)

ENVIRONMENT: 13BMA:m17.RBV="5.6729" (FOE Mono angle readback)

DATA:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
732 2 0 13 0 0 0 0 1 15 2 32 0 0 1 3

702 2 0 18 0 0 0 0 0 18 2 20 0 0 2 3

790 1 0 18 1 0 0 0 0 10 3 8 0 0 4 0

722 3 0 10 0 0 0 0 0 12 2 8 0 0 1 3

XIA Fast DSP
Electronics for EDS

Detectors
• X-MAP PXI detector

electronics
• Large on-board

memory for on-the-fly
spectral data collection

• Almost completed
driver in time for this
meeting that uses
asynNDArrayDriver
class

• Can thus use any
plugins, including HDF
and netCDF file writers

medDisplay (IDL and Python)

Future directions

• Need to benchmark various formats: binary, netCDF, HDF5/Nexus
for various applications. There are remaining doubts about
performance, but little hard data I am aware of.

• Larger collaborations on workbench for data collection and
analysis?

• Architecture works well, easily extended to new detector
drivers, new plugins and new clients

• Base classes, asynPortDriver, asynNDArrayDriver,
asynPluginDriver actually are generic, nothing “areaDetector”
specific about them.

• They can be used to implement any N-dimension detector, e.g.
the XIA xMAP (16 detectors x 2048 channels x 512 points in a
scan line)

• Can get source code and pre-built binaries (Linux, Windows,
Cygwin) from our Web site:
– http://cars.uchicago.edu/software/epics/areaDetector

• Can also get code on SourceForge
– http://epics.svn.sourceforge.net/viewvc/epics/applications/trunk/areaDetector

Conclusions

• Brian Tieman (APS) Roper PVCAM driver

• John Hammonds (APS) Perkin-Elmer driver and NeXus file
saving plugin

• Tim Madden (APS) initial version of ImageJ viewer

• Stephen Mudie (Australian Synchrotron) areaViewer IDL-
based viewer

• Ulrik Pedersen and Tom Cobb (Diamond) MJPEG plugin,
Linux Firewire driver

• Lewis Muir (U Chicago) ADSC CCD driver

• NSF-EAR and DOE-Geosciences for support of GSECARS
where most of this work was done

• Thanks for your attention!!!

Acknowledgments

