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1. INTRODUCTION
Nuclear Inelastic Scattering (NIS) is a novel technique to study lattice dynamics.1 It gives

direct access to the phonon density of states (DOS) and is therefore complementary to other
methods, like inelastic neutron, X-ray and Raman scattering which are meinaly concerned
with phonon dispersion relations.

A rapid development set in after the pioneering experiments2,3,4 thanks to several
advantages of the new method. First, the resonance character of the scattering assures high
count rates. In combination with the small size of the synchrotron radiation beam, tiny
samples such as thin films, materials under high pressure and biological samples are easily
accessible. Secondly, NIS can be carried out with any sample, i.e., amorphous, disordered,
polycrystalline, single crystalline, and even liquids or gases. Finally, NIS provides directly the
phonon DOS by automatically performing integration over all phonon momenta. Therefore, in
contrast to other methods, no theoretical models have to be invoked. Furthermore, the
instrumental resolution is constant with energy and defined with high precision, allowing one
the determine the DOS with a few percent accuracy.

NIS is only sensitive to the vibrations of Mössbauer atoms, i.e. the technique provides a
partial density of phonon states. The isotope selectivity simplifies the evaluation of the data
and the extraction of the DOS from nuclear inelastic absorption spectra. This manual provides
a brief summary of the theory underlying the evaluation of NIS spectra and describes the
operation of the INES program, specifically developed for the analysis of such spectra.

2. BASIC THEORY OF NUCLEAR INELASTIC SCATTERING
The treatment of nuclear inelastic scattering data is based on the theoretical works of

Singwi and Sjölander5 and Lipkin.6 The normalised probability of absorption, W(E), of a
photon with energy E0+E, with E0 resonance energy of the nuclear transition, can be written
as:5
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with fLM Lamb-Mössbauer factor. The Dirac delta-function, i.e., the zero-th order term of
the expansion, represents elastic nuclear absorption without phonon creation or annihilation.
Win(E) is the probability of inelastic nuclear absorption. The first order term S(1)(E) in the sum
describes the probability of one-phonon creation/annihilation and is linked to the phonon
DOS, g(E), by:
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with ER recoil energy and β≡1/kBT. The higher order terms, representing multi-phonon
creation/annihilation events, obey a recursive relation:5
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Let us denote the Fourier transforms of the above functions in a τ-space by a tilde
superscript. From Eqs. (1),(3) and the properties of Fourier transformations it follows
immediately that:
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Another important point is that the energy moments of W(E) are linked with physical
quantities as shown by Lipkin’s sum rules:6
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where T  is the mean kinetic energy per phonon and F  the mean force constant. In

the following, the notation �≡ dEEhEh n
n )(  will be used for the n-th moment of a function

h(E). Since the moments of the δ-function satisfy 0,0 >= nnδ , Eqs. (6)-(8) hold for the
inelastic part of nuclear absorption Win(E)  as well.

The actual spectrum measured during an experiment can be written as:
EdEWEbfEEPIEI inLM ′′+′′−= � ))()(()()( 0 δ (9)

where P(E) is the instrumental function of the monochromator normalized to unit area,
i.e., 10 =P . Its energy dependence is known from the measurement in the coherent forward
channel and its moments can be calculated independently. I0 is a scaling factor which depends
on the amount of resonant nuclei, the geometry of the experiments, the detector efficiency.
The factor b is due to saturation effects occurring in the vicinity of the Mössbauer resonance.
In fact, the absorption cross section at E=0 is much larger than for E ≠ 0, resulting in a smaller
penetration depth of photons with E=0 and less material contributing to the elastic peak.
There is also the possibility that a strong coherent channel influences the spectrum. Since the
factor b is unknown, it is not possible to use Eq. (5) to determine the scaling factor I0. One has
to turn to eq. (6) instead. It is easy to show that:
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The experimental spectrum is then divided by I0 calculated through Eq. (10). Similar

relationships between second and third moments of I and W allow one to calculate the average
kinetic energy and force constant from the spectrum. The interested reader is referred to [7].

The elastic peak can be subtracted from the spectrum following the procedure outlined in
section 4.6. After this step, the properly normalized inelastic spectrum is determined:
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and combination with Eq. 4 yields:
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Therefore the usual strategy to extract the phonon DOS from the spectrum I(E) is
composed of three main steps: (i) normalization using Eq. (10) and subtraction of the elastic
peak in order to determine Iin(E); (ii) calculation of )(~ τinI  by fast Fourier transform (FFT)

and of )(~ )1( τS  through Eq. (12); (iii) back-transformation of )(~ )1( τS  and determination of
g(E) from S(1)(E) using Eq. (2).



3. INPUT PARAMETERS FOR THE INES PROGRAM
The INES program makes use of a very simple input file where few parameters

describing the structure of the data file(s), the Mössbauer transition parameters and the
evaluation procedure must be defined by the user. This input file should have an extension .in.
The input parameters are subdivided into seven blocks for the sake of clarity. The typical
structure of one block is:

• description of the parameter(s); these are comment lines, starting with ‘*’,
explaining the meaning of the parameter(s). These lines can also be removed
without affecting program execution.

• one line starting with a sequential number in parentheses (e.g., ‘(01)’) followed by
the name(s) of the parameter(s). This line should must not be modified by the user.

• one line containing user-defined parameter(s) value(s).
In the following, the parameters used by the INES program are described in detail.

3.1. Data structure (block  (01))
These parameters define the structure of the data files. They are:

• inst_f: this parameter can assume the following values: 0 if no instrumental
function is to be considered; 1 if the instrumental function is listed in the same file
as I(E); 2 if the instrumental function is in a separate file.

• nhr1: number of header lines in the data file containing I(E).
• sub1: the number of the column containing energy values.
• c1: the number of the column containing I(E).
• nhr2: must be defined only if inst_f=2, and represents the number of header lines

in the separate file containing the instrumental function.
• e2: must be defined only if inst_f=2, and is the number of the column containing

energy values for the instrumental function. Energy binning for the instrumental
function need not to be the same as for the inelastic spectrum.

• i: must be defined only if inst_f<>0, and is the number of the column containing
the instrumental function.

3.2. Energy of γγγγ rays (block (02))
This parameters defines the energy (in keV units) of the Mössbauer transition, e.g.,

14.4125 for the 57Fe Mössbauer isotope.

3.3. Atomic mass (block (03))
The value of this parameter is the atomic mass of the Mössbauer isotope.

3.4. Maximum energy for data analysis (block (04))
The user can decide that all data points at energies E satisfying the condition

abs(E)>max_en (in meV) will be neglected in the subsequent analysis, except for the
calculation of the background. The region where data points are considered as background is
defined only by the parameters in block (05) as explained below. Use max_en to exclude from
the analysis those region of the spectrum yielding no relevant information and affected by
strong statistical fluctuations. If you want to keep all data points, simply put max_en >
max(abs(E)).

3.5. Energy limits for background subtraction (block (05))
The data points at energies E<b1 or E>b2 are considered as background and their average

is subtracted from the spectrum. In many cases, the user may prefer to determine the



background from the negative energy side only, since the positive side may contain
multiphonon contributions up to the maximum energy in the spectrum. In this case, put
b2>max(E). If you do not want to remove background at all, put b1<min(E) and b2>max(E).
Please note that all data points at energies satisfying the condition E<b1 or E>b2 will be used
for background calculation, even if abs(E)>max_en (parameter defined above). In this way
some points can be used to calculate the background without taking them into account for the
determination of the DOS.

3.6. Subtraction of the elastic peak (block (06))
This block defines three parameters: sub1, sub2, and flag. The elastic peak will be

removed in the region sub1<E<sub2. If you do not want to remove the elastic peak, for
instance because you already did so, then put sub1=sub2=0. flag defines how the subtraction
has to be carried out. If flag=0, a linear interpolation between sub1 and sub2 is performed,
i.e., the spectrum I(E) in the region sub1<E<sub2 is replaced by I(sub1)+(I(sub2)-
I(sub1))*(E-sub1)/(sub2-sub1). If flag <>0, the instrumental function after proper rescaling
will be subtracted. This is done interacting with the user and using a criterion that will be
explained in section 4.6. Please note that if inst_f=0, the program will assume flag=0 even if a
different value is defined.

3.7. Deconvolution of the instrumental function (block (07))
The user can choose to which extent the deconvolution of the instrumental function is

carried out. In fact, the program calculates the one-phonon term both using an iterative
procedure and the so-called Fourier-log method, described by Eq. (12). The iterative
procedure is performed on the normalised spectrum without any deconvolution. Conversely,
the Fourier-log method involves calculation of the Fast Fourier transform (FFT) of the
spectrum (see Eq. 4). At this stage, deconvolution is represented by the term P in Eq. 12,
where P is the FFT of the instrumental function normalized to unit area. The INES program
makes use of the function )1/()~(~ pifpifPP ++≡′  instead of P~ . Since the maximum value
of P~  is 1)0(~ =P  (due to normalisation), it is easy to see that 1~ ≈′P  if pif >> 1 whereas

PP ~~ ≈′  if pif << 1. Therefore, pif >> 1 corresponds to no deconvolution, while pif<< 1 results
in almost complete deconvolution.

4. OPERATION OF THE PROGRAM
This chapter describes the steps performed by the INES program. When the program is

launched, a main window with three buttons is displayed: 1) Start INES begins data
treatment; 2) Convert ID18 SPEC data performs conversion from raw experimental data file
to energy spectra and 3) EXIT. The user interface of the program is very simple. Besides the
main window, at each step a small window appears that interacts with the user. Further, one
or more graphic windows showing the results of calculations are displayed making use of the
XPLOT program (included in the XOP package). The program needs one input file, one file
with I(E), and when necessary a file defining the resolution function of the monochromator.
The base name of the file containing I(E) , filename, is used as base name for a set of files
with different extensions where the output of the program is saved. The operations performed
by INES during data treatment are written step by step both onto the main window and in
filename.out.

4.1. Reading input and data files
The first step is, of course, reading of the input file where the parameters described in the

previous section are listed. The user is prompted with a form of the open file type whose



actual appearance depends on the operating system under use. The default extension of the
input file is .in. Afterwards, the program reads the file containing the spectrum I(E) and, if
inst_f = 2, the file with the instrumental function. Again, the user is prompted with an open
file form to select the data file(s). The default extension is .dat. Data file(s) are generally
obtained from the experimental raw file(s) after summing several scans, converting from
motor/encoder steps to energy steps and binning into defined energy intervals. The data file(s)
must have a columnar structure. The program assumes a Poisson statistics to calculate the
errors, i.e., the errors on the experimental spectrum (and instrumental function, if any) are set
equal to the square root of the counts. The parameters defined in section 3.1 serve as a guide
for the program to extract the necessary arrays (energy, inelastic spectrum, instrumental
function).

4.2. Background subtraction
The program calculates the background as described in section 3.5. The value of the

background is subtracted from the whole experimental spectrum. The same is done for the
instrumental function, if any. When the instrumental function is in a separate file, it may well
be that its energy range is more restricted than for I(E). In this case, if there are no energy
values in the file satisfying the condition E<b1 or E>b2, no background will be removed from
the instrumental function.

The spectrum after background subtraction is saved in filename.bgd.

4.3. Symmetrization of the spectrum
This step is only performed when abs(min(E)) < max_en and abs(min(E)) < max(E).

Though not recommended, it may happen that, in order to save time during experiments, the
negative energy side is cut to some energy below the elastic peak. The program then uses the
detailed balance principle to calculate the missing points from the positive energy side. The
user is asked to input the temperature of the experiment in order to extend the negative energy
side. Note that this procedure should be viewed with some caution and avoided  whenever
possible, since the detailed balance equation holds only for the one-phonon term of the
spectrum (see Eqs. 2-3).

4.4. Normalisation according to Lipkin’s sum rule
The scaling factor I0 is determined using Eq. (10). If inst_f=0, the correction for the

asymmetry of the instrumental function is not performed, i.e., I0 is calculated as
REII /

10 = . The spectrum is normalised and the result is saved in filename.nrm.

4.5. Calculation of higher order moments
Besides the first moment used to normalise the spectrum, the program calculates the

second and third moments as well, from which the kinetic energy per atom and mean force
constant are derived.7

4.6. Elastic peak subtraction
This step is the only one where some arbitrariness is introduced in the analysis. In fact,

subtraction of the central elastic peak is hardly carried out automatically. Recently, a way to
solve this problem has been proposed in ref [8]. The author of the present manual however,
found that the output of the program described in [8] is strongly sensitive to the values of
several user-defined parameters, which do possess some arbitrariness, or at least are not easily
chosen in the most proper way by non-expert user. The PHOENIX software9 assumes a
Debye behaviour for the low energy part of the inelastic spectrum below the central peak,



which is again questionable for many samples exhibiting no Debye behaviour or when the
shape of the low-energy tail is not known. The INES code gives the user different options, by
combination of the parameters sub1, sub2, and flag, and described in section 3.6. Here we
explain the elastic peak subtraction for flag <> 0 and sub1 < 0, sub2 > 0. First, the program
displays a picture showing several curves in the region sub1<E<sub2. An example of such a
picture is reported in Fig. 1. One curve is the original spectrum. The other curves are obtained
after subtracting the instrumental function scaled by different factors f in the range α < f < 1,
with α chosen in such a way that I(0)-αP(0)=2*I(4*FWHM). One can see that, in the central
part near zero energy, the subtracted curves depend strongly on f and oscillate rapidly up and
down. This reflects the fact that P(E) measured in the coherent forward channel is not exactly
proportional to the P(E) function which is convoluted with the inelastic spectrum. The
subtraction near E=0  leads to strong oscillations because in that region I-P<<I. Outside a
certain interval (E1,E2) the curves are only weekly dependent on f and vary smoothly with the
energy.

Figure 1

The user is asked to enter E1,E2. Let us define fPII −≡′ . The best scaling factor fbest

is chosen to minimise the absolute value of the function )()( ErEI −′  in the interval (E1,E2),
where )12/()1))(1()2(()1()( EEEEEIEIEIEr −−′−′+′≡  represents a straight line
connecting the points )1(' EI  and )1(' EI . Finally, the spectrum after subtraction of the elastic
peak is defined by:

)()( EIEI =′  E<sub1, E >sub2 (13-a)
)()()( EPfEIEI best−=′ , sub1<E<=E1, E2<=E<sub2 (13-b)

)()( ErEI =′ E1<E<E2 (13-c)

Figure 2



A second picture is displayed showing the original spectrum, the spectrum after
subtraction with scaling factor fbest, and the spectrum after subtraction plus linear interpolation
in  the (E1, E2) interval (see Fig.2). The user has the possibility to try different values for
E1,E2 or to confirm the previous choice. Once the user is satisfied with the subtraction
procedure, the program continues by displaying a picture of the resulting inelastic spectrum
(Fig. 3). The purely inelastic spectrum after elastic peak removal is saved in filename.sub.

Figure 3

4.7. Determination of Lamb-Mössbauer factor
Eqs. (1) and (4) yield LMin fW −= 10  and, since 10 =P , one also has

LMin fI −= 10 . This equation is used to calculate the Lamb-Mössbauer factor. This step
raises no particular problems whenever fLM is reasonably high (roughly, when fLM > 0.2), but
can become critical for very low values because the result depends strongly on the elastic
peak subtraction. Small absolute errors in 0inI  turn to quite large relative errors in fLM. A
fairly precise calculation of fLM is important for the extraction of the phonon DOS as can be
argued from eq. (12). For this reason, INES allows the user to change the value of fLM. It must
be kapt in mind that this action is justified only when the calculated fLM deviates significantly
from a value known independently with a much better accuracy.

4.8. Calculation of the temperature
The temperature of the experiment is calculated from the inelastic spectrum using the

principle of detailed balance expressed by Eq. (2). The first maximum of the spectrum on the
positive energy side at E>sub1 is chosen as reference point. Let’s say this point corresponds
to energy E+ and intensity I(E+). Neglecting multi-phonon contributions, i.e., assuming
I(E)≈S(1)(E), the temperature is derived from Eq. (2) as:

)/())(/)(ln( EkEIEIT B
++ −= (14)

The temperature derived this way is not reliable if multiphonon terms are not small. The
user has the possibility to modify the temperature determined through Eq. (14) and to insert
the value measured during the experiment. The automatic determination of T via the detailed
balance principle can be useful in those cases where uncertainties affect the measured sample
temperature, e.g., when the temperature sensor is not close enough to the sample during
experiments with cryostats and/or furnaces.



4.9. Extraction of the one-phonon term from the spectrum
The INES code uses two alternative approaches to extract the one-phonon cross-section

from the spectrum. The first one is the Fourier-log method, which is fully explained by eq. 12.
It performs FFT of the spectrum and instrumental function, applies eq. 12 to calculate )(~ )1( τS

and finally obtains )()1( ES  via back-transformation. Actually, the function )(τP  in eq. 12 is
replaced by )1/())(()( pifpifPP ++≡′ ττ , as already explained in section 3.7. The pif value
controls to which degree the deconvolution is performed. The Fourier-log approach thus
allows deconvolution of the instrumental function and separation of the multi-phonon term in
one single step.

The second method is an iterative approach without deconvolution. The inelastic
spectrum Iin(E) is used as a starting guess, )()1( ES guess , for )()1( ES . This is obviously an

overestimation. The multi-phonon contribution )()1( ES n
guess

>  (up to the 30th order) is then

calculated using Eq. 3 and subtracted from Iin(E) to obtain the second guess for )()1( ES , and
so on. A graphic window shows the one-phonon and multi-phonon contribution step by step
making it possible to follow the convergence process in real time. The convergence criterion
is that the sum of the square differences between S(E) and )()1( ES guess + )()1( ES n

guess
>  is less than

10-8. If convergence is not reached after 100 iterations, the program asks the user whether to
try other 100 iterations or to go on using the results of the Fourier-log method only. When the
Lamb-Mössbauer is low, e.g., below 0.5, multiphonon excitation contributes significantly to
the spectrum and the initial guess is far from the real one-phonon function, therefore
convergence may take long or even never occur. In this last case the user is obliged to go on
with the result of Fourier-log calculations only. It is to be pointed out that deconvolution is
not performed in the iterative method. It has been extensively checked that, whenever
convergence is reached, the two methods yield fully consistent results. The obtained one-
phonon functions coincide within the errors if the pif parameter is >>1 (i.e., if practically no
deconvolution is performed in the Fourier-log method). The one-phonon and multi-phonon
terms calculated by Fourier-log and iterative procedure are saved in the files filename.1ph and
filename.mph.

4.10. Determination of the density of states
Once the one-phonon term has been calculated, the determination of the DOS g(E) by

Eq. (2) is straightforward. The INES code takes only the positive-energy side of the
symmetric curve since this is generally determined with better statistics. Two DOS’s, one
from Fourier-log and one from iterative method, are calculated. The program also calculates
their integrals with the relative error. If the data treatment is correct, these values should be
very close to unity. The two functions g(E), already normalized to unit area by the program,
are saved in filename.dos.

4.11. Calculations of thermodynamic functions from the DOS and consistency check
The program now asks which DOS has to be used to calculate some thermodynamic

functions in the 0-500 K temperature interval. These functions and the relative output file
extensions are given in Table I. INES also calculates the mean force constant (independent on
temperature apart from anharmonic effects) from the DOS.

A consistency check of the whole data treatment is given by those quantities that can be
determined both from the moments of the inelastic spectrum and from the density of states.
These are: the Lamb-Mössbauer factor, the mean kinetic energy per atom, the mean force



constant. It is clear that the values determined in the two ways should coincide within the
errors. A further check is provided by the integral of g(E) before normalization, which should
be =1 if normalization of the inelastic spectrum through Eqs. 5-6 and  elastic peak is removal
have been carried out correctly. The results of these consistency check are saved at the end of
the .out file.

Table I
Thermodynamic function file extension
Specific heat at constant volume CV(T) .cv
Vibrational part of Helmoltz free energy FV(T) .fv
Mean square displacement .msd
Lamb-Mössbauer factor .flm
Mean kinetic energy per atom .kin
Vibrational entropy .s
Vibrational part of internal energy .u
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