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Report: 

 

During our 15 shift beamtime CH-6565 in July 2023, we carried out time- 

and spatially resolved operando high-energy X-ray diffraction experiments 

of desalination battery cathodes. These experiments were carried out in 

duplicate using realistic flow-by reactors for three distinct active materials 

across six varied aqueous salt solutions. Our overall aim was to unravel the 

ion intercalation mechanisms, as well as associated degradation processes and 

structural heterogeneity, and to correlate these to the desalination 

performance. 

The experimental setup (Fig. 1) was a three-electrode configuration 

featuring an AgCl quasi-reference electrode and an activated carbon cloth 

counter electrode parallel to the working electrode. The salt solution was 

pumped through the reactor between the electrodes (‘flow-by’ mode) at 15 

mL/min. A stirred reservoir of the salt solution allowed for simultaneous 

conductivity and temperature measurements during desalination. Initially 

deintercalated LiMn2O4, Na0.44MnO2 and LiFePO4 served as working 

electrodes in 0.1 M chloride salt solutions of Li, Na, Li:Na 1:1, and Li:Mg 

1:1 as well as synthetic seawater (SSW) and SSW with 0.014 M LiCl. The 

electrodes were cycled at a (dis-)charge rate of 4 hours and 10 hours (relative 

to the theoretical capacity) in constant-current mode with potential limits 

(GCPL) and using constant-current constant-voltage mode with time limits 

(CCCV). The reactors were placed into a high-throughput setup allowing the 

quasi-simultaneous measurement of three independent reactors at a time, each 

of which was measured at 36 points across the electrode surface with a 

resolution of 6 minutes over a course of 8 hours. In the following, we describe 

our preliminary findings, noting that in-depth data analysis is ongoing.  

The figures below present the X-ray diffraction patterns, working electrode voltage and conductivity as 

a function of time. Figure 2 illustrates the distinct phases that emerge during the intercalation and deintercalation 

processes: the formation of Li-rich LiFePO4 and the Li-poor FePO4. Both species exhibit the olivine phase with 

Figure 1: Schematics of the flow-by 

reactor and photographs of the setup 

installed at ID31. 



Figure 2: Operando HEXRD, 

electrochemistry and conductivity of a 

LiFePO4 electrode in 0.1M LiCl 

electrolyte in a flow-by reactor at C/4. 

Measurement near the center of the 

electrode. 

 

Figure 3: Operando HEXRD, 

electrochemistry and conductivity of a 

LiMn2O4 electrode in 0.1M LiCl 

electrolyte in a flow-by reactor at C/4. 

Measurement near the center of the 

electrode. 

 

Figure 2: Operando HEXRD, 

electrochemistry and conductivity of a 

Na0.44MnO2 electrode in 0.1M NaCl 

electrolyte in a flow-by reactor at C/4. 

Measurement near the center of the 

electrode. 

 

different lattice parameters, leading to the distinct decrease and increase in peak intensities. When considering 

the NaCl solution, these processes face both thermodynamic and kinetic hinderance due to the larger ionic radius 

of Na. To overcome thermodynamic barriers, an extension of the potential window was used, while addressing 

kinetic constraints were addressed by operating at a lower C-rate. In Li:Na mixed solution (not explicitly shown 

here), a preferred formation of LiFePO4 was observed compared to the formation of NaFePO4. Furthermore, 

employing a three-step potentiostatic method revealed subsequent deintercalation of Na+ and Li+. In SSW, the 

deintercalation and intercalation plateaus exhibit significant separation, accompanied by the evolution of several 

peaks. These observations are ascribed to the complexity of the SSW.  

LiMn2O4 (LMO) cycled in LiCl (Fig. 3) shows the anticipated shift in d-spacing, indicating contraction 

during deintercalation and expansion during intercalation. In SSW with additional Li presented good cycling 

behaviour. A preliminary analysis of the data suggests a strong selectivity towards Li, with an additional 

intercalation of magnesium at low potentials (<0V vs. AgCl). Na0.44MnO2 (NMO) in SSW demonstrated good 

cycling behaviour (similar to pure NaCl electrolyte, Fig. 4) and displays enhanced salt removal with successive 

cycles. This suggests an activation process of the electrode material specific to the SSW environment, which 

was not observed in NaCl electrolyte. CCCV testing of this electrode/electrolyte setup exhibited no further 

intercalation occurring during the constant-voltage step.  

The upcoming stages of analysis encompass removal of background, phase identification, calculation of unit 

cell parameters, calculation of intercalated ion mass and the creation of quantitative phase maps of the 

electrodes. We anticipate that our analysis will shed light on intercalation mechanisms, degradation processes, 

and structural heterogeneity resulting from ion distribution along and adjacent to the flow path. 


