$\overline{ ext{ESRF}}$	Experiment title: Development of ¹¹⁹ Sn nuclear resonant scattering and first application to highly correlated electron systems		
Beamline: ID18	Date of experiment: from: $2/7/99$ to: $8/7/99$	Date of report: 13/9/99	
Shifts: 13	Local contact(s): A. Barla, H. F. Grünsteudel	Received at ESRF:	

Names and affiliations of applicants (* indicates experimentalists):

B. Ni*, J. Plessel, M. Abd-Elmeguid

II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany

A. Barla*

ESRF

J. P. Sanchez

CEA / Grenoble

Report:

Experiment HE588 was aimed at investigating the effect of external pressure on the stability of magnetism in systems with 5f-moments using Nuclear Forward Scattering (NFS). The system $U(In_{1-x}Sn_x)_3$ was chosen, which according to magnetic susceptibility and specific heat studies [1] shows antiferromagnetic (AF) order for $x \le 0.5$, whereas no long range order is present for x > 0.5. Within this series we have studied the two cases x = 0.4 and x = 0.6 at ambient pressure, and we have then applied pressures up to 25 GPa (using a Diamond Anvil Cell) to the sample with lower Sn content.

The experiment has been carried out in 16-bunch mode. A new high resolution monochromator has been designed explicitly for NFS high pressure experiments, delivering a flux of $\sim 4.5 \cdot 10^8 \,\mathrm{photons/s}$ in an energy bandwidth of $\sim 10 \,\mathrm{meV}$ (at a storage ring current of 90 mA). The beam was vertically collimated by a Be compound refractive lens, and horizontally focussed down to $\leq 250 \,\mu\mathrm{m}$ using a bent Si crystal. The sample diameter in the DACs was $150-300 \,\mu\mathrm{m}$, and typical countrates were in the range $20-50 \,\mathrm{Hz}$. 36 different spectra have been recorded, the measuring time per spectrum varied between 1 and 4 hours.

[1] L. W. Zhou et al., Phys. Rev. B 34 (1986), 483

Fig. 1: NFS on $U(In_{0.6}Sn_{0.4})_3$

- Fig. 1 shows part of the spectra taken on $U(In_{0.6}Sn_{0.4})_3$ at different pressures and temperatures above and below the magnetic ordering temperature ($T_N = 28 \text{ K}$ at ambient pressure). Although the final data analysis is still in progress, some conclusions can already be drawn:
- 1. The spectra taken at all pressures above the Neel temperature can be fitted assuming the presence of a quadrupole splitting that increases with pressure. This is in agreement with previous Mössbauer measurements at ambient pressure and is due to the non-cubic symmetry of the Sn sites in the unit cell.
- 2. The spectra below T_N show the presence of a transferred hyperfine magnetic field (B_{thf}) at the Sn nuclei, due to the polarization of the conduction electrons by the U ordered magnetic moments. Even if no absolute values for B_{thf} can by now be given, from a first rough analysis of the measured spectra one clearly observes a decrease of B_{thf} (and therefore of the U magnetic moment) with increasing pressure, due to a gradual increase in the 5f-spd hybridization.
- 3. At the highest pressure (25 GPa), even at the lowest temperature reached ($T=3.6 \,\mathrm{K}$) no magnetic order can be observed, the measured spectrum is fitted with a simple quadrupole splitting. This is the first observation of a pressure induced non magnetic state in a 5f-moment system.