ESRF	Experiment title: EXAFS and high resolution XANES study of the location, aggregation and oxidative state of iron species in Fe-silicalite, Fe-Al-silicalite and Fe exchanged ZSM-5 and Y zeolites	Experiment number: CH-695
Beamline :	Date of experiment:	Date of report:
BM8 GILDA	from: 05/09/1999 to: 11/09/1999	31/08/2001
Shifts: 15	Local contact(s): Francesco D'Acapito	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

C. Lamberti,[†]* S. Bordiga, G. Berlier,* G. Spoto, G. Ricchiardi and A. Zecchina

Dipartimento di Chimica Inorganica, Fisica e dei Materiali, Università di Torino via P. Giuria, 7 I-10125 Torino, Italy

[†]Also with INFM Unità di Torino Università (I)

Report:

In previous works, reporting EXAFS/XANES data collected at LURE supported by IR, UV-Vis and EPR experiments, we have demonstrated that template removal at increasing temperature results in the progressive migration of Fe from framework into extraframework species [1-3].

The present study was aimed to obtain a detailed, high resolution, XANES picture to the determine both oxidation state and of local symmetry of Fe species upon template removal and interaction with N₂O [4-6]. Among the measured model compound, we mention: $FePO_4$ (tetrahedral Fe^{3+}); α -Fe₂O₃, (highly distorted octahedral Fe^{3+}); and Fe(acac)₃ (quite perfect octahedral Fe³⁺); FeCp₂ (Fe²⁺ in D_{5d} symmetry). Edge position, white line intensity (Fig. 1a), pre-edge intensity and position (Fog. 2a) well reflects the oxidation state and the local symmetry of iron species in the model compounds. The $A_1 \rightarrow T_2$ pre-edge peak of Fe-silicalite with template (Fig. 2b) is even higher than that of FePO₄ (Fig.2a), indicating that Fe-silicalite with template is a better model than FePO₄ for Fe³⁺ in T_d symmetry. Fig. 1b and 2b also reports the effect of template burning, at increasing temperature on the XANES spectra. We note: (i) red shift of the edge $(7123.6 \rightarrow 7122.4 \rightarrow 7120.6 \text{ eV})$; (ii) white line decrement (1.52) \rightarrow 1.31 \rightarrow 1.23); (iii) decrement (0.205 \rightarrow 0.142 \rightarrow 0.128) and broadening of the pre-edge peak; (iv) appearance of a new component at 7111.8 eV. Points (i) and (iv) highlight the reductive nature of the framework dislodgment process: migration to extraframework position is accompanied by $Fe^{3+} \rightarrow Fe^{2+}$ reduction; IR and EPR data support this important finding [4-6]. Point (ii) prove the high coordinative unsaturation of extraframework species as supported by the low Fe coordination number(EXAFS) and by the formation of $Fe^{3+}(NO)_3$ adducts (IR). Point (iii) simply means that we lost the initial T_d symmetry. Figs 1c and 2c prove that N₂O is able to re-oxidize extraframework Fe^{2+} species, as supported by IR and EPR [4-6].

Figure 1 Part (a) XANES spectra of model compounds: from top to bottom FePO₄, FeCp₂, Fe₂O₃, Fe(acac)₃ (Cp = cyclopentadienyl, acac = Acetylacetonate). The four spectra have been vertically shifted for clarity. Part (b) XANES spectra of Fe-Silicalite with template (dashed line), outgassed at 773 K and 973 K (dotted and full line respectively). Part (c) XANES spectra of Fe-silicalite outgassed at 973 K (full line, same curve as in part b, here reported again for direct comparison) and successively oxidised in N₂O at 523 K (dashed line).

References

S. Bordiga, F. Geobaldo, C. Lamberti, A. Zecchina, F. Boscherini, F. Genoni, G. Leofanti, G. Petrini, M. Padovan, S. Geremia and G. Vlaic, *Nucl. Instr. Meth. B*, **97** (1995) 23.

[2] S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola and G. Vlaic, *J. Catal.*, **158** (1996) 486-501.

[3] A. Zecchina, F. Geobaldo, C. Lamberti, S. Bordiga, G. Turnes Palomino and C. Otero Areán *Catal. Lett.*, **42** (1996) 25-33.

[4]G. Berlier, G. Spoto, S. Bordiga, G. Ricchiardi, P. Fisicaro, A. Zecchina, I. Rossetti, E. Selli, L Forni, E. Giamello, C. Lamberti, J. Catal., J. Catal., 208 (2002) 64.
[5] A. M. Ferretti, C. Oliva, L. Forni, G. Berlier, A. Zecchina, C. Lamberti J. Catal., J. Catal., 208 (2002) 83.
[5] G. Berlier, P. Fisicaro, S. Bordiga, A. Zecchina, E. Giamello and C. Lamberti, *Microchem. J.*, 71 (2002) 101.
[6] G. Berlier, G. Spoto, G. Ricchiardi, S. Bordiga, C. Lamberti and A. Zecchina, J. Mol. Catal. A, 182-183 (2002) 359.

Fig.2 As Fig.1: zoom.