

Experiment title:							
Structure	determination	of	L-aspartate	oxidase	in		
complex with FAD and the substrate.							

Experiment number:

LS-1517

Beamline:	Date of experiment: 14/02/2000	Date of report:
ID14-EH1	·	29.02.00
1		

Shifts: 2

Local contact(s): H.Belrhali

Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

(*)Claudio Lina and Andrea Mattevi

Dept. Genetics and Microbiology,

University of Pavia (Italy).

Report: Background: L-aspartate oxidase catalyses the first step in the bacterial de novo biosynthesis of NAD⁺. This biosynthetic pathway is present in bacteria but not in eukaryotes and represents a target for drug design studies. We have solved the crystal structure of the E. coli enzyme in the FAD-free apoform. The wild type protein could never be crystallised in the active holo-form.

Experiments carried out at the ESRF: The mutant Arg386Leu of E. coli L-aspartate oxidase crystallises in a different form with respect to the wild type crystals. A 2.9 Å data set has been collected on ID14-EH1 with the following statistics: n° measurements=82176, n° reflections=17836, Rsym=12.2% (34.2% in the highest resolution shell), completeness=99.6% (95.3%), I/sigma=7.7 (2.4).

Results: Yellow crystals of the Arg386Leu mutant belong to space group $P4_12_12$ with unit cell parameters a=b=73 Å and c=311 Å (the data were measured only two weeks ago).