	Experiment title: "Structure and oxidation state characterization of the $\mathrm{Co}(\mathrm{I})$ oxide $\mathrm{LaSrCoCo3."}$	Experiment number: CH-942
Beamline:	Date of experiment: from: 13/11/00 to: 14/11/00	Date of report: $15 / 3 / 02$
Shifts:	Local contact(s): Fitch	Received at ESRF:
Names and affiliations of applicants (*indicates experimentalists): E.J. Cussen Department of Chemistry, University of Liverpool M.J. Rosseinsky M.A. Hayward		

Report:

Data were collected on BM16 at 290 K and 10 K at $\lambda=0.40576(1) \AA$ on a sample of what was at the time of the experiment thought to be $\mathrm{LaSrCoO}_{3}$. The subsequent analysis of these data, together with neutron powder diffraction and $\mu \mathrm{SR}$, demonstrated that the phase studied was in fact the first extended transition metal oxide hydride, $\mathrm{LaSrCoO}_{3} \mathrm{H}_{0.7}$, resulting in a publication in Science whose details are given below:

Science, 295, 1882, 2002

The Hydride Anion in an Extended Transition Metal Oxide Array - LaSrCoO $\mathbf{H}_{\mathbf{3}} \mathbf{0}_{\mathbf{0}}$

M.A. Hayward ${ }^{(\text {a })}$, E.J. Cussen ${ }^{(\text {a) }}$, J.B. Claridge ${ }^{(\text {a })}$, M. Bieringer ${ }^{(\text {a) }}$, M.J. Rosseinsky ${ }^{(\text {(a) } *, ~}$
C.J. Kiely ${ }^{(\text {a,b })}$, S.J. Blundell ${ }^{(\mathrm{c})}$, I.M. Marshall ${ }^{(\mathrm{c})}$ and F.L. Pratt ${ }^{(\mathrm{d})}$
${ }^{(a)}$ Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, U.K.
${ }^{(b)}$ Materials Science Division, Department of Engineering, University of Liverpool, L69 3BX, U.K.
${ }^{(c)}$ Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, U.K.
${ }^{(d)}$ RIKEN-RAL Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, U.K.

Abstract

We present the synthesis and structural characterisation of a transition metal oxide hydride, $\mathrm{LaSrCoO}_{3} \mathrm{H}_{0.7}$, which adopts an unprecedented structure in which oxide chains are bridged by hydride anions to form a twodimensional extended network. The metal centers are strongly coupled by their bonding with both oxide and hydride ligands to produce magnetic ordering up to at least 350 K . The synthetic route is sufficiently general to allow the prediction of a new class of transition metal-containing electronic and magnetic materials.

