	Experiment title: NON-RECIPROCAL IN ANTIFERR	$\begin{aligned} & \text { ZAY } \\ & \text { IAGN } \end{aligned}$	TICAL ACTIVITY IC SOLIDS	Experiment number: HE-968
Beamline: ID-12	Date of experiment: from: 25-AVR-2001		02-MAY-2001	Date of report: 01-MAR-2002
Shifts: 21	Local contact(s): A. ROGALEV and F.			Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): José GOULON ${ }^{1 *}$, Andrei ROGALEV ${ }^{1 *}$, Fabrice WILHELM ${ }^{\text {* }}$, Chantal GOULON-GINET ${ }^{1,2^{*}}$, Delphine CABARET ${ }^{3 *}$ and Christian BROUDER ${ }^{3 *}$. 1 European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex ${ }^{2}$ Université Joseph Fourier, Faculté de Pharmacie, Domaine de la Merci, F-38700, La Tronche ${ }^{3}$ Laboratoire de Minéralogie-Cristallographie, Universités Paris VI-VII, 4, place Jussieu, F-75252 Paris cedex 05, France				

Unlike magneto-optical spectroscopies, e.g. Faraday rotation, Magnetic Circular or Linear Dichroisms (MCD,MLD), which are all consistent with the usual electric dipole approximation, Optical Activity (OA) mixes multipole moments of opposite parity and thus requires odd space parity. Typically, OA of X-rays is caused by electric dipole-electric quadrupole E1.E2 interference terms ${ }^{1}$. It has long been argued that OA effects could be either even or odd with respect to time-reversal : time-reversal even OA properties are called natural whereas time-reversal odd properties are called non-reciprocal. A non-reciprocal X-ray magnetic linear dichroism (nr-XMLD) has recently been measured ${ }^{2}$ at the ESRF. We report below another nonreciprocal effect in the X-ray range which we called X-ray Magnetochiral Dichroism (XM $\chi \mathrm{D}$). We stress that $\mathrm{XM} \chi \mathrm{D}$, unlike X -ray magnetic circular dichroism (XMCD), does not require any polarized beam since it is a property of the Stokes component S_{0}.

Magnetoelectric (ME) solids are good candidates to detect XM $\chi \mathrm{D}$ because magnetoelectric properties are odd with respect to Parity (P) and time reversal (Θ) but are invariant in the product $\mathrm{P} \Theta$. The generic example of ME crystals is $\mathrm{Cr}_{2} \mathrm{O}_{3}$: it has the centrosymmetric corundum space group ($\mathrm{R} \overline{\mathrm{3}} \mathrm{c}$) but it belongs to the non-centrosymmetric $\overline{3} \bar{'}^{\prime} \mathrm{m}^{\prime}$ space-time group below the Néel temperature. The spin moments can order in either one of two 180° domains : one can grow such single domains by magnetoelectric annealing : it consists in heating the crystal in the paramagnetic phase and in applying simultaneously along the \mathbf{c} axis a modest electric field $\mathrm{E}(5 \mathrm{kV} / \mathrm{cm})$ plus a weak magnetic field $\mathrm{H}(\pm 0.5 \mathrm{~T})$. All spectra were recorded in the fluorescence excitation mode using the most convenient backscattering configuration. We produced artificially unpolarized light by incoherent superposition of fluorescence excitation spectra recorded with Right and Left circularly polarized incident photons: $\mathrm{F}_{0}=\mathrm{F}[\mathrm{Rcp}]+\mathrm{F}[\mathrm{Lcp}]$. We have reproduced in Figure 1 the $\mathrm{XM} \chi \mathrm{D}$ spectrum measured at $\mathrm{T}=50 \mathrm{~K}$ of a $(001) \mathrm{Cr}_{2} \mathrm{O}_{3}$ single crystal with the \mathbf{c} axis parallel to the wavevector k.

It is shown that the signal can be as large as 1.6% due to the strong contribution of the E1E2 interference terms in the X-ray regime. It also appears from Figure 1 that the same $\mathrm{XM} \chi \mathrm{D}$ spectrum can be obtained using a powdered pellet of $\mathrm{Cr}_{2} \mathrm{O}_{3}$: the price to be paid is, however, a reduction (1:6) of the amplitude of the signal whereas the theory of $\mathrm{XM} \chi \mathrm{D}$ let us expect a slightly smaller reduction (1:5). Whereas X-ray natural circular dichroism (XNCD) can only be detected in single crystals, it is quite remarkable that $\mathrm{XM} \chi \mathrm{D}$ can be measured in a powder due to the fact that the orientational isotropy is broken by the ME order.

At this stage, there is no existing $a b$ initio computer program which would allow one to simulate properly our $\mathrm{XM} \chi \mathrm{D}$ spectra but, nevertheless, some valuable information can yet be extracted from the edge selective OA sum rules derived recently by Carra and co-workers. The effective operator Ω_{z}^{-}which describes the mixing in the ground state g of p et d atomic orbitals at the Cr absorbing site was identified with the orbital anapole. According to group theory, the universally cited magnetic group $\overline{3}^{\prime} m^{\prime}$ of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is not compatible with an invariant anapole moment. There is, however, no deep contradiction with our experiment : our $\mathrm{XM} \chi \mathrm{D}$ spectra reveal that this magnetic group may be suitable to describe the spin configuration but not the overall magnetic symmetry including orbital moments and currents. In other words, the spin anapole moment of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ certainly vanishes but it is our interpretation ${ }^{3}$ that the true space-time symmetry is most probably only $\overline{3}$ ' since this group admits the anapole moment $\Omega_{\text {z }}^{-}$as invariant.

References:

1. J. Goulon, C. Goulon-Ginet, A. Rogalev, V. Gotte, C. Malgrange, Ch . Brouder and C.R. Natoli, J. Chem. Phys. 108, 6394-6403 (1998)
2. J. Goulon, A. Rogalev, C. Goulon-Ginet, G. Benayoun, L. Paolasini, Ch. Brouder, C. Malgrange and P.A. Metcalf, Physical Review Letters, 85, 4385-8 (2000)
3. J. Goulon, A. Rogalev, F. Wilhelm, C. Goulon-Ginet, P. Carra, D. Cabaret and Ch. Brouder, Physical Review Letters (2002) submitted
