ESR	$\overline{\overline{\mathbf{F}}}$

Experiment	title:
-------------------	--------

Fluoride laser hosts at high pressures and high

temperatures: Li₂ZrF₆

Experiment number:

HS-2179

Beamline: Date of experiment: Date of report:

BM01A from: 17/09/2003 to: 21/09/2003 30/05/2004

Shifts: Local contact(s): Received at ESRF:

18 V. Dmitriev

Names and affiliations of applicants (* indicates experimentalists):

Andrzej Grzechnik, Univ. País Vasco

Vladimir Dmitriev, SNBL

Hans-Peter Weber, SNBL

Report:

Dilithium zirconium hexafluoride, $\text{Li}_2\text{Zr}F_6$ (P $\overline{3}$ 1m, Z = 1), is studied at high pressures using synchrotron angle-dispersive x-ray powder diffraction in a diamond anvil cell at room temperature. At atmospheric conditions, it has a structure with all the cations octahedrally coordinated to fluorine atoms. There occurs a fully reversible first-order phase transition above 10 GPa to a new polymorph (C2/c, Z = 4), in which the coordination polyhedron of the Zr atoms is a distorted square antiprism, while the Li atoms are in the octahedral coordination. The LiF₆ octahedra form layers parallel to (100) that are connected by zig-zag chains of the edge-sharing Zr polyhedra running in the [001] direction. The relative change in volumes per one formula unit for both polymorphs is 6% at 11.8 GPa.

Table Structural parameters for Li₂ZrF₆ (C2/c, Z = 4) at 14.8 GPa – a = 9.651(6) Å, b = 7.533(8) Å, c = 4.988(3) Å, β = 114.94(4)°, V = 328.8(4) Å³. Estimated standard deviations are given in parenthesis. The symbols (2x) indicate the multiplicity.

Atom	Site	x	у	z
====== Li	8f	0.255(7)	0.536(9)	0.576(15)
Zr	4e	0.0	0.315(1)	0.25
F1	8f	0.121(3)	0.233(3)	0.060(6)
F2	8f	0.395(4)	0.041(3)	0.350(6)
F3	8f	0.112(2)	0.101(3)	0.480(6)
Li_F1 Li_F1	2.16(6) 2.19(6)	Li_F1 Li_F2	2.65(7) 2.01(6)	
Li_F1 Li_F2	2.19(6) 1.74(6)	Li_F2 Li_F3	2.01(6) 2.09(7)	
Li_F3	1.76(6)	DI_1 J	2.09(1)	
Zr_F1	1.89(2)	(2x)		
Zr_F2	2.15(2)	(2x)		
Zr_F2	2.12(2)	(2x)		
Zr_F3	2.02(2)	(2x)		

Figure Captions

Figure 1 Selected x-ray powder patterns of Li_2ZrF_6 at different conditions with argon as a pressure transmitting medium ($\lambda = 0.71998 \text{ Å}$). Reflections due to argon are marked with stars.

Figure 2 Pressure dependence of unit-cell parameters and volumes in Li_2ZrF_6 . Open and full symbols stand for the $P\bar{3}\,\text{Im}$ (Z = 1) and C2/c (Z = 4) polymorphs, respectively. The unit cell volumes of the monoclinic phase are divided by a factor of four. The relative volume change at 11.8 GPa is 6%.

Figure 3 Observed, calculated, and difference x-ray powder patterns for Li₂ZrF₆ (C2/c, Z = 4) at 14.8 GPa as obtained after the final Rietveld refinement ($\lambda = 0.71998 \text{ Å}$). Vertical markers indicate the positions of Bragg reflections. The 2 θ regions 15.8-16.9° and 18.35-19.06°, in which two reflections due to argon are observed, were excluded from the Rietveld refinement. Broad features at about $2\theta = 8.9$ ° and $2\theta = 13.6$ ° are the traces of the low-pressure phase (P $\bar{3}$ 1m, Z = 1), i.e, the (001) and (101) reflections, respectively.

Figure 4 Crystal structure of Li_2ZrF_6 (C2/c, Z = 4) at 14.8 GPa.

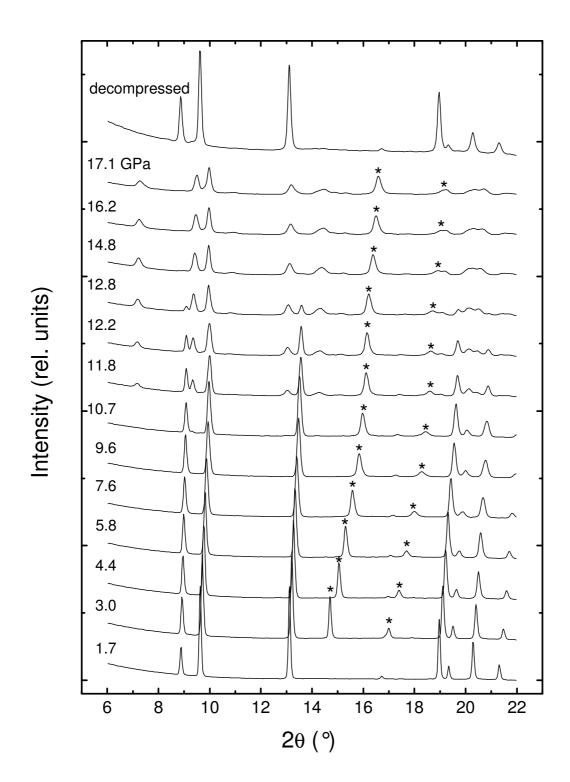


Figure 1.

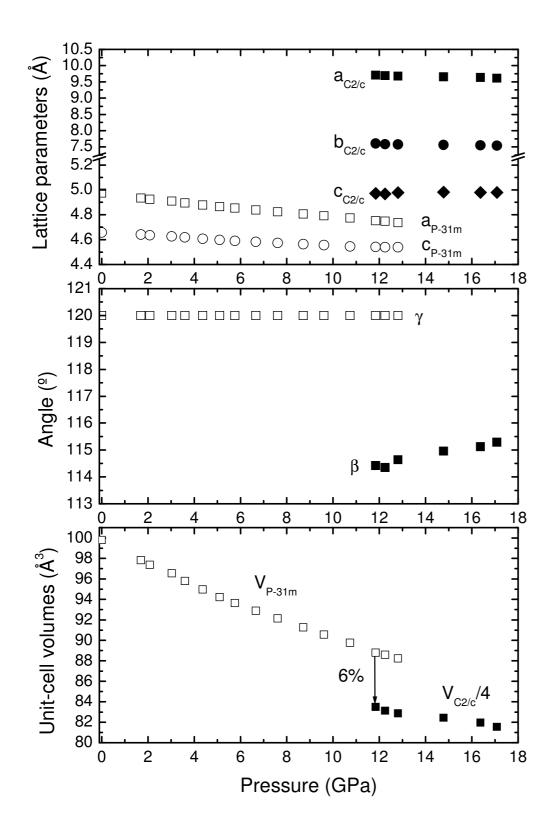


Figure 2.

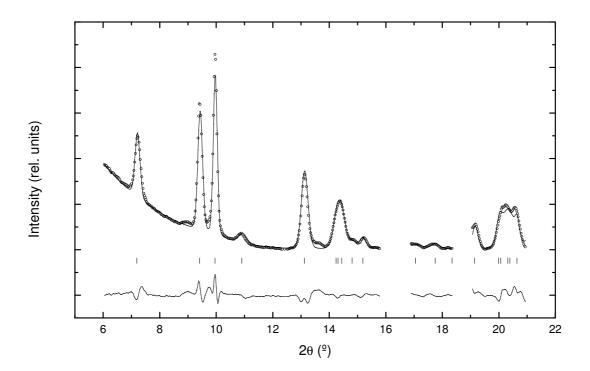


Figure 3.

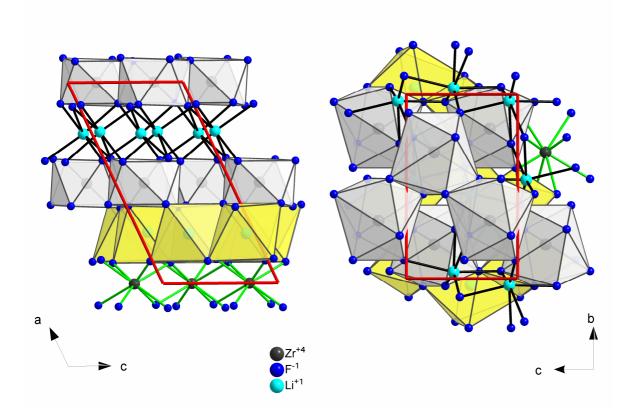


Figure 4.