ESRF	Experiment title: Coherent Soft X-ray Diffraction from Orbital and Jahn- Teller Domains	Experiment number: HE1645
Beamline: ID08	Date of experiment : from: 10/11/2004 to: 16/11/2004	Date of report : 27/2/2005
Shifts: 18	Local contact(s): Dr. Stefan STANESCU	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Dr. Stuart B. Wilkins - EITU, Karlsruhe, Germany and ESRF

Prof. Peter D. Hatton – University of Durham, UK

Mr. Thomas A. W. Beale – University of Durham, UK

Report:

Due to technical problems with the diffractometer and the unavaliability of a suitable CCD camera the time (after discussion with beamline staff). We therefore used the beamtime to conduct a soft X-ray diffraction experiment on the bilayer sample LaSr₂Mn₂O₇. This experiemnt resulted in excellent data. A paper on this experiment has been submitted to *The Physical Review Letters* and a copy of the abstact is below.

Abstract: (Preprint at cond-mat/0412435)

Resonant soft x-ray diffraction has been used to probe the orbital and magnetic structure of LaSr₂Mn₂O₇ at low temperatures. Previous crystallographic studies have shown that this material has almost no MnO₆ oxygen displacements due to the Jahn-Teller distortions. Within the A-type antiferromagnetic phase we found strong intensity at the \oo\ orbital and \af\ magnetic reflections. This shows that even in the absence of Jahn-Teller distortions, this compound is strongly orbitally ordered. The fit to the orbital spectrum shows the absence of the Jahn-Teller distortion. Fitting of the Mn \$L\$-edge resonance spectra demonstrates the presence of orbital ordering of the Mn\$^{3+}\$ ions within an almost cubic crystal field in addition to valence fluctuations of a Mn\$^{3+}\$ and Mn\$^{2+}\$ type.