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Report:

Introduction : Analysis techniques such as XPS and HREELS are generally used to characterize the surface
state of heterogeneous catalysts but they cannot be used under working conditions. Infrared and Raman
vibrational spectroscopy represent an attractive alternative as they can be applied to probe the catalyst under
reaction or Operando conditions. The combination of Raman and IR spectroscopies can then give a better
insight into catalytic systems under steady state conditions enabling to obtain information on the nature of the
adsorbed species, the nature of the active phase and on the nature of their interaction. The oxidation state of
active sites can also be characterized using bulk analysis techniques such as EPR and XAS to obtain data on
an atomic scale.Molybdenum oxide based cataysts are used industrialy for the partia oxidation of
hydrocarbons such as methanol. The partial oxidation of methanol is of great interest for mdustrial
applications but is also a probe reaction to test the catalytic properties of new preparations’. Indeed,
numerous studies have shown that methanol oxidation is very sensitive to the nature of active sites and can be
used to study the acidic and oxidation properties of catalytic surfaces"""". The possible pathways for the
reaction of methanol on abulk or supported metal oxide catayst are summarizedin Scheme 1.
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Scheme 1: Reaction pathways in methanol transformation on MoOjs catalysts”.

The oxidative-reductive processes lead to oxidized species such as formaldehyde (F), formic acid (FA) and
carbon oxides (CO,) whereas acid-base functions mainly lead to the dehydration product (dimethylether -
DME). Successive dehydrations of oxidation products can yield dimethoxymethane (DM M) or methyl formate
(MF) . Hence, the distribution of the reaction products gives indications on the functionalities present on the
catalyst surface. Moreover, oxidation of methanol is well adapted for spectroscopic studies™ and has been
described on various materials """,

We have focused the present study on the characterization of the active phase and adsorbed species with
Raman/Infrared and EPR spectroscopies during the oxidation reaction of methanol on a well-designed
polymolybdate deposited on y-alumina.

The beam time on the BM26A beam line (proposal # CH 1788: OPERANDO XAS SPECTROSCOPY OF
THE METHANOL CONVERSION) was dedicated to the observation of the active phase through the
molybdenum probe.

Experimental:

For the experiments, an in-situ and Operando home-made cell was buiilt (figurel)™. It is made in boron nitride,
a material completely transparent at the Mo k-edge with a good thermal conductivity coefficient. We have
characterized the Mo/Al,O3 (20 wt% and 3 wt% Mo) compounds by EXAFS and XANES at the Mo K-edge
using the transmission mode. We have first follow the catalysts activation, i.e. its evolution as afunction of the
activation conditions. nature of the gas phase (air or O,) and temperature. Then, the structura catalysts
evolution was studied during the oxidation reaction itself at different temperature. The effluent products were
monitored with a Quick gas chromatograph (U-GC, SRA).
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Figure 1: a) scheme of the home made cdll dedicated toin-situ and Operando XAS spectroscopy b) picture of
the cel.

Reaults:

The evolution of the XANES spectra for the high Mo loading catalyst with temperature under a He/MeOH
mixture is present on the figure 1. A clear evolution of the XANES signal is seen. (see arrows on the figure).
This evolution can be attributed to the reduction of the active oxomolybdic phase by methanol oxidation. Each
increase of temperature is indeed characterized by the production of a small amount of formaldehyde as shown



by GC analysis. Asthere is no oxygen in the gas phase to reoxidized the reduced sites, the oxidative function
of the catalyst quickly deactivates. If helium is substituted by oxygen in the reactive mixture, the catalyst is
regenerated as shown by the production of formaldehyde. It can be seen on figure 3, that this regeneration of
the oxidative function is characterized by an almost complete restoration of the signal obtained after activation
of the catalyst. All these results are in agreement with previously obtained EPR dat&* and the reduced signal
can be attributed to Mo". The intensity of the pre-edge peak seems to correlate with the quantity of Mo"'. A
detalled analysis of the XANES and the EXAFS spectra is currently under progress in order to extract loca
structural data on the active phase.

The XANES spectra of the low Mo loading catalyst are presented on figure 4. The figure clearly shows that
no evolution can be observed during the course of the reaction in agreement with the online gas analysis that
only show dehydration products that are due to methanol reaction on alumina. The monomeric molybdenum
centersthat are present on the duminasurface at this low loading cannot perform methanol oxidation.
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Figure 2: Evolution of the Moy (20 Weight % of molybdenum) XANES spectra with temperature under
He/MeOH.
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Figure 3: Evolution of the Moy (20 Weight % of molybdenum) XANES spectra with the surrounding
atmosphere.
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Figure 4. Evolution of the Mo;s (3 Weight % of molybdenum) XANES spectra with temperature under
He/MeOH

Conclusion:
In conclusions, these data show that a polymolybdate phase is required to perform methanol oxidation

although the details of the reaction mechanism and the exact nature of the active phase evolution require a
more in-depth analysis.
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