ESRF	Experiment title: Study of correlations between pressure-induced structural changes and superconducting properties in bulk CaC ₆	Experiment number: HS-3120
Beamline:	Date of experiment:	Date of report:
ID09A	from: 26/11/2006 to: 30/11/2006	03/08/2018
Shifts: 18	Local contact(s): Michael Hanfland	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Geneviève Loupias*, Matteo d'Astuto*, Nedjma Bendiab*, Christophe Bellin*, Andrea Gauzzi* (UMR7590 IMPMC, Université Pierre et Marie Curie, Paris, France)		
N. Emery*, C. Hérold*, P. Lagrange* (Laboratoire de Chimie du Solide Minéral-UMR 7555 CNRS, Université Henri Poincaré Nancy I, France)		

Report:

See A. Gauzzi et al., Phys. Rev. B 78, 064506 (2008).

Abstract

In order to account for the large drop of superconducting critical temperature, T_c , and for the dramatic increase of residual resistivity, ρ_0 , previously reported in CaC₆ at $P_{cr} \sim 9$ GPa, we studied the room temperature crystal structure of bulk CaC₆ samples as a function of pressure up to 13 GPa by means of synchrotron X-ray diffraction in diamond anvil cells. At P_{cr} , we found no change of the trigonal *R*-3*m* space group symmetry, but a large increase of isothermal compressibility, κ , from -0.0082 GPa⁻¹ to -0.0215 GPa⁻¹, accompanied by a large broadening of Bragg peaks. Both effects being reversible, it follows that superconductivity in CaC₆ is maximized at the verge of a peculiar order-disorder phase transition concomitant to a large lattice softening. Space group symmetry considerations supported by *ab initio* calculations of the relaxed structure within the Density Functional Theory lead us to conclude that the disordered phase is presumably characterized by a random off-centering of the Ca atoms in the *ab*-plane with respect to the C honeycomb layers.