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The main goal of this experiment was to apply Coherent X-ray Diffractive Imaging (CXDI) in the hard X-ray 
regime on unstained freeze-dried and frozen-hydrated  cells,  especially of  Dictyostelium Discoideum.  This 
implied testing the relevant preparation techniques as well as the specially designed sample environment. As 
the application of CXDI to  biological specimens in the hard X-ray regime has not been performed before, 
questions of feasibilty, required dose as well as achievable resolutions were also addressed. In addition, a new 
approach towards the problem of parasitic aperture scattering in CXDI was tested by generating a rotationally 
symmetric illumination function, which yields a highly localized far-field diffraction pattern in order to isolate 
scattering contributions from the sample, which fill the whole q-range.

Figure 1: Experimental setup used for multi-pinhole coherent diffractive imaging on biological cells. The pinhole positions were 
controlled by 8 translation stages with tens of nm accuracy (cf. lower right  inset). Using an optical microscope (Accel/Maatel, 
Germany/France)  with  a  drilled  lens  the  sample  on a  thin  Kapton  holder  (MiTeGen,  USA) could be monitored  during  the 
experiment with 1m resolution. The detector was placed 2.75 m away from the sample and was protected by a circular beamstop 
(different sizes were available) mounted on Kapton films on a motorized in-vacuo-stage. The diffraction pattern (lower left inset,  
absolute value of difference of diffraction with and without the sample) was collected by illuminating a group of freeze-dried 
Dictyostelium cells (cf. middle inset). Although the scattering signal  from the beam-defining apertures could be restricted to a 
certain q-range and speckles outside this range from the sample are visible, the pinhole scattering should have been much more 
localized according to simulations based on numerical Fresnel propagation.  

In the first part of the experiment a multi-pinhole illumination function was generated by placing a system of 
three  circular apertures  (Pt,  thickness 100-200m,   = 5-10m) into  the mirror-focused monochromatic 
undulator beam of the ID10C end station. Our simulations had shown before that  the generation of highly 



localized intensity distribution in the detector plane is feasible with a system of three pinholes, increasing in 
diameter towards the sample, so that one pinhole cuts into the first or second Airy minimum of the preceding 
one  suppressing  higher-order  contributions.  Unfortunatelly,  in  contrast  to  our  previous  experience  and 
although all pinholes had been prepared very carefully by Focused Ion Beam polishing, the far-field diffraction 
pattern even of a single pinhole was strongly distorted by non-isotropic contributions in the exiting wave-field. 
Similarly, strong distortions of the wavefront by the monochromator and focusing mirrors were observed in 
pinhole line scans through the incoming wavefield and have most probably contributed – in combination with 
partial coherence effects and the small distance of the sample from the optical elements – to  the non-ideal 
scattering from the pinhole apertures. The localization of the far-field diffraction pattern was partly achieved 
(cf.  Fig.  1),  however,  it  is concluded here  that  designing a  special illumination function to  separate  the 
scattering  from the  sample  and  the  illuminating  aperture  should  be  experimentally possible,  but  needs 
individual investigation and highly optimized conditions to  provide a better  plane-wave illumination of the 
aperture system.

Figure 2:  (left)  Coherent,  background-  and  slit-scattering-corrected far-field  intensity distributiuon  (exp.  time 400 sec,  total 
intensity appr. 1.3108 photons) of an unstained freeze-dried radiodurans cell shown in the small inset (in-situ image during the 
experiment; imaged cell is marked with a red circle). As expected for  a photon energy of 8 keV the pattern shows significant 
rotational symmetry, suggesting to a good approximation a pure phase distortion of the incoming wavefront by the sample. (right) 
Coherent,  background-corrected far-field intensity distribution of an  unstained frozen-hydrated radiodurans cell shown in the 
small inset (in-situ image at -173°C during the experiment; imaged cell is marked by a red circle). No ice crystals are visible in 
the optical microscopy image suggesting a successful vitrification. This is supported also by a speckle size similar to the case of 
freeze-dried cells. An angular integration in the lower right quadrant of the right graph shows that the descrease of intensity at 
high scattering angles can be described by a power law (~q-3.1(1)).

As a consequence the optical setup was changed, i.e. the focusing mirrors were removed and two pairs of 
rectangular polished slits were inserted into the beam path (beam defining aperture was 10x10m2). Sample 
cells had been prepared by rapid freezing in liquid ethane on thin Kapton films (d = 10-20m) mounted on 
metal  holders  (MiTeGen,  USA)  and  could  be  visualized  in-situ during  the  experiment  by  an  on-axis 
microscope  (Accel,  Germany),  mounted  coaxial with the  beam path (cf.  Fig.  1).  Now smaller  and more 
localized freeze-dried cells of the procaryotic species deinococcus radiodurans were introduced into the beam 
(cf. Fig. 2). As visible in Fig. 2 the smaller cell size allowed for sufficient oversmapling with a speckle size of 
3-5 pixels, yielding a cell size of ca. 2-5m, which is very consistent with the optical micrographs.
In summary, it could be shown that unstained prokaryotic and eukaryotic cells could be prepared in freeze-
dried and frozen-hydrated state and reciprocal space data could be collected in the relevant q-space up to an 
angle of q = 50 m-1 yielding a real-space half-period of ca 60 nm. From an extrapolation of the algebraically 
decaying scattering intensity it could be concluded that a resolution of 10 nm would require a total flux of 1010 

photons at 12 keV. This is an important experimental result towards answering the question of an optimum 
wavelength to minimize the dose at a given resolution.  It was shown that biological specimens act as nearly 
pure phase objects at  8keV photon energy and a resolution of 50nm and higher with hard X-ray CDI on 
unstained biological materials should feasible. Reconstruction attempts based on iterative procedures have not 
been successful yet mainly due to reasons of lacking q-data and partial coherence. However, by combination 
with the optical images from the in-situ-microscope this might become possible.


