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Report: 
 
1. Introduction 
Porous carbon/conducting polymers composites seem to be very interesting materials to be used as electrodes 
for supercapacitors, because they take the advantage from both, the double layer mechanism provided by 
porous carbon materials and the pseudocapacitative contribution from conducting polymers. From our 
research about preparation and characterization of porous carbon/conducting polymers composites, we 
conclude that the final performance of the composites as supercapacitors depends on the properties of the 
starting porous material and also on the polymerization process [1]. 
In the present work we have used activated carbon fibres (ACF) as porous carbon and polyaniline (PANI) as 
conducting polymer. In order to understand the effect of the different properties and preparation methods and 
to optimize the composite performance in this application, the characterization of these materials by a 
position resolved technique, sensitive to both the porous texture and the polymer, is very interesting. µSAXS 
has been successfully used by our research group to characterize the porosity of ACF across the fibre 
diameter (experiments ME-93 and ME-366) [2-5]. Thus, the aim of the present experiments was to do a 
simultaneous characterization of the porous carbon/polymer composite by using position resolved µSAXS 
and in situ microfocus Raman Spectroscopy at beamline ID13. Unfortunately, it was not possible to do the in 
situ microfocus Raman Spectroscopy measurements because the set-up was not suitable to work with the 
type of samples we prepared. Thus, in this report we present only µSAXS results which, as shown below are 
of great interest. 
 
2. Experimental 
 
A series of ACF/PANI composites have been prepared in our laboratory. For the preparation of ACF, 
different precursors (essentially PAN and pitch based carbon fibres) and different activating agents 
(essentially CO2 and KOH) have been used. ACF with different degrees of porosity, different fibre diameters 



(between 6 and 20 µm) and with different surface chemistry have been obtained. Moreover, a commercial 
ACF has been also used as starting material. To prepare ACF/PANI composites, two different methods have 
been selected for the preparation of PANI: i) chemical method ; and ii) electrochemical method.  
 
Porous texture characterisation of all the samples was carried out by physical adsorption (N2 at 77 K and CO2 
at 273 K; Autosorb-6, Quantrachrome). The µSAXS measurements done at ID13 consist of scans across the 
diameters of the ACF and ACF/PANI composites using a beam size of about 0.5 µm with a step size of 
around 1 µm and with an accuracy between 0.1-0.5 µm (the distance of the area detector (MAR-CCD) to the 
samples was 470 mm). The experiments were done on thin microtome cross-sections made in the Chemistry 
and Microimaging Laboratory (ESRF). The samples were previously embedded in a resin for facilitating the 
posterior cut for the analysis. The investigated samples were films of 10 µm thickness. Each sample was 
scanned horizontally and vertically. 
 
3. Results 
 
Figure 1 includes the scattering curves corresponding to the measurements at the center of the fiber for a 
commercial ACF (A20) and two ACF/PANI composites prepared using the sample A20, one prepared by a 
chemical method (A20_C) and another one prepared by an electrochemical method (A20_E). It is seen that 
the shape of the curves is characteristic of microporous materials, and that the intensity decreases for the 
samples ACF/PANI composites compared to the starting ACF (sample A20) in the scattering region 
corresponding to micropores. This decrease of scattering intensity for the ACF/PANI composites agrees with 
the reduction of porosity obtained for these materials by gas adsorption characterization, which seems to 
indicate that, for both methods, the deposition of polyaniline takes place inside the microporosity existing in 
the starting ACF. Table 1 contains the porous texture characterization results corresponding to the ACF and 
one of the ACF/PANI composites. 
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Table 1.- Porous texture characterization results 
corresponding to a commercial ACF (A20) and the 
ACF/PANI composite prepared from A20 and using the 
chemical method (sample A20_C)  
 

Sample BET 
(m2/g) 

VDR(N2) 
(cm3/g) 

VDR(CO2) 
(cm3/g) 

A20 1628 0.77 0.38 
A20_C 1002 0.43 0.29 

Figure 1.- Scattering curves corresponding to measurements 
at the center of the fiber for the ACF A20 and two 
ACF/PANI composites prepared from A20 and using two 
different methods (chemical (sample A20_C) and 
electrochemical (sample A20_E) 

 
 
 
 

 
In order to analyze if the deposit of the PANI is similar on all the regions across the fibre diameter, scattering 
measurements across the fiber diameter have been done. As an example, Figure 2 presents the scattering 
curves corresponding to the ACF/PANI composite prepared by the chemical method (A20_C). Each curve includes 
a number, which corresponds to the measurement number (starting from the external zone of the fiber and 
ending in the opposite zone across the fibre diameter). The maximum scattering corresponds to the 
measurement carried out at the center of the fiber. These results indicate a higher concentration of pores in 
the center of the fiber than in the external areas.  
 



 
 
 
 
 
 
 
 
Figure 2.- Scattering curves 
corresponding to some measurements 
across the fiber diameter for the sample 
A20_C (right). 
 
 
For a better observation of pore 

distribution across the fiber diameter, Figure 3 includes the normalized Porod Invariant (PI) values estimated 
for the different measurements carried out across the fiber diameter versus the beam position for the starting 
ACF (A20) and for the two ACF/PANI composites (chemical method (A20_C) and electrochemical method 
(A20_E)). In this plot, beam position equal to zero corresponds to the center of the fiber. This figure shows 
that the scattering profiles, as a function of the position of the fibers, are different for the two ACF/PANI 
composites and the starting ACF. In the case of the starting ACF, the scattering is similar for all the regions, 
indicating a homogeneous distribution of porosity within the fibers. However, for the ACF/PANI composites 
the scattering intensity is much higher at the internal zones than at the external parts of the composites, which 
seems to point out that, for both methods (chemical and electrochemical methods) the deposit of PANI is 
higher in the external regions of the ACF than in the core. Additionally, it seems that the penetration of PANI 
inside the fibers occurs in a larger extent for the chemical polymerization.  

 
 
 
 
 
 
Figure 3.- Normalized Porod Invariant values estimated 
for the different measurements carried out across the fiber 
diameters of the starting ACF (A20) and two ACF/PANI 
composites (chemical method (sample A20_C) and 
electrochemical method (sample A20_E)). 
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