| ROBL-CRG                                                             | Experiment title:                                                                                                          | Experiment                   |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                      | In-situ growth of Ge and Si NC's out of a [(GeO <sub>x</sub> or SiO <sub>x</sub> )/SiO <sub>2</sub> ] multilayer structure | <b>number</b> :<br>20-02-658 |
| Beamline:                                                            | Date of experiment:                                                                                                        | Date of report:              |
| BM20                                                                 | from: 12.02.2008 to: 19.02.2008                                                                                            | 06.11.2008                   |
| Shifts:                                                              | Local contact(s):                                                                                                          | Received at                  |
| 18                                                                   | Dr. Carsten Baehtz                                                                                                         | ROBL:                        |
| Names and affiliations of applicants (* indicates experimentalists): |                                                                                                                            |                              |

N. Jeutter\*, M. Zschintzsch\*, J. von Borany\*, C. Baehtz\* Institute of Ion Beam Physics and Materials Research, FZD, Dresden, Germany

## **Report:**

Semiconductor nanocrystals (NCs) are of fundamental interest for new generations of light emitters or high-efficiency solar cells [1]. Within this experiment, Ge NCs have been fabricated by decomposition of GeO<sub>x</sub> (0 < x < 2) within a (GeO<sub>x</sub>-SiO<sub>2</sub>) superlattice (SL) structure which enables a precise control of the size and the position of the NCs. Varying the oxygen partial pressure, the deposition temperature and the DC power, the GeO<sub>x</sub> stoichiometry and the thickness ratio of the GeO<sub>x</sub>-SiO<sub>2</sub> sub-layers can be tailored in a well-defined manner. The SL (2.5 nm GeO<sub>x</sub>/ 3.9 nm SiO<sub>2</sub>)<sup>19x</sup> was grown by reactive DC magnetron sputtering from elemental Si, Ge targets onto a SiO<sub>2</sub>/Si substrate. The deposition was performed at 250°C at 0.5 Pa working pressure in an Ar/O<sub>2</sub> mixture using the ROBL dual-magnetron sputter chamber [2], whereby the *in-situ* characterization using X-ray scattering methods (reflectivity, diffraction) of thin film systems during growth and and subsequent annealing is possible.

2500



2000 Intensity (arb units) (111) 1500 (220)1000 (311)as-depos.: T= 250°C 500 annealed: T= 720°C 20 25 30 35 40 45 15 Scattering Angle 20 (deg)

(GeOx/SiO2)19x

**GIXRD,**  $\lambda = 1.078 \text{ Å}$ 

 $\alpha = 0.3^{\circ}$ 

Fig. 1: X-ray reflectivity after deposition and subsequent annealing steps

*Fig. 2: GI-XRD* pattern of the Ge NCs after deposition and 720°C annealing

Fig. 1 shows X-ray reflectivity (XRR) collected after deposition and during annealing. The intensity of the higher-order superstructure peaks increases during annealing indicating an enhancement of thickness uniformity (periodicity) and smoothing of the SL interfaces. Interface roughness (< 0.5 nm) have been derived from the simulation of the XRR curves. The formation of Ge nanocrystals by the GeO<sub>x</sub> decomposition has been observed by grazing-incidence diffraction (Fig. 2). Although in the diffraction pattern a near-order hump is already present in the as-deposited state, a pronounced Ge(111) signal appears after 540°C annealing which did further increase after annealing at 600°C. From Scherrer's equation the crystal size was determined to 2.5 nm which corresponds perfectly to the initial thickness of the GeO<sub>x</sub> film.



*Fig. 3a: TEM-image of the*  $GeO_x$ -SiO<sub>2</sub> SL after 720°C post-annealing.



Fig. 3b: HR-TEM-image with the Ge NCs (marked with white circles), the inset shows the corresponding FFT image.

The NCs formation was proved *ex-situ* by transmission electron microscopy (TEM). Figure 3a shows a cross-sectional image of the superlattice after 600°C annealing, confirming the smooth interfaces and negligible interdiffusion of the SL obtained by XRR. Applying high-resolution TEM, Ge NCs were detected by imaging of Ge(111) lattice planes (Fig. 3b) or the corresponding spots at the FFT image (Fig. 3b, inset). For this sample, more a nanocrystalline Ge film have been realized which can be changed towards separated Ge nanoclusters by increasing the oxygen content in the GeO<sub>x</sub> sub-layers during deposition.

## **References:**

- [1] S. Foss, T.G. Finstad, A. Dana, A. Aydinli, Thin Solid Films **515**, (2007), 6381-6384.
- [2] W. Matz, N. Schell, W. Neumann, J. Bøttiger, J. Chevallier, Review of Scientific Instruments **72**, (2001), 3344-3348.