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Report: 

 
Cataract, eye lens clouding due to light scattering, is a leading cause of blindness and can result from 

protein condensation in hyperthermic and stressful conditions
i,ii

, when altered intermolecular interactions lead 

to dense phases that can compromise cell and organ function. Mammalian eye lens cells contain concentrated 

solutions of proteins called crystallins. Among those, the most abundant are the  -crystallins, which are 

globular, polydisperse, multisubunit, 800 kDa proteins with a diameter of about 18 nm, whose interactions are 

well described with a simple hardsphere colloid model
iii,iv

.They exhibit a structural phase transition at nearly 

TC=45 °C
v
, involving a quaternary structural modification and enhanced or reorganized hydrophobic surfaces. 

crystallin aggregation is induced by heat and Calcium ions
3
. In particular, heat modifies the quaternary 

structure of -crystallin
5
, and Ca

2+
 decreases its thermal stability by promoting partial unfolding of the 

protein
vi
. Quantifying and understanding crystallin interactions and their impact on lens transparency, both in 

physiological and in hyperthermic conditions, is therefore an important step towards cataract prevention. 

Furthermore the characterization of the aggregation kinetics of the lens proteins is a fundamental tool in 

understanding the molecular origin of the disease, in which a subtle interplay between protein attractions, 

repulsions, and entropy governs condensation and the molecular mechanisms leading to protein aggregation.  

We already followed by means of static and dynamic light scattering kinetics of aggregation in -

crystallin suspensions above and below Tc and we developed a kinetic model that  describes the growth 

kinetics as a two step-process, a nucleation phase that leads to the formation of critical nuclei followed by an 

aggregation phase, in which the preformed critical nuclei are the basic aggregating units
vii

. The quantitative 

modeling of the kinetics by means of population balance equations (PBE) was combined with an extensive 

experimental investigation using light scattering techniques in order to determine the rate constants of both the 

phases of nucleation and aggregation (Knuc, Kagg) and the size of the critical nuclei of the aggregation. Plotting 

the rate constants in an Arrhenius plot has shown that the aggregation kinetics are strongly influenced by the 

transition temperature Tc , as can be seen by the jump in the expected exponential trends at 1/T=1/Tc (Fig.1). 

From the same plot we obtained the free energies associated with the activation processes and we found that 

at Tc there is an increase in the free energies of activation with temperature, of 1.1 Kcal/mol for the nucleation 

process and 8.2 Kcal/mol for the aggregation process. The structural transition of -crystallin is also 

accompanied by an increase in the dimensions of the critical nuclei from 23 nm to 27 nm, and by a 

contemporary decrease of their number. The overall result is the formation of a less number of larger and more 



 

stable critical nuclei.  In summary, -crystallin above Tc exhibits a delay in the aggregation phase that 

preserves the lens from a premature opacification in hypertermic and stressful conditions, and can be related to 

the temperature dependent chaperone effect of the -crystallin already observed in literature
viii

.To study the 

effect of the transition on the Quaternary structure, X-Ray SAXS measurements were performed on -

crystallin suspensions at different temperatures (37-51°C).  

The Intensity angular distributions are reported in figure 2. It is evident, increasing temperature, the 

increase of the intensity in the low s region (s<0.28 nm
-1

) togheter with the decrease of the intensity in the high 

s region (s>0.28 nm
-1

). The change in intensity distribution displays a clean isosbestic point at s=0.28 nm
-1

.  

In figure 3 the gyration radius (black circles), molecular weight (open squares) and anisometry (open 

triangles) of -crystallin obtained with the software DAMMIN
ix
, that recovers the shape of the particle from 

the scattering  distribution profiles, are reported in function of temperature. Below Tc the -crystallin 

oligomer shape has a bean-like structure, with an anisometry (I1-I3)/(I1+I3) ~0.4 (where I1 and I3 are 

respectively the maximum and the minimum eigenvalue of the inertia tensor) . The radius is ~6.8 nm and the 

molecular weight is ~900 Kda. When TC is reached, there is an abrupt increase of the radius (~8 nm) and of 

the molecular weight (~1600 Kda). The anisometry is 0.3, therefore the shape becomes more spherical. The 

DAMMIN 3D structures under and above TC are reported in fig.2, respectively at the left and at the right of 

the red dotted line traced in corrispondence of TC. It is possible to estimate from the ratio between molecular 

weight and the volume of the particle the density of the oligomer , which is ~0.96 Kg/m
3
 below TC and  

~0.80 Kg/m
3
 over TC. 

X-ray SAXS measurements, performed above and below Tc at different concentrations (1-20mg/ml) don’t 

reveal significative changes in the quaternary structure. The quaternary structure transition is reversible, and 

the transition kinetic is still under analysis.  

These data are in correlation with our light scattering  measurements that highlited a peculiar 

behaviour of the self-aggregation of -crystallin. The structural quaternary modification, consisting in the 

formation of a bigger, but less-dense oligomer could in fact  be linked to the protective mechanism that 

preserve crystalline and other unfolded proteins from aggregation. To gain further insights the first steps of 

heat and calcium induced aggregation below and above TC need to be investigated by SAXS. We will expect a 

sharp reduction in the strength and the range of the attractive potential of both the protein-protein and 

nucleus-nucleus interaction potentials in correspondence of Tc.  This would mean that the structural transition 

at Tc is linked to an allosteric chaperone function leading to the stabilization of the critical nuclei, with the 

overall effect of preserving the lens from the premature protein aggregation.  
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Figure 1. Arrhenius Plot of the aggregation and nucleation 

rates Knuc (squares), Kagg (circles) of -crystallin 

suspensions ([]=1.5 mg/ml in 10 mM Tris-HCl buffer, pH 

7.4). The dotted line is traced at 1/T=1/TC 

 

Figure 2. X-ray solution scattering profiles of an -

crystallin solution (1.5 mg/ml) recorded at different 

temperatures (from 37° to 51°C). 



 

 

 

 
Figure 3. Gyration radius (black circles), molecular weight (open squares) and anisometry (open triangles) of -crystallin in 

function of temperature. Below Tc  the -crystallin oligomer shape has a bean-like structure, with an anisometry of about 0.4 . 

The radius is ~6.8 nm and the molecular weight is ~900 Kda. When TC is reached, there is an abrupt increase of the radius (~8 

nm) and of the molecular weight (~1600 Kda). The anisometry is 0.3, indicating that the shape becomes more spherical. The 

DAMMIN 3D structures under and above TC are also represented, respectively at the left and at the right of the red dotted line 

traced in corrispondence of TC . 
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