ESRF	Experiment title: Mechanism of the Vervey transition in magnetite	Experiment number: HS-3754
Beamline:	Date of experiment:	Date of report:
	from: 16/09/2008 to: 22/09/2008	23/02/2009
Shifts:	Local contact(s):	Received at ESRF:
15	Moritz Hoesch	
Names and affiliations of applicants (* indicates experimentalists):		
Moritz Hoesch [*] , ESRF, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France		
Przemyslaw Piekarz [*] , Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow, Poland		
Mathieu Le Tacon [*] , ESRF, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France		

Report: A recent group theoretic analysis of the Verwey transition in magnetite has identified a combination of order parameters of symmetry X_3 and Δ_5 as compatible with the change of lattice from the high temperature cubic phase to the monoclinic structure below the transition $T_V = 122$ K [1]. Phonon calculations and test experiments showed that the lowest X_3 (optical) and Δ_5 as well as X_4 (acoustic transverse branch) scatter strongly at or near the *X*-points (445) and (554), respectively. Figure 1 shows spectra at (554) of the X4 and at (445) of the X_3 with a slight contribution of X_4 at energy resolution of 1.8 meV.

Fig. 1: Inelastic x-ray scattering scattering spectra at various temperatures above the Verwey transition $T_V =$ 122 K at (554) showing the X_4 phonon and (554) showing the X_3 phonon and a slight contribution from X₄. The (11 11 11) mode of the beamline with 1.8 meV resolution was chosen due to the unavoidable overlap of the two phonons in the spectra.

The raw data in Fig.1 reveal on inspection (i) the phonon X_4 is serverely broadened at all temperatures, (ii) the X_3 phonon has a nearly resolution limited width, although at high temperatures a slight broadening is visible, (iii) the elastic intensity (zero energy peak) rises strongly on approaching the transition. The rise of elastic intensity necessitates to measure the lowest temperature points not at but near the fully high symmetric positions, as indicated in Fig.1. Below the transition a shift of the peaks of X_3 (softening) and X_4 (hardening) is seen. The change of lattice into the monoclinic phase, however, makes it impossible to assign this shift to an electronic or lattice symmetry effect and to discuss its origin.

Fig. 2: Results of a peak fitting analysis of the phonons X_4 , X_3 , and Δ_5 as a function of temperature above $T_V = 122$ K: A) peak positions and B) peak widths. The shaded area close to zero peak width indicates the uncertainty region, where a resolution limited model fits as well as a model with broadening of the phonon. Dashed lines serve as a guide to the eye.

Figure 2 shows the results of a peak fitting analysis using Lorentzian peaks to represent the phonons convoluted with the measured resolution function. The temperature dependence of the phonon energy shows a slight hardening of Δ_5 at lower temperature that may be compatible with the increased elasticity in the contracted lattice. X_3 and X_4 show no significant temperature dependence of the energy. The width of both X_4 and Δ_5 belonging to the same branch is surprisingly high at all temperatures. A slight increase with lower temperatures is visible down to 150 K, where the phonons sharpen up again. The rather sharp X_3 phonon on the other hand reduces its width almost to the resolvable limit on approaching the transition. This contrasting behaviour of X_3 and X_4 , which are compatible and incompatible with the symmetry of the phase transition indicates a particular role of X_3 . More interestingly the reversal of the broadening trend of X_4 and Δ_5 at lower temperature indicates a special regime in the region of 10 - 25 K above the transition temperature T_V .

In this temperature range a recent resonant x-ray diffraction study found indications of the formation of charge and orbital order, while the mean crystal lattice is still in its cubic high temperature phase. The phonons, as our result shows, react to the electronic order in their lifetime as expressed in the width.

References

- P. Piekarz, K. Parlinski, and A.M. Ole, Phys. Rev. Lett. 97, 156402 (2006) and Phys. Rev. B 76, 165124 (2007).
- [2] J. E. Lorenzo, C. Mazzoli, N. Jaouen, C. Detlefs, D. Mannix, S. Grenier, Y. Joly, and C. Marin, Phys. Rev. Lett. 101, 226401 (2008).