SN BL	Experiment title: Evaluation of crystal structure defects in lithium based complex metal hydrides for hydrogen storage	Experiment number: 01-01-784
Beamline:	Date of experiment:	Date of report:
BM01A	from: 2-Dec-09 to: 6-Dec-09	3-Mars-11
Shifts:	Local contact(s):	Received:
9	Wouters VAN BEEK	

Names and affiliations of applicants (* indicates experimentalists):

*Radovan Černý¹ *Dhanesh Chandra² *Michel Latroche³ *Junxian Zhang³

 ¹Laboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet CH-1211 Genève 4, Suisse
²Mar. Sci. And Eng., Chem. And Metallurg. Eng. Dpt., University of Nevada, Reno, USA
³CNRS UMR 7182, Thiais, France

Li_{3-x}M_xN (M = Co, Ni) compounds were prepared using the SPS technique from two precursors: Li₃N (Aldrich) and *M* metal powders. First the Li₃N and *M* powders were ball milled together in a Fritsch Pulverisette 7 for 1 hour at a rotation speed of 500 rpm with a ball-to-powder mass ratio 10:1. The mixture was sintered by SPS under 50 MPa of pressure for 15 minutes at 700°C. Then, the samples have been hydrogenated at 255°C by solid gas reaction at two different hydrogen contents. The first one at 0.7 H/Li₃N where the Li₄NH phase should form and the second one at 1.4 H/Li₃N where the Li₃N₂H₃ phase should occur. The X-ray powder diffraction data were collected using a high resolution powder diffractometer equipped with a multi-crystal analyzer ($\lambda = 0.50195$ Å). Phase analysis and structural determination were done by using the full profile fitting program FULLPROF based on the Rietveld's method.

Fig. 1 shows the powder X-ray diffraction of the purchased Li₃N, and synthesized Li₃N+5%Ni, Li₃N+5%Co and Li₃N+11%Co after SPS treatment. The purchased Li₃N powder (Fig 1a) contains two phases: α -Li₃N and β -Li₃N. After the SPS treatment, samples contain only the α -Li₃N-type phase, a small amount of lithium oxide and in some cases, traces of the metal *M*. These results indicate that the metal *M* has entered the Li₃N structure and that the β -Li₃N phase is metastable. The substitution of lithium by transition metal atoms (Ni or Co) leads to a modification of the cell parameters of α -Li₃N, *a* increases and *c* decreases. The Rietveld refinement shows that Ni or Co replaces partially the Li atoms in the interlayer Li site and additionally creates Li⁺ vacancies within the [Li₂N] planes.

Typical refined diffraction pattern is shown in Fig. 2 for $Li_{2.95}Co_{0.05}N$ with 0.7H/Li₃N. It was observed that for the same H concentrations, the hydrogenation reaction leads to different results depending on *M*. In our study, the Li₄NH phase was observed for Li₃N at H/Li₃N ~ 0.7, but not for the transition-metal doped samples $Li_{3-x}M_xN$. The absence of the Li₄NH phase is not yet clearly understood but the reaction path with H₂ for $Li_{2.95}Ni_{0.05}N$ and $Li_{3-x}Co_xN$ (*x*=0.05, 0.11) is obviously not the same.

Fig. 1 Synchrotron powder X-ray diffraction patterns of commercial Li_3N (a) and SPS synthesized $Li_{2.95}Ni_{0.05}N$ (b), $Li_{2.95}Co_{0.05}N$ (c) and $Li_{2.89}Co_{0.11}N$ (d) compounds.

For M=Ni, with increasing H concentrations, the observed molar fraction of pure Ni metal increases from 0.2 to 2.0 and 3.1 at.% for 0, 0.7 and 1.4H/Li₃N respectively. The Ni precipitates may play a catalytic effect in the conversion of the compound. Furthermore, a new phase Li₅Ni₃N₃ is formed. It suggests that the Ni-substituted Li₂NH imide phase is less stable than Ni metal and the Li₅Ni₃N₃ phase.

For M=Co, the Li_{3-x}Co_xN compound does not show Co metal decomposition upon hydrogenation since metallic Co rate keeps constant to the amount observed just after the SPS treatment. Upon hydrogenation, Li_{2.95}Co_{0.05}N and Li_{2.89}Co_{0.11}N compounds transform into imide and LiH. The intermediate phase Li₃N₂H₃, which should be observed for H/Li₃N ~1.4, was not observed for the commercial sample Li₃N and Li_{2.89}Co_{0.11}N. In contrast, it is present at H=0.7 and 1.4 for Li_{2.95}Ni_{0.05}N and at H=0.7 for Li_{2.95}Co_{0.05}N. Finally, for all samples, the quantity of LiH phase is well correlated to the Li₂NH phase amount.

Fig.2 Refined X-ray pattern of Li_{2.95}Co_{0.05}N with 0.7H/Li₃N. obtained from synchrotron diffraction analysis (measured (dots), calculated (solid line), and difference curves (below); Vertical bars correspond to diffraction line positions of the phases).