

ESRF	Experiment title: Structural study of the TEAD4-YAP complex - an important Hippo pathway component involved in growth control	Experiment number : MX-877	
Beamline:	Date of experiment:	Date of report:	
ID14 4	from: 12/03/2009 to: 13/03/2009	Feb. 19, 2010	
Shifts:	Local contact(s):	Received at ESRF:	
3	Dr. Matthew Bowler		
Names and	affiliations of applicants (* indicates experimentalists):		
•	and Haiwei Song lecular and Cell Biology		
61 Biopolis Dr	ive		
Proteos			
Singapore 138673			

Report:

The Hippo signaling pathway controls cell growth, proliferation, and apoptosis by regulating the expression of target genes that execute these processes. Acting downstream of this pathway is the YAP transcriptional co-activator, whose biological function is mediated by the conserved TEAD family transcription factors. The interaction of YAP with TEADs is critical to regulate Hippo pathway-responsive genes. Here, we describe the crystal structure of YAP-interacting C-terminal domain of TEAD4 in complex with TEAD-interacting N-terminal domain of YAP. The structure reveals that the N-terminal region of YAP is folded into two short helices with an extended loop containing the PXX Φ P motif in between, while the C-terminal domain of TEAD4 has an immunoglobulin-like fold. YAP interacts with TEAD4 mainly through the two short helices. Point mutations of TEAD4 indicate that the residues important for YAP interaction are required for its transforming activity. Mutagenesis reveals that the PXX Φ P motif of YAP, although making few contacts with TEAD4, is important for TEAD4 interaction as well as for the transforming activity.

Table 1. Data collection and refinement statistics

Data collection	Se-Met TEAD4-YAP	Native TEAD4-YAP
Wavelength (Å)	0.9798	0.9796
Resolution limit (Å)	20-3.1	20-3.0
Space group	$P2_12_12_1$	$P2_{1}2_{1}2_{1}$
Unit cell dimensions		
a, b, c (Å)	101.61, 148.09, 165.57	100.98, 146.91, 165.47
α, β, γ (°)	90, 90, 90	90, 90, 90
Unique reflections (N)	50744	58218
Ι/σ	9.3(7.1)	9.5(2.5)
Completeness (%)	99.9(100.0)	99.9(100.0)
Redundancy	7.8(6.5)	3.6(3.7)
R _{merge} ^a	0.09 (0.58)	0.06(0.30)
Refinement		
Resolution range (Å)		20-3.0
Used reflections (N)		47233
Nonhydrogen atoms (water)		7933(226)
R_{work}^{b} (%) / R_{free}^{c} (%)		23.3/28.8
R.m.s. deviations		
Bond lengths (Å)		0.01
Bond angles (°)		1.50
Ramachandran plot		
Most favored region		79.8%
Allowed region		18.1%
Generously allowed region	1.9%	
5 0		

Values in parentheses indicate the specific values in the highest resolution shell.

 ${}^{a}R_{merge} = \Sigma |I_{i} - \langle I \rangle | / \Sigma I_{i}$, where I_{i} is the intensity of an individual reflection,

and $\langle I \rangle$ is the average intensity of that reflection.

 ${}^{b}R_{work} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{c}|$, where F_o denotes the observed structure factor amplitude, and F_c denotes the structure factor amplitude calculated from the model.

 $^{c}R_{free}$ is as for R_{work} but calculated with 5.0% of randomly chosen reflections omitted from the refinement.

Reference:

Disallowed region

Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W and Song H (2010) Structural basis of YAP recognition by TEAD4 in the Hippo pathway Genes & Development, 24, 290-300.

0.2%