ESRF	Experiment title: Dynamic and thermodynamic properties of glycine polymorphs from simultaneous analysis of multi-temperature diffraction data	Experiment number: 01-02 894						
Beamline:	Date of experiment:	Date of report:						
BM01A	from: 23 June 2010 at 08h00 to: 29 June 2010 at 08h00	28/02/2011						
Shifts:	Local contact(s):	Received at ESRF:						
9	Dmitry Chernyshov							
Names and affiliations of applicants (* indicates experimentalists):								
Thammarat Aree*, Chulalongkorn University, Thailand.								
Karl W. Törnroos*, University of Bergen, Norway.								
Hans-Beat Bürgi*, University of Bern, Switzerland.								
Dmitry Chernyshov*, ESRF, France.								

Report:

The research project has a three-fold aim: i) measuring accurate atomic displacement parameters (ADPs) of glycine polymorphs (α , β and γ) from 10 to 298 K, ii) investigating the dynamical properties of glycine molecules in the crystals, and iii) determining the thermodynamic parameters (specific heat and entropy).

Synchrotron data of the α - and β -glycine polymorphs were collected to 0.5 Å resolution at 80, 90, 100, 130, 190, 250 and 300 K on beamline BM01A with a wavelength of 0.70128 Å, using an ONYX KUMA CCD, 6-circle diffractometer. Data were processed with CRYSALIS, giving completeness = 98–99%, redundancy = 3.7–4.7, R_{int} = 0.025–0.061, and the structures were refined with SHELXL-97, yielding R_1 = 0.031–0.050, $|\Delta \rho|$ = 0.18–0.63 e Å⁻³, EXTI = 0.000–0.074 (Table 1). In the overall statistics, the data are of good quality, except for the residual electron density peaks observed on the atoms in addition to those expected on the bonds (Fig. 1). The ADPs of α -glycine obtained with data measured on beamline BM01A are larger than those found with data from other sources and the EXTI parameters are unexpectedly large. The ADPs of β -glycine at 80–100 K show small deviations from the smooth curve; the EXTI parameters equal zero as expected (Fig. 2a,b and Table 1).

The normal mode analysis [1] of all the data available is on going. The preliminary analysis using a rigid body model of motion gives external vibration frequencies in fair agreement with the spectroscopic data for the α -form: 63.1, 76.5, 83.3, 115, 134 cm⁻¹ vs. 52, 73, 109, 162, 190 cm⁻¹ [2]. The external vibration frequencies of the β -form are 67.8, 71.0, 82.5, 149, 239 cm⁻¹; the experimental data are not available for comparison. The external frequencies from the ADP analysis together with the internal frequencies from high-level ab initio calculations will be used to estimate the thermodynamic parameters.

Table 1. Data statistics of α - and β -glycine from beamline BM01A									
Т	Compl	Redund	R _{int}	Reflns	R_1	Δρ	Δρ	EXTI	
(K)				All/Obs		$(e Å^{-3})$	positions		
80	98.6	4.68	0.042	2554/2190	0.050	0.62/-0.39	@ bonds & atoms	0.01782	
90	98.1	4.57	0.061	2538/1832	0.044	0.50/-0.34	@ bonds & atoms	0.02137	
100	98.8	8.79	0.051	2560/2075	0.041	0.53/-0.38	@ bonds & atoms	0.00131	
130	98.1	4.60	0.044	2546/1768	0.039	0.47/-0.33	@ bonds & atoms	0.02512	
190	98.1	4.62	0.041	2556/1620	0.041	0.49/-0.33	@ bonds & atoms	0.02839	
250	97.9	4.64	0.034	2563/1500	0.042	0.40/-0.31	@ bonds & atoms	0.07434	
300	98.0	4.64	0.032	2572/1438	0.042	0.42/-0.30	@ bonds & atoms	0.06930	
80	98.6	3.67	0.033	1365/1227	0.032	0.51/-0.26	@ bonds & atoms	0.00000	
90	98.5	4.36	0.031	1364/1255	0.031	0.48/-0.26	@ bonds & atoms	0.00000	
100	98.6	4.30	0.039	1367/1286	0.041	0.63/-0.44	@ bonds & atoms	0.00000	
130	98.5	4.36	0.035	1368/1221	0.033	0.42/-0.25	@ bonds & atoms	0.00000	
190	98.6	4.36	0.029	1374/1196	0.036	0.45/-0.24	@ bonds & atoms	0.00000	
250	98.6	4.37	0.026	1385/1187	0.035	0.40/-0.22	@ bonds & atoms	0.00000	
300	98.8	4.37	0.025	1400/1186	0.036	0.37/-0.18	@ bonds & atoms	0.00000	

Fig. 1. Residual density maps of (a) α - glycine and (b) β -glycine data at 300 K from beamline BM01A.

Fig. 2. Variable temperature ADPs for (a) N1 of α -glycine and (b) O1 of β -glycine from beamline BM01A in comparison with other sources. Note the β -glycine 10 K data from ID11. Standard deviations are $2 \times 10^{-4} \text{ Å}^2$.

References:

[1] Bürgi, H.B.; Capelli, S.C. Acta Cryst. 2000, A56, 403-412.

[2] Machida, K.; Kagayama, A.; Saito, Y.; Kuroda, Y.; Uno, T. Spectrochim. Acta 1977, 33A, 569–574.