ESRF	Experiment title: The Uptake of Iodine onto Cementitious Material	s Experiment number: EC-655
Beamline:	Date of experiment:	Date of report:
BM26A	from: 21/07/10 to: 26/07/10	02/02/11
Shifts:	Local contact(s):	Received at ESRF:
15	Sergey Nikitenko	
Names and affiliations of applicants (* indicates experimentalists):		

AIMOZ Laure¹*, VESPA Marika^{2,3}*, CURTI Enzo¹, DAEHN Rainer¹*, Wieland Erich¹

¹Laboratory for Waste Management, Paul Scherrer Insitute

² Dutch-Belgium Beamline (DUBBLE-BM26), European Synchrotron Radiation Facility

³European Commission, Joint Research Centre, Institute for Transuranium Elements Karlsruhe, Germany

Report:

¹²⁹I is expected to be released from radioactive waste in underground repositories as dissolved anionic species as iodide (Γ) and is predicted to be dose-determining in performance assessments due to its long half-life and its weak retention by common minerals from the repository near-field (clays, carbonates and sulphates). However, such predictions usually disregard the uptake of anionic species by minor minerals from the cementitious barriers. AFm phases are potential candidates for iodine retention during cement alteration. AFm-type cement minerals are composed of edge-sharing octahedral sheets occupied by Ca^{II} and Al^{III} hydroxides, stacked with H₂O and charge compensating anions ([Ca₂Al(OH)₆][Xⁿ]_{1/n} (H₂O)_m where Xⁿ⁻ = CO₃²⁻, SO₄²⁻ or Cl⁻). Replacement of Xⁿ⁻ by Γ in AFm phases could potentially reduce the mobility of ¹²⁹I. The iodine uptake mechanism was investigated using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the iodine K-edge to obtain a molecular-level understanding of the coordination environment of iodine.

Pure AFm-I₂ samples were synthesized in a glove box under a N₂ atmosphere (O₂, CO₂ < 2 ppm) at various temperatures (4°C, 23 ± 2°C and 60°C) and aged for 14 days up to 84 days.C₃A was reacted with CaI₂ at a liquid-to-solid ratio of 10 using degassed Milli-Q[®] water. In addition, pure AFm-I₂ samples aged for 28 days were exchanged with various amounts of potassium salts (as $KX_{2/n}$) during 48 hours, where $X^{n-} = SO_4^{2-}$, CO₃²⁻ and Cl⁻ in order to obtain various AFm-(I₂,X_n) compositions. AFm-(I₂,X_n) phases were also synthesized by coprecipitation reaction of C₃A with various ratios of CaI₂ and CaX_{2/n}. The solids were extracted by centrifugation or by filtration through 0.2 µm nylon filters. The solids were quickly washed with Milli-Q[®] water and then further thoroughly rinsed with degassed absolute ethanol in order to remove all impurities of un-reacted salts. The solids were dried over a saturated solution of CaCl₂ and stored in the glove box before solid characterization by X-ray Diffraction (XRD) and EXAFS spectroscopy.

EXAFS spectra for each sample were recorded in transmission at the I-K edge. A large improvement in data quality of the EXAFS spectra was noticed when measurements were acquired at 15 K instead of 90 K. All samples were therefore measured at 15 K. Figure 1 shows the EXAFS spectra at the I K-edge of pure AFm-I₂ and mixtures of AFm-I₂ with 50% Cl_2 , CO_3 and SO_4 .

The spectra were similar up to $R+\Delta R \sim 8$ Å for all AFm-I₂ phases synthesized under the various temperature and ageing time conditions (the k³-weighted spectrum and its FT of the 100% I₂ sample synthesized at 23°C during 28 days are given as an example in Fig. 1). Large amplitudes at k > 12 Å⁻¹ (Fig. 1a 100% I₂) suggest the presence of heavy (high Z) backscattering atoms, such as neighboring iodine atoms.

The spectra of coprecipitated and exchanged AFm- (I_2,Cl_2) samples were found to be very similar to those of the pure AFm- I_2 samples. This suggests that the coordination environment of iodine in AFm- (I_2,Cl_2) is similar to pure AFm- I_2 (the k³-weighted spectrum and its FT of a 50% I_2 + 50% Cl_2 sample are given as an

example in Fig. 1). AFm-(I₂,CO₃) prepared by exchange reaction showed spectra similar to those of pure AFm-I₂. This suggests that the coordination environment of iodine in AFm-(I₂,CO₃) is also similar to pure AFm-I₂ (the k^3 -weighted spectrum and its FT of the 50% I₂ + 50% CO₃ exchange sample are given as an example in Fig. 1). Note that XRD results showed the formation of distinct crystalline phases (AFm-I₂ and AFm-Cl₂) in both coprecipitation and exchange experiments of AFm-(I₂,Cl₂). Similarly, two distinct crystalline phases (AFm-I₂ and AFm-CO₃) were detected by XRD for AFm-(I₂,CO₃) prepared by exchange reaction. AFm-I₂ and either AFm-Cl₂ or AFm-CO₃ phases can form therefore simultaneously without changing the iodine configuration in the interlayer, as shown in the EXAFS measurements.

In contrast, AFm-(I₂,CO₃) prepared by coprecipitation revealed a more limited short-range ordering of iodine in the interlayer with a single shell at $R+\Delta R \sim 3$ Å (the k³-weighted spectrum and its FT of a 50% I₂ + 50% CO₃ coprecipitation sample is given as an example in Fig. 1). The backscattering amplitude was small at high k (Fig. 1a 50% I₂ + 50% CO₃ coprecipitated), indicating either the absence of heavy backscattering atoms or strong disorder, respectively. XRD revealed the formation of alternate interlayer galleries filled with Γ and (CO₃²⁻,OH⁻). The stacking of Γ and (CO₃²⁻,OH⁻) interlayers seems to strongly affect the short-range ordering of iodine as shown in the EXAFS measurements.

The EXAFS spectra were similar for all coprecipitated and exchanged AFm-(I₂,SO₄) samples. The AFm-(I₂,SO₄) FT spectra showed a splitting of the first coordination shell with an additional peak at R+ Δ R ~ 3.4 Å (the k³-weighted spectrum and its FT of a 50% I₂ + 50% SO₄ sample are given as an example in Fig. 1). No enhanced amplitude was observed at high k (Fig. 1b 50% I₂ + 50% SO₄) compared to the pure AFm-I₂. This suggests the absence of heavy backscattering atoms like iodine or the presence of a strong disorder, respectively. Furthermore, the intensity of the shell at R+ Δ R ~ 3.4 Å was found to increase with increasing SO₄²⁻ content (Fig. 1.b. 50% I₂ + 50% SO₄). The coordination environment of iodine seems thus to be significantly influenced by the presence of SO₄²⁻. The two species may not only occupy the same interlayers, but they may also occupy neighbouring positions. This implies that a complete mixing of Γ and SO₄²⁻ even at short range distances could be favoured. Multi-shell fitting of the EXAFS spectra is on-going in order to confirm the above findings. XRD results confirmed that AFm-I₂ – AFm-SO₄ form a continuous solid solution series. The formation of the continuous solid solution between AFm-I₂ and AFm-SO₄, including a complete mixing of Γ and SO₄²⁻ even at short range distances, underpins its potential to act as a sink for ¹²⁹I.

Fig. 1. Iodine K-edge spectra recorded at 15 K for various iodine-bearing AFm samples: (a) k^3 -weighted spectra; (b) Fourier Transform (modulus and imaginary part).