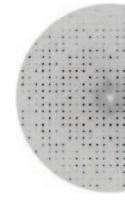
$\overline{\mathrm{ESRF}}$	Experiment title: Symmetry and structure of multiferroic Ba ₂ CoGe ₂ O ₇	Experiment number: 01-02-906 01-01-826	
Beamline: BM01	Date of experiment: from: 16.09.2010 to: 21.09.2010	Date of report: 01.09.2013	
Shifts: 9	Local contact(s): Dmitry Chernyshov, Wouter van Beek	Received at ESRF:	

Names and affiliations of applicants (* indicates experimentalists):

V. Sikolenko¹, A. P. Sazonov^{2,3,*}, and V. Hutanu^{2,3,*}


¹Laboratory PSI WHGA/135, Paul Scherrer Institute, 5232 Villigen, Switzerland
²RWTH Aachen, Institut für Kristallographie, D-52056 Aachen, Germany
³Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, D-85747 Garching, Germany

Report:

Coupled electric and magnetic orderings were recently found in Ba₂CoGe₂O₇ [1]. The symmetry information is essential to unravel the complex physics underlying magnetoelectric behavior of the title compound. Therefore, the crystal structure of Ba₂CoGe₂O₇ at room temperature (RT) and 90 K has been probed by single-crystal diffraction of x-ray synchrotron radiation. The space group (SG) found at both temperatures is well approximated by $P\bar{4}2_1m$, in agreement with expectation for melilite-like compounds. The real structure of Ba₂CoGe₂O₇ is more distorted and has a lower symmetry, as follows from observation of a set of superstructure reections violating 2₁ symmetry. Symmetry analysis based on the observed average-structure SG $P\bar{4}2_1m$ revealed few possible candidates for the true structure that imposes different constraints on magnetic and polar properties.

TABLE I. The atomic	position	parameters	of	the	average	
structure at RT (P -42 ₁ m).						
Wyckoff						

Ion	Wyckoff Positions	x	Y	Z.
Ba	4 <i>e</i>	0.33477(2)	0.16523(2)	0.49262(4)
Со	2b	0	0	0
Ge	4e	0.14051(3)	0.35949(3)	0.03963(7)
01	2c	0	0.5	0.1588(8)
O2	4e	0.1384(2)	0.3616(2)	0.7284(5)
03	8 <i>f</i>	0.0799(2)	0.1843(2)	0.1876(3)

It is known that many of the melilite-like compounds show incommensurate or commensurate modulated lock-in phases at low temperatures [2]. A close inspection of our data for Ba₂CoGe₂O₇ revealed the following: (a) No incommensurate reections have been seen for the studied sample at both temperatures; (b) commensurate superstructure reections of type (h, 0, 0), (0, k, 0) with odd h and k, violating the systematic extinctions for the 2₁ symmetry element have been observed (Fig. 1). These reections are very weak yet observable up to h, k = 13 both at 90 K and RT. These observations allow us to conclude that the $P\bar{4}2_1m$ structure indeed is only an approximate one, and the true symmetry of Ba₂CoGe₂O₇ should be lower.

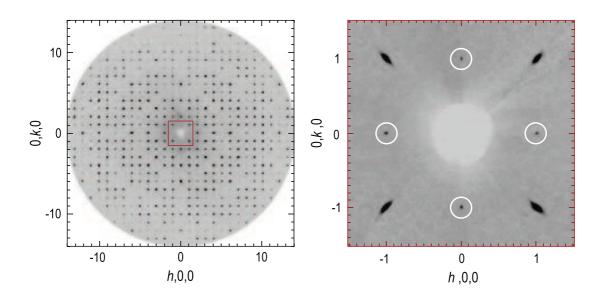


FIG. 1. (Color online) The hk0 layer calculated from twodimensional detector images measured at 90 K; left: whole data set, right: magnified selected part with superstructure reflections noted by circles.

- [1] H. T. Yi et al., Appl. Phys. Lett. 92, 212904 (2008).
- [2] Z. H. Jia, Ph.D. thesis, University of Marburg, Germany, 2005.