7	Experiment title: In-situ synchrotron X-ray diffraction studies of the crystallization and hydrogen sorption properties of rapidly quenched Mg-Ni-Y-(Cu) alloys	Experiment number: 20-02-694
ROBL-CRG		
Beamline:	Date of experiment:	Date of report:
BM 20	from: 6.4.2010-13.4.2010	01.09.2010
Shifts:	Local contact(s):	Received at ROBL:
18	Dr. Carsten Baehtz (baehtz@esrf.fr)	
Names and affiliations of applicants (* indicates experimentalists):		
Lars Röntzsch* ¹⁾ , Siarhei Kalinichenka ^{*2)}		
1) Fraunhofer Institute for Manufacturing Technology and Applied Materials Research.		

- Winterbergstraße 28, 01277 Dresden, Germany
- 2) Institute for Materials Science, Dresden University of Technology, Helmholtzstraße 7, 01069 Dresden, Germany

Results

The Mg-Cu-Ni-Y alloys exhibit good hydrogen storage properties which makes these materials especially attractive for solid-state hydrogen [1]. However, the phase transformation during crystallization and hydrogen (de)sorption of Mg-based alloys have remained largely undetermined experimentally.

The aim of the in-situ diffraction study at the Rossendorf beamline ESRF-BM20 was to investigate the crystal phase formation processes during thermal annealing of the amorphous as-spun Mg-Cu-Ni-Y alloys, and furthermore, the desorption of hydrogeneted ribbons under vacuum.

Recrystallization behavior

The recrystallization behavior of melt-spun amorphous Mg-Ni-Cu-Y was studied under different atmospheres (Ar, H₂ and vacuum). The SR-XRD results were compared with the corresponding results obtained by DSC measurement (Fig. 1). Fig 2 shows the evolution of the in-situ SR-XRD of melt-spun $Mg_{85}Cu_5Ni_5Y_5$ at different temperatures under argon atmosphere (for this system the effect of the different atmospheres was not significant). The incident X-ray beam with an X-ray wavelength of 1.05 Å was used for this investigations.

The crystallization of the amorphous structure starts with nucleation and growth of Mg and Mg₂Cu grains at 150°C. The XRD data also shows that at 200°C the formation of MgY occurs. The final composition of the sample at 250° is Mg, MgY and Mg₂Cu. It is interesting that no metallic Ni or Ni-phases diffraction peaks can be observed. The reason for this finding could be explained by forming of Ni-substituted Mg₂Cu [2].

The results of recrystallization behavior of melt-spun Mg-Ni-Y provide imortant information regarding the activation of as-spun ribbons.

Fig. 1: DSC curve of melt-spun $Mg_{85}Cu_5Ni_5Y_5$ (5 K/min, Ar).

Heat treatment of hydrogenated Mg-Cu-Ni-Y ribbon under vacuum in the stainless steel dome designed with Kapton windows.

The evolution of the in situ SR-XRD patterns of the as-spun and hydrogenated $Mg_{85}Cu_5Ni_5Y_5$ during vacuum thermal decomposition at 200 °C (10⁻² mbar) is presented in Fig. 3. The X-ray diffraction pattern at t=0 min represents the X-ray diffraction pattern of hydrogenated samples at ambient temperature.

During the dehydrogenation of $Mg_{85}Cu_5Ni_5Y_5$ several processes can be identified: decomposition of the hydride phases according to Eqns. (1) to (4) and transformation of MgCu₂ to Mg₂Cu according to Eq. 5. It must be noted, that these dehydrogenation reactions take place simultaneously.

Fig. 3. The evolution of the in situ synchrotron XRD pattern of melt-spun and hydrogenated $Mg_{85}Cu_5Ni_5Y_5$ during its isothermal dehydrogenation at 200°C and at a pressure of 10^{-2} mbar H₂.

After dehydrogenation five phases have been observed in the material: Mg, Mg₂Ni, Mg₂Cu, YH₂ and YH₃. These XRD results of the dehydrogenated sample are similar to literature data, e.g. for Mg₆₀Ni₁₀Cu₃₀ prepared by ball milling [3]. It is also evident that the transformation of YH₃ into YH₂ is the slowest step of the reaction and even after 54 minutes at 200°C a residual amount of YH₃ can be observed in the diffraction pattern.

Conclusion

In order to understand the crystallization behavior and the dehydrogenation reactions of the melt-spun Mg-Cu-Ni-Y, the recrystallization and desorption properties were studied by in-situ synchrotron X-ray diffraction performed at the Rossendorf Beamline (BM20) of the ESRF.

Particularly, the results of desorption mechanisms of hydrogenated $Mg_{85}Cu_5Ni_5Y_5$ reveal interesting differences between Mg-Cu-Ni-Y alloy and the recently investigated systems [4, 5]. The SR-XRD results indicated that the dehydrogenation of the hydride phases and the transformation of MgCu₂ to Mg₂Cu take place at the same time and no formarion of hydrogen transfer phase was observed.

The results of these investigations have been already presented at International Symposium on Metal-Hydrogen Systems 2010 and submitted for publishing in the Journal of Alloys and Compounds [1].

References

- [1] S. Kalinichenka, L. Röntzsch, C. Baehtz, Th. Weißgärber and B. Kieback, Hydrogen desorption kinetics of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA, submitted to J. Alloys Compds.
- [2] P. Darnaudery, M. Pezat and B. Darriet, Effect of substituting copper for nickel on hydrogen storage in magnesium–nickel (Mg₂Ni), J. Less-Common Met. **92** (1983) 199.
- [3] C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, Mg-Ni-Cu mixtures for hydrogen storage: A kinetic study, Intermetallics **18** (2010) 203.
- [4] S. Kalinichenka, L. Rontzsch, C. Baehtz, B. Kieback, Hydrogen desorption kinetics of melt-spun and hydrogenated Mg₉₀Ni₁₀ and Mg₈₀Ni₁₀Y₁₀ using in-situ synchrotron, X-ray diffraction and thermogravimetry, J. Alloys Compds. **496** (2010) 608.
- [5] S. Kalinichenka, L. Röntzsch, B. Kieback, Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys, Intl. J. Hydrogen Energy **34** (2009) 7749.