	Experiment title: Redox behavior of neptunium species in solution	Experiment number: 20-01-701
Beamline:	Date of experiment:	Date of report:
BM 20	From 05-03-10 to 09-03-10 23-04-10 to 25-04-10 28-08-10 to 31-08-10 22-09-10 to 25-09-10 27-11-10 to 28-11-10	17.2.2011
Shifts:	Local contact(s): Christoph Hennig	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Christoph Hennig*, Koichiro Takao*, Shinobu Tako*, Andreas C. Scheinost*		
Helmholz-Zentrum Dresden-Rossendorf, Institute of Radiochemistry, Bautzner Landstrasse 400, 01314 Dresden Germany		

Report:

Tetravalent actinides show strong tendencies towards hydrolysis which promotes polynucleation and colloid formation of the hydroxides or oxides. We studied the complexation of U^{IV} and Th^{IV} with formate (HCOO⁻) under moderately acidic condition.

Fig 1. Structure of the complex

Left: ORTEP picture purple: Th; blue: C; red: O

Right: core structure (right, Purple, Th; green, μ_3 -O; red; μ_3 -OH; black, hydrogen) of **2**. Symmetry code i: x+1, y+1, z-1, and ii: x, y+1, z+1.

EXPERIMENTAL. Compound 1: $[U_6(\mu_3-O)_4(\mu_3-OH)_4(HCOO)_{12}(H_2O)_6](N_2H_5)_2(ClO_4)_2-(H_2O)_{12}$, deposited from an aqueous solution containing 0.5 M U^{IV} with excess HCOOH at pH 2.5 through slow evaporation of the solvent. Compound 2: $[Th_6(\mu_3-O)_4(\mu_3-OH)_4(HCOO)_{12}(H_2O)_6]Na_3(ClO_4)_{3.5}(H_2O)_{5.5}(H_3O)_{0.5}$ was obtained from an aqueous solution

containing 0.05 M Th^{IV} and 1.0 M HCOOH at pH 1.0 during slow reduction of the solution volume by concentration. Crystal data were collected with a Bruker AXS SMART diffractometer at room temperature by using Mo-K_{α} radiation ($\lambda = 0.71073$ Å) monochromatized by a graphite crystal. X-ray absorption spectra of L_{III} edges of U^{IV} and Th^{IV} were recorded at ROBL.

Fig. 2. k^3 -weighted U L_{III}-edge EXAFS spectra (left) and their FTs (right) of aqueous solutions of U^{IV}-HCOOH, and of solid sample **1**. Phase shifts are not corrected on the FTs.

RESULTS. Fig. 1 shows the structure of **2** and its $[Th_6(\mu_3-O)_4(\mu_3-OH)_4]$ core. The crystal structure analyses of **1** and **2** reveal $[M_6(\mu_3-O)_4(\mu_3-OH)_4(HCOO)_{12}(H_2O)_6]$ cores. Each metal atom is surrounded by 4 O atoms from μ -HCOO⁻, 4 O atoms from μ_3 -oxygen, and 1 O atom of the terminal water molecule. Neighboring metal atoms are bridged by μ -HCOO⁻ through a *syn-syn* coordination. Distortion of $\{\mu_3-O(H)\}_8$ hexahedra arises from the presence of two kinds of μ_3 -oxygen atoms, i.e., $\mu_3-O^{2^-}$ and μ_3-OH^- . In order to clarify the occurrence and stability range of the $[M_6\{\mu_3-O(H)\}_8]$ complexes in aqueous solution, EXAFS measurements were performed. Fig. 2 shows k^3 -weighted EXAFS spectra and Fourier transforms of U^{IV} with 1.0 M HCOOH at different pH. With increasing pH, U…U interaction at $R + \Delta = 3.8$ Å becomes more significant indicating the presence of the complex in solution. The EXAFS spectrum at pH 3.25 shows strong similarity with that of the crystalline sample **1**. It can be concluded that $[U_6\{\mu_3-O(H)\}_8(HCOO)_{12}(H_2O)_6]$ is also formed as solution species. In contrast, $[Th_6\{\mu_3-O(H)\}_8(HCOO)_{12}(H_2O)_6]$ in the solution is always minor component under pH 1.0-3.5. This is probably related to the lower hydrolysis capacity of Th^{IV}.

REFERENCE

Takao, S., Takao, K., Kraus, W., Emmerling, F., Scheinost, A.C., Bernhard, G., Hennig, C. First hexanuclear U^{IV} and Th^{IV} formate complexes – structure and stability range in solution Eur. J. Inorg. Chem. (2009) 4771-4775.