ESRF	Experiment title: XANES studies on Ytterbium valence states in dicarbide compounds	Experiment number: HE 3501
Beamline:	Date of experiment:	Date of report:
ID 26	from: 01 Sept 2010 to: 07 Sept 2010	11 Feb 2011
Shifts:	Local contact(s):	Received at ESRF:
18	Pieter Glatzel	
Names and affiliations of applicants (* indicates experimentalists):		
Pascal Link*, Rainer Lamann, Stefan Liebig*, Uwe Ruschewitz		
Department of Chemistry, University of Cologne, Greinstraße 6, D-50939 Köln, Germany		

Report:

The rare-earth metal carbide with the highest carbon contents has the general formula REC₂ and contains C₂ dumbbells. Isostructural compounds are found for alkaline-earth metals with CaC₂ being the most prominent example. The later is a typical colorless ionic compound with insulating properties. It can be best described as being composed of Ca²⁺ and C₂²⁻ ions. Rare-earth metal carbides of composition REC₂ exhibit a different behavior. Most of them show metallic luster and metallic conductivity. In a simplifying notation they can be described as being composed of RE³⁺ and C₂²⁻ ions: RE³⁺(C₂²⁻)(e⁻). The additional electron is "responsible" for the metallic properties. This very simple picture is confirmed by band structure calculations. In this respect EuC₂ and YbC₂ are most interesting, as Eu and Yb are known to exist in the divalent as well as in the trivalent state. For EuC₂ we found semiconducting properties and Eu being in a divalent state.^[1] Former work on YbC₂ resulted in an intermediate valence of approx. 2.8 based on magnetic susceptibility measurements and neutron scattering data.^[2,3] But despite the similar valence obtained in these investigations the underlying models are completely different pointing to a homogeneous^[3] and a heterogeneous^[2] valence, respectively.

To shed some light upon these discrepancies we conducted temperature dependent XANES spectroscopic investigations on YbC₂ at the L₃ edge using the HERFD mode.^[4] Comparison with Yb₂O₃ (Fig. 1) with trivalent Yb showed additional features in the XANES spectra of YbC₂, which were assigned to divalent Yb. Using an empirical fitting procedure an Yb valence of approx. 2.8 was obtained for YbC₂ confirming the results in the literature. But in sharp contrast to a homogeneous Yb valence^[3] no temperature dependence was observed in the temperature range 15-1123 K (Fig. 2). This temperature-independent behavior of the Yb valence in YbC₂ is confirmed by neutron diffraction experiments.^[4] Further experiments (e.g. ¹⁷⁰Mössbauer spectroscopy) are under way to understand the physical properties of YbC₂ in more detail.

The intermediate valence in YbC₂ suggests that it should be possible to manipulate the Yb valence state by external factors. Therefore, we studied the impact of "chemical pressure" on the Yb valence by synthesising solid solutions Yb_xEA_{1-x}C₂, composed of YbC₂ and an alkaline earth metal dicarbide EAC₂ (with EA = Ca, Sr, Ba). Using XANES-HERFD spectroscopy at the Yb L₃ edge we found interesting valence effects in Yb_xCa_{1-x}C₂ depending upon the composition (Fig. 3) and the temperature (Fig. 4). These valence effects are in nice agreement with the structural properties obtained from synchrotron powder diffraction data.

References:

- D. Wandner, P. Link, O. Heyer, J. Mydosh, M. A. Ahmida, M. M. Abd-Elmeguid, M. Speldrich, H. Lueken, U. Ruschewitz, *Inorg. Chem.* 2010, 49, 312-318.
- [2] M. Atoji, J. Chem. Phys. 1961, 35, 1950-1960.
- [3] B. C. Sales, D. K. Wohlleben, *Phys. Rev. Lett.* 1975, 35, 1240-1244.
- [4] P. Link, P. Glatzel, K. Kvashnina, R. I. Smith, U. Ruschewitz, *Inorg. Chem.*, submitted.