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Report: 
 
Physical properties of matter change when the system dimension is reduced to the nano-size. Especially, 
nano-sized systems have different phase boundaries in phase diagrams and different mechanisms of phase 
precipitation. To study the impact of both microstructure and mechanical stress contributions on the 
thermodynamics of nano-sized systems, in the present test-series of experiments at BM 20 we investigated 
different metal-hydrogen thin film systems with different initial microstructures and film thicknesses in the 
range from 30 to 300 nm. Fibre textured, nanocrystalline and epitaxial Palladium thin films as well as fibre 
textured Magnesium thin films were stepwise electrochemical charged or dischared with hydrogen. The 
subsequent change of the out-of-plane lattice parameters and the occurrence of hydride phases were 
monitored in Bragg-Geometry. For successful measurements an inert gas atmosphre (Argon/N2) and fast 
XRD measurements (approx. 1 min per scan) appeared mandatory. 
Epitaxial as well as nanocrystalline Palladium films prepared at 673 K on sapphire (0001) substrates were 
shown to reveal initially very smooth surface conditions, as thickness fringes around the (111) Bragg-Peak 
appeared (Fig. 1).  From the oscillation period of the fringes and their damping the films thickness T and the 
near surface lattice distortion (surface roughness σ) can be determined [1] (Parameters in Fig. 1 at cH = 0: T = 
85.02 nm, σ = 0.0025 nm) . Next to the out-of-plane expansion, during hydrogen charging and hydride 
formation the thickness fringes allow to monitor  the films surface roughness evolution - a technique, that is 
conventionally only applicable in XRR geometry. The example of an 85 nm epitaxial Pd film on sapphire in 
Fig. 1 shows that the surface roughness increases with the precipitation of the hydride phase, suppressing the 
thickness fringes when the film is loaded up to a hydrogen concentration of cH = 0.13 H/Pd. However, during 
subsequent discharging the thickness fringes reversibly return. Subsequent loading to cH = 0.45 H/Pd, on the 
other hand, irreversibly changes the surface condidtions, as the thickness fringes do not return after a further 
unloading step. According to our interpretation this irreversible change in the surface roughness reflects on 
the lattice matching during hydride precipitation – initially coherent hydrides are formed, elastically straining 
the metal lattice, while above a certain hydrogen concentration the precipitates become incoherent by the 
emission of misfit dislocation. These dislocations cause irreversible steps on the films surface. Interestingly, 
this change is not coupled to the thin film phase boundary. 
In Fig. 2 the lattice parameter evolution and the occurance of the hydride phase in 300 nm thick Pd films with 
different microstructures are shown. From the figure clear differences in the initial stress states  of the films 



and differences of their phase boundaries appear, approaching the bulk values with increasing epitaxy quality 
of the films. Furthermore, the initial slopes Δa/a of the lattice parameters in the solid solution region (α-phase) 
differ strongly (0.153 for nanocrystalline Pd, 0.104 for epitaxial Pd). This behaviour is in good agreement 
with calculations of the theoretically expected out-of-plane expansion of thin films that are clamped on 
elastically hard substrates. [2] The palladium film on silicon detached from the substrate in the two phase 
field. The accompanied strong reduction in mechanical stress resulted in a lattice relaxation, clearly visible in 
the continously increasing hydride (β-phase) lattice paramater. 
Magnesium hydride is served as a promising candidate for hydrogen storage applications. However, Griessen 
et al. [3] state that it is not possible to completely hydride Mg thin films with more than 100 nm thickness due 
to the formation of a surface hydride blocking layer. In contrary, our test measurements at BM 20 revealed 
that hydride formation is possible for Mg-film thickness up to 188 nm, and that the thickness of the hydride 
layer can be tuned by proper loading condidtions. In Fig. 3 the appearance of the hydride peak in a 188 nm 
thick Mg film is shown. The hydrogen concentration at the onset of hydride peak visibilty strongly depends 
on the applied loading current.  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Fig. 1: Thickness Fringes and phase evlution of                       Fig. 2: Lattice parameter and phase evolution 
85 nm epitaxial PdHc on sapphire.                                           of PdHc thin films with different microstructures.       

Fig. 3: Hydride formation in a 188 nm Mg thin film. 
Left side: MgH2-peak, right side: α-peak.
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