

Experiment Report Form

ESRF	Experiment title: Solution confirmation of the binding of the bivalent potential drug against glutaminergic excitotoxicity diseases, targeted at PDZ-domains	Experiment number: MX- 1190
Beamline:	Date of experiment:	Date of report:
	from: Dec 9 2010 to: Dec 10 2010	
Shifts:	Local contact(s):	Received at ESRF:
3	Adam Round	
Names and affiliations of applicants (* indicates experimentalists):		

Bente Vestergaard, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark

Magda Møller, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark

Adam Round, ESRF, France

Report:

Abstract

Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel dimeric inhibitor, Tat-NPEG4(IETDV)(2) (Tat-N-dimer), which binds the tandem PDZ1-2 domain of PSD-95 with an unprecedented high affinity of 4.6 nM, and displays extensive protease-resistance as evaluated in vitro by stability-measurements in human blood plasma. X-ray crystallography, NMR, and small-angle X-ray scattering (SAXS) deduced a true bivalent interaction between dimeric inhibitor and PDZ1-2, and also provided a dynamic model of the conformational changes of PDZ1-2 induced by the dimeric inhibitor. A single intravenous injection of Tat-N-dimer (3 nmol/g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-N-dimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke.

Full reference:

Bach, A; Clausen B. H.; Møller, M.; Vestergaard, B.; Chi, C.N.; Round, A.; Sørensen, P.L.; Nissen, K.B.; Kastrup, J.S.; Gajhede, M.; Jemth, P.; Kristensen, A.S.; Lundström, P.; Lambertsen, K.L. & Strømgaade, K. (2012) A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc. Natl. Acad. Sci. U S A.109: 3317-22.