ESRF	Experiment title: Softening upon crystallization and anharmonicity in the SnSb ₂ Te ₄ phase change material	Experiment number: HS-4369				
Beamline :	Date of experiment:	Date of report:				
ID18	from:05/05/2011 to: 10/05/2011	10/10/2011				
Shifts:	Local contact(s):	Received at ESRF:				
18	Dr. Aleksander Chumakov (email: chumakov@esrf.fr)					
Names and affiliations of applicants (* indicates experimentalists):						
R. P. Hermann ^{1,*} , I. Sergeev, ^{2,*} D.Bessas ^{1,*} , H. C. Wille ^{3,*}						
¹ Laboratory Forschungszentrum Juelich GmbH Institut fuer Streumethoden Institut fuer						
Festkoerperforschung Leo-Brandt-Strasse 52425 Juelich, Germany						
ESKF b rue Jules Horowitz B.P 220 F - 38043 Grenoble, France						
⁻ Laboratory Hasylab at DESY Notkestrasse 85 D - 22607 Hamburg, Germany						

Report:

In the allocated beamtime we investigated the lattice dynamics of the phase change material $SnSb_2Te_4$ by means of nuclear inelastic scattering (NIS) using the sapphire backscattering monchromator [1] providing instrumental resolution of ~1meV at ID18. The measurements were performed on the three Mößbauer active isotopes: ¹¹⁹Sn, ¹²¹Sb and ¹²⁵Te in the amorphous, cubic and hexagonal phase. Typical raw spectra measured at 20 K on the hexagonal phase in all three isotopes are shown in Fig. 1.

Fig. 1: NIS spectra of hexagonal SnSb₂Te₄ measured at 20K on ¹¹⁹Sn, ¹²¹Sb and ¹²⁵Te. Inleastic spectrum (black points) and instrumental function (red line).

From the evaluation of the raw spectra, the density of phonon states (DPS, g(E)) was extracted for the three isotopes ¹¹⁹Sn, ¹²¹Sb and ¹²⁵Te in all available phases using the program DOS [2] and given in Fig. 2. A hardening of the acoustic modes upon crystallization, below 5meV, is observed. At the same time, a related softening which is expressed by the shift of the high energy optical modes for Sb and Te is also observed. Similar effects have been measured for the isoelectronic material GeSb₂Te₄ [3]. Ge NIS is not feasible. The additional information obtained in this investigation was the contribution of Sn which at the same time gives

us the opportunity to better understand the Ge contribution in the isoelectronic $GeSb_2Te_4$ phase change compound.

Figure 2: The extracted density of phonon states using the DOS [2] for the isotopes ¹¹⁹Sn, ¹²¹Sb and ¹²⁵Te in hexagonal, cubic and amorphous phase.

The mean force constants, second moment of the density of phonon states, and Debye energy, E_D, obtained from the low energy limit as $\frac{3}{E_D} = \lim_{E \to 0} \sqrt[3]{E^2/g(E)}}$ was also extracted from the density of phonon states

and included in Table 1.

Phase	Sn	Sb	Te	E _D , meV
Amorphous	63	94	79	10
Cubic	65	74	66	14
Hexagonal	64	76	70	13

 Table 1: The extracted thermodynamical parameters from the measured density of phonon states, the mean force constants

 and the speed of sound us

Although a systematic hardening of the atomic bonds is indicated in the extracted speed of sound for all three phases, the opposite is observed in the extracted mean force constants of tellurium and antimony atoms. Exception is the extracted mean force constant of tin which is approximately the same for all three states. This peculiarity is now being examined

In summary, we have proven feasibility of measuring NIS on all three different Mößbauer active isotopes: ¹¹⁹Sn, ¹²¹Sb and ¹²⁵Te of SnSb₂Te₄ during experiment HS-4369 using a backscattering monochromator [1].

References

[1] I. Sergueev et al., J. Synchrotron Rad. 18, 802 (2011).

- [2] V. G. Kohn and A. I. Chumakov, Hyperfine Interact. 125, 205 (2000).
- [3] T. Matsunaga et al., Adv. Funct. Mater. 21, 2232 (2011).