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a b s t r a c t 

Digital rock physics carries the dogmatic concept of having to segment volume images for quantitative 

analysis but segmentation rejects huge amounts of signal information. Information that is essential for 

the analysis of difficult and marginally resolved samples, such as materials with very small features, is 

lost during segmentation. In X-ray nanotomography reconstructions of Hod chalk we observed partial 

volume voxels with an abundance that limits segmentation based analysis. Therefore, we investigated 

the suitability of greyscale analysis for establishing statistical representative elementary volumes (sREV) 

for the important petrophysical parameters of this type of chalk, namely porosity, specific surface area 

and diffusive tortuosity, by using volume images without segmenting the datasets. Instead, grey level in- 

tensities were transformed to a voxel level porosity estimate using a Gaussian mixture model. A simple 

model assumption was made that allowed formulating a two point correlation function for surface area 

estimates using Bayes’ theory. The same assumption enables random walk simulations in the presence 

of severe partial volume effects. The established sREVs illustrate that in compacted chalk, these simu- 

lations cannot be performed in binary representations without increasing the resolution of the imaging 

system to a point where the spatial restrictions of the represented sample volume render the precision 

of the measurement unacceptable. We illustrate this by analyzing the origins of variance in the quanti- 

tative analysis of volume images, i.e. resolution dependence and intersample and intrasample variance. 

Although we cannot make any claims on the accuracy of the approach, eliminating the segmentation step 

from the analysis enables comparative studies with higher precision and repeatability. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Digital rock physics makes it possible to estimate macroscopic

petrophysical parameters and to explore fluid transport or dy-

namic deformation processes from volume images of a milli- or

micrometer sized sample of a porous medium, such as reser-

voir rock ( Arns et al., 2001 ; Bijeljic et al., 2013 ; Fredrich et al.,

2006 ; Fusseis et al., 2014 ; Golab et al., 2013 ; Jouini et al., 2014 ;

Knackstedt et al., 2009 ; Kynde et al., 2016 ; Mostaghimi et al., 2013 ;

Raeini et al., 2015 ; Siddiqui and Sarker, 2010 ; Zhu et al., 2007 ;

Bultreys et al., 2015 ; Lin et al., 2016 ; Mostaghimi et al., 2016 ;

Shah et al., 2016 ; Smith et al., 2017 ). Such samples can be pro-

duced from the cuttings of rotary drilling. If information for char-

acterizing reservoirs could be gained from drill cuttings, it would

be 10 to 20 times less costly than drilling a dedicated exploration

well for acquiring core plugs, such as are used in traditional eval-

uation. This makes digital rock physics attractive for evaluating the
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conomic and technical feasibility of marginal oil reservoirs and for

ther applications where information about the internal structure

f materials is essential. 

Chalk is a frequent reservoir rock in the North Sea Basin. It is

 very challenging material for digital rock physics because of its

ery fine grain size. Chalk is formed of the calcified shields of coc-

olithophorids, one celled, free floating algae. The individual ele-

ents of the coccoliths are submicrometer dimension and irregu-

ar in size, shape and orientation ( Balogh et al., 2009 ). 3D imaging

ith resolution high enough to resolve the pores of chalk is re-

uired to provide reliable data for digital analysis and X-ray based

anotomography is certainly among the most feasible methods for

ccomplishing this. Yet, even nanotomography resolution is often

ot enough to clearly resolve all the features in fine grained ma-

erial, such as the fractures and fine pore throats in a compacted

halk sample ( Dalby et al., 2014 ). A comprehensive reservoir analy-

is cannot focus on chalk with oil production grade porosity alone

 Hu et al., 2012 ). Recently, Dalby et al. (2014) advanced to imaging

ompacted chalk using ptychographic X-ray tomography (PXCT),

ith voxel dimension of 21.5 nm, but it is questionable whether

uch high resolution imaging is able to provide a statistical rep-

http://dx.doi.org/10.1016/j.advwatres.2017.06.002
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esentative elementary volume (sREV) for a compacted sample on

he pore scale ( Zhang et al., 20 0 0 ). 

The suitability of 3D imaging for evaluating the hydrodynamic

nd petrophysical parameters for chalk and other carbonate rocks

as been addressed in recent publications ( Andrä et al., 2013 ;

eller et al., 2013 ; Liu et al., 2014 ; Müter et al., 2014 ; Yoon and

ewers, 2013 ; Saraji and Piri, 2015 ; Kelly et al., 2016 ). In search of

 statistically representative elementary volume, Yoon and Dewers

2013 ) evaluated the nanopore structure and transport properties

f a Cretaceous Selma chalk where porosity ( �) was ∼16%, using

 FIB-SEM 3D image of a sample that was 15 μm× 15 μm ×8 μm.

rom downscaling, they concluded that a minimum of 80 nm

oxel resolution would be required to avoid resolution dependence

nd that their sample was well represented with a volume of

0 μm × 10 μm ×10 μm. Unfortunately, their results cannot be ex-

rapolated directly to all chalk types because tight chalks are far

ore heterogeneous and rely on fluid transport through microfrac-

ures ( Zhu et al., 2007 ; Warren, 20 0 0 ). Müter et al. (2014 ) specif-

cally addressed resolution dependence in a tomography study of

wo highly compacted chalk samples ( � = 0.04–0.07) and a more

orous sample ( � ≈ 0.28). They reported that a voxel resolution

f 25 nm, corresponding to an optical resolution of 150 nm, served

ell as an upper boundary for the tomographic characterization of

halk data. In 2015 Saraji and Piri published a high resolution FIB-

EM based study where they were concerned with finding a repre-

entative sample size for low porosity, carbonate containing, shale

il rocks from the Bakken formation ( Saraji and Piri, 2015 ). While

hey succeeded in establishing a sREV for porosity the field of view

as too small to identify a sREV for permeability. They questioned

hether the limited field of view in FIB-SEM studies is sufficient

or such an analysis and compared their result for porosity with

epresentative elementary areas calculated from larger two dimen-

ional SEM maps of their samples, which revealed porosity values

uite different from their 3D analysis. Kelly et al. came to the same

onclusion when assessing the permeability of shale via FIB-SEM.

or volumes of 50 0 0 μm 

3 they found suitable values for poros-

ty but the results of their permeability simulations varied by as

uch as three orders of magnitude ( Kelly et al., 2016 ). They at-

ributed this to the often unconnected pore morphology in the lim-

ted available field of view and advised caution in studying low

orosity samples via a single FIB-SEM stack. 

There are also studies that approach the sREV in carbon-

tes from segmented tomography reconstructions with microm-

ter resolution thereby easily covering the millimeter scale

 Mostaghimi et al., 2013 ; Zakirov et al., 2016 ). Mostaghimi et al.

mphasized that the sREV for parameters that need to account for

ortuosity and connectedness of the flow paths (permeability) are

arger than for the static properties (porosity and specific surface

rea) ( Mostaghimi et al., 2013 ). They considered a coarse grained

arbonate sample with 14% porosity at 5.3 μm voxel resolution and

 23% porous sample at 2.85 μm resolution, concluding that the

REV is potentially larger than the 300 × 300 × 300 voxel image

onsidered. The difference for the conclusions made in the above

IB-SEM studies is quite obvious. Low resolution imaging ignores

atrix porosity and is prone to severe segmentation errors, i.e.

nly fracture heterogeneity can be captured in the analysis (labo-

atory scale) whereas high resolution imaging will focus on hetero-

eneities in the bulk matrix material which is much smaller (pore

cale). 

In a recent review article, Wildenschild and Sheppard (2013 )

escribed greyscale analysis as ideal in principle but too lim-

ted in available measurable parameters and in reproducibility,

or practical purposes in quantitative image analysis. Therefore, a

entral processing step in the studies described above, and al-

ost any quantitative study on microstructural characterization

f porous systems, remains image segmentation ( Iassonov et al.,
009 ; Müter et al., 2012 ). It is seen as a requirement for quanti-

ative physical analysis and is usually performed as hard segmen-

ation, using a thresholding criterion, such as the Otsu threshold.

mplementation is fast and simple, but it is well known that prob-

ems are associated with using thresholded images for quantita-

ive analysis. For example, even for an image with a homogeneous

oint spread function and uniform illumination, an object that is

maller than ten times the image resolution is only delineated cor-

ectly with a single threshold value if it is spherical ( Lee, 2010 ).

bviously, this requirement is not fulfilled in samples with com-

lex microstructures. The situation worsens when compacted sam-

les are analyzed because in these materials, microfractures con-

ribute considerably to the transport properties of the pore system

 Zhu et al., 20 07 ; Warren, 20 0 0 ). With marginally insufficient res-

lution, fractures only appear as partial volume voxels and there-

ore, they are incorrectly assigned to the materials phase so seg-

entation errors cannot be expected to even out statistically but

esult in a loss of pore connectivity. The signal information for the

ractures that was originally contained in the greyscale is lost. 

Given the pronounced disparity between the proportions of the

aterial and the void phases in compacted chalk, it is not sur-

rising that such samples are far more heterogeneous than chalk

amples with a more open pore network. Heterogeneity has to be

ountered by increasing the amount or the volume of the measure-

ents, leaving us with a sample that requires both a large sampled

olume and a high signal resolution. In most applications, with

he possible exception of serial block-face scanning electron mi-

roscopy ( Denk and Horstmann, 2004 ; Müllner et al., 2014 ), which

s most suited for softer materials, these requirements are mutually

xclusive and a compromise has to be made. Available detectors

ap the size of imaged features in synchrotron imaging at roughly

00 times the signal resolution and an extensive number of repeti-

ions in a nanotomography experiment is out of the range of possi-

ility for any funding or beamtime proposal. Consequently, it is of

levated interest to establish sREVs such that imaging experiments

an be designed in a way that minimizes the combined uncertainty

esulting from spatial resolution and limited field of view. 

In chalk or any very fine grained material, the number of par-

ial volume voxels is significant and a tomographic reconstruction

ith a bimodal, well segmentable intensity distribution is rather

he exception than the rule. Consequently, it is desirable, if not

andatory, to incorporate signal information from partial volume

oxels in the analysis of petrophysical parameters (i) to arrive at

 comprehensive reservoir characterization and (ii) to avoid unpre-

ictable reservoir behavior. 

In this study, we investigated the suitability of greyscale anal-

sis for chalk tomography reconstructions, imaged at varying spa-

ial resolution, for establishing sREVs that bridge the gap between

igh and low resolution imaging experiments. We illustrate how

reyscale intensities in computed tomography (CT) reconstructions

f chalk can be transferred to a material density representation

hat is comparable between samples and we calculate porosity,

pecific surface area and diffusive tortuosity, without image seg-

entation. A workaround was required to approximate the unre-

olved subvoxel pore structure and to enable quantitative evalu-

tion of parameters that relate to the pore surface and available

ow paths. Without claiming accuracy for this approximation, pre-

ision and repeatability are maintained, which is essential for a

omparative study of different samples. We chose to include com-

acted samples for this study because sREVs for higher porosity

amples falsely convey the impression that high-resolution images

f small volumes provide the best possible parameter quantifica-

ion since they are segmented reliably. The greyscale method is

lso useful for datasets where larger scale processes are to be

racked and resolution is necessarily low, i.e. segmentation is even

ore difficult ( Yang et al., 2017 ). 
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2. Materials and methods 

2.1. Sample selection and image acquisition 

Hod chalk (North Sea Basin) samples with a diameter of

∼500 μm were collected from drill cuttings (Sample HC #16) and

core material (Samples HC #72 and HC #70). The pore structure

was mapped by X-ray holotomography, using the setup at the ID22

beamline (29.49 keV) at the European Synchrotron Research Facil-

ity (ESRF) in Grenoble, France ( Cloetens et al., 1999 ; Vilanova et al.,

2013 ). Samples were imaged dry and in air. The conical beam al-

lows recording the same location in a sample at several levels

of resolution, by adjusting the distance between the sample and

the detector. Volume images for three samples at submicrome-

ter resolution (100, 50 and 25 nm voxel dimension) were recon-

structed from 1999 radiographs (360 ° rotation, 0.5 s exposure) us-

ing the holotomography reconstruction method ( Cloetens et al.,

1999 ). Some of these reconstructions were published in a previ-

ous study ( Müter et al., 2014 ). In addition, five positions in Sample

HC #70 were evaluated at 25 nm voxel resolution. This was real-

ized by sequentially moving the sample vertically by 200 μm after

each scan. 

2.2. Image processing 

All processing and analysis were performed with software cus-

tom written in Python v. 2.7 ( van Rossum and Drake, 2001 ), using

the libraries, Numpy v. 1.9, Scipy v. 0.14 ( Oliphant, 2007 ) and Fabio

v. 0.2 ( Knudsen et al., 2013 ). Image processing was performed post

reconstruction, aiming at preserving high frequency signal infor-

mation. Datasets with a coherent intensity distribution were ac-

quired by dividing the datasets into blocks of 128 slices and align-

ing the mode of the underlying intensity distribution. Deviations

from a cylindrical sample shape resulted in reconstructions of un-

even background that we compensated for, using a standard high

pass filter in the Fourier domain. Ring artefacts were eliminated

following the approach of Jha et al. (2014 ). 

Signal noise was treated as Gaussian (white noise). The noise

level was estimated as a lower boundary estimate from regions

of low signal variation and used to restore the noise free signal

with three dimensional, nonlocal means denoising ( Buades et al.,

20 05 ; Coupé et al., 20 08 ). We used only minimal patches, with a

radius of one voxel, to preserve as much fine structure in the signal

as possible. Images of crystalline structures are inherently piece-

wise constant. We used this characteristic to remove the remain-

ing weakly correlated artefacts by updating the similarity estimate

by the denoising output once for datasets with 50 nm or 100 nm

voxel resolution ( Fig. 1 a). The increase in artefacts at higher res-

olution required two additional updates of the similarity estimate

for datasets with 25 nm voxel resolution. A detailed explanation of

the method is published elsewhere ( Bruns et al., 2017 ). 

The voxel resolution used during reconstruction was higher

than the optical resolution of the imaging system. Consequently,

the reconstruction provides a blurred representation of the chalk

sample, requiring sharpening to avoid biasing the analysis by

blurred surface voxels. Yet, greyscale analysis requires all data to be

intact, prohibiting the use of image enhancement by linear filter-

ing. We decided to treat the problem as a deconvolution problem

instead. Deconvolution seeks to invert the blurring of the signal

during image formation. Thus, the filter does not alter the aver-

age greyscales in the image but the frequency spectrum. To oper-

ate properly it requires a decent estimate of the point spread func-

tion. Calcite crystals in the reconstructions provide information for

the undisturbed transition between foreground and background. At

the edges of the calcite particles, the first image derivative char-

acterizes the full width at half maximum (FWHM) of the point
pread function (PSF), i.e. the physical image resolution. Using that

nformation, the PSF was approximated to be constant and three-

imensional Gaussian in shape with a standard deviation ( σ ) of 1.7

oxels. Voxel resolution of 100, 50 and 25 nm correspond to opti-

al resolution of 40 0, 20 0 and 100 nm, based on the FWHM of the

SF because FWHM ≈ 2.355 σ . Deconvolution was performed using

 blockwise Python implementation of the ADM2TVL2 solver, pro-

ided with the FTVd package by Wang et al. (2008 ). The previous

enoising step allowed minimizing regularization during deconvo-

ution and put maximum weight on data fidelity instead (model

arameter μ = 10 0 0), i.e. information on surface roughness is pre-

erved and not lost by the total variation regularization (cf. Fig. 1 a).

or standard absorption tomography, reconstructed with filtered

ackprojection, deconvolution can be less suited than it is for holo-

omography reconstructions. In the latter case the PSF covers a

olume of several voxels which allows for a decent image based

haracterization of the PSF whereas in the former case the PSF is

ften very narrow, i.e. spatial resolution and voxel resolution are

lready very similar. For analysis, the deconvolved datasets were

ransferred to a density based representation of the chalk sample,

s discussed in the next section because all image processing steps

efore this step may also be considered a general part of any seg-

entation based analysis. 

. Results and discussion 

.1. Material density estimation 

.1.1. Greyscale approaches for porosity quantification 

The biological genesis of chalk results in a structure decidedly

ner than can be represented on a 25 nm grid. Therefore, a high

ercentage of the voxels is affected by the partial volume effect, i.e.

he intensity of the voxel represents a mixture of the linear atten-

ation coefficients for void and solid. Without the presence of sig-

ificant amounts of other minerals, we expect all intermediate grey

alues of the voxels to be a linear combination of the attenuation

f air and the calcite phase, after deconvolution, as is quite com-

on ( Jouini et al., 2014 ; Ketcham and Carlson ; Taud et al., 2005 ).

or this interpretation of the observed attenuation coefficients to

e valid, we require either a monochromatic beam, i.e. a beam that

s not subject to beam hardening, or hard X-ray radiation with en-

rgy > 100 keV because the linear attenuation of the material de-

ends on its electron density as well as the effective atomic num-

er of the observed compounds ( Dyson, 1990 ; Teles et al., 2016 ).

ith synchrotron radiation, the former condition is fulfilled and

lthough we do not have access to the subvoxel morphology of the

aterial, we can at least estimate the local porosity, i.e. the poros-

ty within a single voxel. We can expect, that incorporating this

nformation in an analysis of petrophysical parameters reduces the

rror made, compared with an analysis of segmented datasets. 

A well-established experimental method for porosity estima-

ion from tomography measurements is based on the use of con-

rast agents and dual scans. It was developed by Withjack (1988 )

nd has been applied to carbonate rocks until now ( Teles et al.,

016 ; Agbougun et al., 2013 ; Fusi and Martinez-Martinez, 2013 ;

ussein et al., 2015 ; Mayo et al., 2015 ; Lin et al., 2016 ). In 2014,

ouini et al. (2014 ) performed a multiscale porosity analysis of car-

onate rock without having dual scans available. They observed

imodal intensity histograms and segmented their images with a

hird uncertain phase that they interpolated linearly. Taud et al.

2005 ) presented a very promising approach for the porosity anal-

sis of core data with poorly resolved material phases, where the

ntensity histogram of reconstructed grey values resulted in a uni-

odal distribution. They estimated porosity by identifying the CT

umber of the most prominent phase and interpolating to zero.

his demonstrates that repeated measurements to access the den-
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Fig. 1. (a) Stages in the image processing routine for Sample HC #16 and (b) close up views at 50 nm voxel resolution for the 3 samples analyzed (b) . Density estimates 

for HC #16, which is a porous chalk, and HC#70 and HC #72, which are compacted. White represents the solid phase, black, the void phase. Grey voxels are partial volume 

voxels containing both solid and void phase. They were assigned a porosity value by linear interpolation. 
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ity of a material that is basically composed of two phases are ben-

ficial but is not necessarily essential. Yet, because only the end-

oint for the density estimation is evaluated, this approach relies

n having a fixed zero point and knowing the exact relationship

etween voxel intensity in the image and linear attenuation co-

fficients in the sample. When the sample extends uniformly be-

ond the reconstructed volume, grey values in the reconstruction

re shifted by an offset and cannot be related directly to the ab-

orption properties in the observed voxel. Often it is possible to

dentify regions that can be safely assigned to either void or mate-

ial phase and internal calibration of average grey values can then

e performed to set up interpolation points for porosity estima-

ion or recovering the linear attenuation coefficients. However, the

heer abundance of partial volume voxels in the samples observed

nly provided very poor internal calibration so we had to revert

o an alternative approach to extract interpolation points for the

nalysis. 

Identifying phase ratios from reconstructed images that are

everely affected by the partial volume effect is also a well-known

hallenge in medical magnetic resonance imaging (MRI), especially

n the analysis of brain tissue ( Tohka et al., 2004 ). Here, differenti-

ting and quantifying grey matter, white matter and cerebrospinal

uid, with a hard segmentation approach, can yield volume errors

f up to 60% ( Niessen et al., 1999 ). The quantification problem is

ften addressed with a parametric statistical model that considers

 Gaussian intensity model for the tissues and mixtures of tissues

 Balafar, 2014 ; Van Leemput, 2003 ). Optimizing these models by

xpectation-maximization yields soft segmented images, a Gaus-

ian mixture model. 

.1.2. Gaussian mixture model for submicrometer resolution images 

f chalk 

Our approach to density quantification makes use of the sta-

istical methods devised in medical MRI to identify the mean in-

ensity of a solid and void phase in the chalk reconstructions

 Van Leemput, 2003 ). Notably, denoising results for our data were

ood enough, that using a statistical model with additional spa-

ial priors did not improve the model fit. We ended up identify-

ng the void and material phase using a histogram based Gaussian

ixture model with no spatial correlation. It requires the following

ssumptions: 

i. The dominant solid phase in the mixture model is calcite. 

ii. The phase of lowest X-ray attenuation is void. 

ii. All intermediate grey values result from voxels that contain

both calcite and void so are modelled as dependent mix phases.
iv. Any phase of higher mean intensity than the calcite phase is

free and is assumed to represent accessory minerals, such as

barite or pyrite ( Sørensen et al., 2012 ). 

Mixed phases can take any mixing fraction and proportion. De-

endence is expressed by constraining the standard deviation of

he Gaussian to be related to the standard deviation of the calcite

nd the void phase according to its mixing fraction. The model is

nitialized using k-means clustering ( Lloyd, 1982 ) and optimized by

xpectation-maximization (EM) ( Dempster et al., 1977 ). For an effi-

ient implementation of the EM algorithm, we used histogram data

hat were truncated to cover 99.98% of the voxels and split into

0 0 0 bins. 

As long as the resolution of the imaging system is sufficient to

ulfil the first assumption, the approach allows identification of the

rst moment of a void phase and a calcite phase without relying

n the reconstructions having the same processing history. Assign-

ng a porosity value to each voxel is now a simple task of linear in-

erpolation. To maximize the comparability, we heuristically chose

 model of seven Gaussian distributions because with seven Gaus-

ian functions, the porosity estimate reaches a first plateau and all

istograms are fitted with a single high intensity phase and four

ixed phases, as shown in Fig. 2 , for a characteristic fit. 

While it is possible to extend the approach to materials that

ontain multiple mineral phases, this cannot be done with in-

ensity information alone. Doing so would require incorporating

patial information in the process to identify the mineral phases

hat make up the mixed state of each individual voxel. This will

everely increase the computational demand as well as the dimen-

ionality of the problem and may only be worthwhile for imaging

f dynamic processes for marginally resolved samples where it is

ot possible to perform imaging experiments at multiple energies. 

.2. Porosity analysis 

.2.1. Origins of variance considered 

After assigning a local porosity value to each voxel, estimat-

ng the porosity becomes straightforward. As in segmented binary

atasets, porosity is provided by the expected value of a region

f interest or the sample as a whole. For most practical applica-

ions of parameter prediction by X-ray imaging methods, quantifi-

ation of the overall reservoir or aquifer characteristics is more

seful than single characterizations of high accuracy. Evaluating

he precision of our parameter estimates is therefore of prime con-

ern. Naturally, heterogeneities on length scales of centimeters or
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Fig. 2. (a) An example fit to a histogram of data from Sample HC #16 at 50 nm voxel resolution using a Gaussian mixture model with seven phases. The fit includes Gaussian 

distributions to represent the void phase (red), the calcite phase (blue), a phase called the free phase that represents high density minerals such as pyrite and barite (pale 

blue) and four dependent mixed phases (grey); (b) the dependence of the macroscopic porosity estimate on the number of peaks (N phases ) used in the Gaussian fitting. The 

grey bar marks the results used for this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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even meters are a major limitation in digital rock physics that can-

not be addressed without excessive sampling. However, statements

about the bulk characteristics of the rock are definitely possible

( Kynde et al., 2016 ) and the work of Yoon and Dewers (2013 ) il-

lustrated that even with the spatial restrictions of FIB-SEM, decent

precision can be expected for open pore networks. Measures that

are sensitive to the shape and connectivity of the pore system re-

quire larger volumes than are typically recorded at such high res-

olution. Müllner et al. (2014 ) demonstrated this on large scale, se-

rial block face scanning electron microscopy recordings of man-

made polymer monoliths, which are presumably more homoge-

neous than natural porous media where the distribution of void

and solid are quite random. 

How representative is a micrometer length scale snapshot of

a notoriously heterogeneous sample, such as chalk, and how pre-

cise can the object that is imaged be recovered given the available

imaging setup? We have addressed these questions by evaluating

three potential origins of variance, reported as relative standard

deviation (RSD), evaluated as: 

i. Interresolution variability: where features are insufficiently re-

solved at lower resolution; this parameter is expected to change

dramatically when compared with higher resolution estimates. 

ii. Intersample variability: the five locations evaluated for sample

HC #72 provide us with basic insight about sampling related

variability. This parameter represents heterogeneities in a single

drill cutting that are one length scale higher than the imaging

length scale. 

ii. Intrasample variability: decomposing each reconstruction into

sets of nonoverlapping subvolumes quantifies heterogeneities

that can be captured on the imaging length scale and associ-

ated finite size effects. Care has to be taken when this parame-

ter is used for formulating a statistically representative elemen-

tary volume. It can only be seen as a lower boundary estimate

because subvolumes are still spatially correlated. 

3.2.2. Resolution dependence 

Fig. 3 a presents the results of our analysis for macropore poros-

ity ( �). One sample (HC #16) is comparable in porosity to the

Cretaceous Selma chalk examined by Yoon and Dewers (2013 )

whereas the other two samples (HC #72 and HC #70) are more

compacted ( Fig. 1 b). Müter et al. previously provided a segmenta-

tion based analysis of the analysed materials ( Müter et al., 2014 ).

They observed a pronounced resolution dependence of the macro-

pore porosity estimate reporting porosities of 0.400, 0.302 and
.280 for Sample HC #16 at 100 nm, 50 nm and 25 nm voxel reso-

utions using a dual filtering approach followed by Otsu segmen-

ation ( Müter et al., 2012 ). The results obtained with the image

rocessing routine used for this study are comparable. Otsu seg-

entation after image deconvolution suggests respective porosities

f 0.340, 0.303 and 0.267 for the same material. Such pronounced

egmentation errors complicate any further analysis. The error in-

urred by selecting a statistical model to interpolate the greyscales

s smaller. With greyscale analysis we found a considerably lower

orosity of 0.215, 0.229 and 0.222 for the above voxel resolutions.

he porosity estimated from core log data was reported even lower

ith 0.142. For Sample HC #70 and HC #72 core plug experiments

uggested a Ф of 0.052 and 0.071. Müter et al. reported indistin-

uishable values of 0.040 and 0.043 for the two samples. Greyscale

nalysis provided definite differences in the average porosity yield-

ng an average � of 0.049 for HC #70 and 0.072 for HC #72. 

In summary, the porosity estimated from the greyscale analysis

oes not change systematically with image resolution. The average

nterresolution RSD (RSD res ) is only 3%. In contrast, the intersam-

le RSD (RSD inter ) provides an uncertainty of 11% to the estimate

f porosity in Sample HC #70. This is comparable to the worst

ntrasample variability (RSD intra ) observed for HC #70 suggesting

hat the precision of a porosity estimate using submicrometer res-

lution volume imaging is dominated by the spatial restrictions of

he imaging system and not the resolution as such. 

.2.3. Statistical representative elementary volume 

Decomposing the sample in nonoverlapping subvolumes pro-

ides the option to deduce the intrasample variability ( Fig. 3 a, right

anel) for predicting statistical representative elementary volumes.

he uncertainty curves align well for the different voxel resolutions

nd span a sufficient range of volumes for reading out the sREV for

he bulk matrix material directly. From a single reconstructed vol-

me Sample HC #16 cannot be characterized at the pore scale with

etter precision than 3% RSD because it is limited by larger scale

eterogeneities. An arbitrary but frequently used precision of 10%

SD is already reached by sampling a cubic volume of 5.5 μm edge

ength. For the compacted samples HC #70 and HC #72 a larger

olume of at least ∼15 μm edge length is required for a compara-

le precision. Two of the thirteen evaluations captured higher scale

eterogeneities; these are Sample HC #70 at 100 nm voxel resolu-

ion which shows an increased sREV of ∼70 μm edge length and

ample HC #70 at 25 nm voxel resolution in location d which con-

ains an easily visible fracture (not shown). 
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Fig. 3. Compilation of the greyscale measurements acquired for this study. (a) Statistical analyses for porosity, (b) specific surface area (c) , percolation threshold (d) and 

diffusive tortuosity were performed over a range of voxel resolutions (blue columns; pale blue, 100 nm; medium, 50 nm; dark, 25 nm) and for Sample HC #70 (red columns) 

at different positions within a chip of core material. Error bars in the bar chart are the standard deviation of the measurement, acquired by dividing the reconstructions into 

eight nonoverlapping subvolumes. Finite size effects were assessed by subdividing the reconstructions further and estimating the precision of the measurement from the 

relative standard deviation between these subvolumes (right plots). For diffusive tortuosity, the RSD has been adjusted for the variance between random walks by running 

calibration experiments with 16 repetitions for each reconstruction. The green line in (c) corresponds to the porosity of the Otsu threshold that would segment the volume 

image to a binary image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Specific surface area 

3.3.1. Two point correlation function for greyscale images 

A specific surface area (SSA) estimated from tomographic re-

constructions is necessarily smaller than a surface area estimated

by BET measurements. An image with well resolved grains may

only show a small error but without molecular resolution there

will always be unresolved features and defects in the structure.

Small grains that contribute the most to the SSA are among the

first features to be lost to the partial volume effect limiting an im-

age analysis based SSA of chalk to comparative statements. 

In a greyscale image there is no clearly defined interface be-

tween material and void phase. Thus, if we aim to relate the ob-

servation to a surface area a statistical approach is required. In a

segmented dataset the two point correlation function provides one

option for estimating the surface area of random porous materials

( Yoon and Dewers, 2013 ; Berryman and Blair, 1986 ; Berryman and

Blair, 1987 ; Yeong and Torquato, 1998 ) statistically. The function is

defined as the probability of finding two points in the void phase

at a given distance, r . As r approaches zero, the slope of the corre-

lation function provides a measure of the internal sample surface

area per unit volume, S V as 

S V = lim 

r→ 0 
−k f ′ ( r ) , (1)

where f’(r) is the first order derivative of the two point correla-

tion function and k represents a constant that is 6 in the case,

where a three dimensional, discrete, cubic lattice is considered

( Yeong and Torquato, 1998 ). A k of 4 recovers the area of a contin-

uous surface and results are in accordance with surface areas esti-

mated by the marching cubes algorithm ( Berryman and Blair, 1986 ;

Berryman and Blair, 1987 ). In a binary dataset, the two point cor-

relation function is equivalent to a linear transformation of the au-

tocorrelation function. The idea dates back to Debye et al. (1957 ),

who calculated specific surface areas of random porous materials

from small angle X-ray scattering data. In a two phase medium,

this is a binary case because fluctuations in electron density at the

atomic scale are not visible at small angles. 

In a greyscale image, the autocorrelation function is (usually)

not an exponentially decaying function, i.e. the greyscale distribu-

tion is not entirely random and the surface area cannot be es-

timated with the correlation function approach of Berryman and

Blair (1986, 1987 ). In other words, the material distribution in each

partial volume voxel is not random but part of a connected open

pore network. However, we do know that, when the local porosity

of a voxel is between 0 and 1, surface area needs to be present.

Given that we are considering an open pore network, the simplest

structure that realizes a neighboring voxel of lower porosity is a

tapering flow path. This is also the structure with the lowest possi-

ble surface area required to explain the observed image. If we now

assume that the flow path is aligned with the connecting vector,

Bayes’ theorem can be applied to find the probability of finding

two points located in the void phase. The result is a two point cor-

relation function reformulated for greyscale images. 

A step-by-step derivation starts with the prior probability of be-

ing at a position in the void phase p 1 given any voxel a . The sin-

gle point probability of finding void phase corresponds directly to

voxel level porosity. Thus: 

p 1 ( a ) = ε ( a ) , (2)

where ε denotes the local porosity at voxel a . We assume a nearby

higher density voxel b to be connected to a by a tapering flow path

in the direction of the connecting vector with length, r . Given the

simplified scenario of a tapering flow path, the probability of the

t  
ector also ending in the void phase is conditional on a : 

im 

r→ 0 
p 1 (b| a ) = 

p 1 (a | b) · ε ( b ) 
ε ( a ) 

= 

ε ( b ) 

ε ( a ) 
, (3)

ecause in the tapering flow path model the conditional proba-

ility of finding a void voxel when moving from a higher density

oxel to a lower density voxel, lim 

r→ 0 
p 1 ( a | b ) , describes a trajectory

long a widening flow path; it is obviously one. Thus, the joint

robability of both voxels being in the void phase p 11 is deter-

ined by the higher density voxel, b : 

im 

r→ 0 
p 11 ( a ∩ b ) = p 1 ( b| a ) · p 1 ( a ) = ε ( b ) (4)

nd the two point correlation function for a surface area estimate

rom greyscale data is consequently expressed as the expected

alue of the minimum function: 

f ( r ) = 〈 min ( { ε ( x ) , ε ( x + r ) } ) 〉 . (5)

The correlation function f ( r ) modified for greyscale porosity val-

es is an exponentially decaying function that is valid for small

istances. Without further information about the available sub-

oxel surface the assumption of a tapering flow path cannot be

xpected to provide an accurate value for the SSA but only a

alue that relates to this property by providing a lower bound-

ry estimate. This cannot prevent resolution bias of the parame-

er estimate but allows extracting a parameter from the greyscales

hat relates to the surface area. Thus, greyscale analysis may be

sed comparatively or in studying dynamically evolving systems

 Yang et al., 2017 ) as long as imaging conditions are not changed. 

.3.2. Resolution dependence and model study 

Fig. 3 b illustrates the specific surface area estimates calculated

y using Eq. (5 ) as correlation function in Eq. (1 ). Values are re-

orted for k = 6 and by approximating the slope of the correlation

unction via the finite difference as f ′ ( r ) ≈ f (0) − f (1). Unit conver-

ion from m 

2 /m 

3 to chalk surface area per unit of mass (m 

2 /g)

as performed by assuming a density of 2.71 g/cm 

3 for calcite. It

s evident that, in contrast to the porosity estimate, the accuracy

f the surface area estimate depends heavily on the resolution of

he imaging system – although, especially for the compacted sam-

les, HC #70 and HC #72, with diminishing returns for doubling

he spatial resolution. 

Although accuracy is not our main concern, some basic insights

ow the presence of partial volume voxels affects different imaged

ased parameter estimates may be gained by performing a sim-

le downscaling study on a model rock system. For this purpose

e used a segmented volume image of Upper Maastrichtian chalk

ith 40.5 nm voxel resolution as a ground truth dataset because

t contained plenty of well resolved calcite crystals of varying size

 Fig. 4 a). It is easier to study this type of chalk via segmentation

han it is to study Hod chalk because grain sizes are larger. This

s evident by a smaller SSA at higher porosity for the benchmark

ample compared to Sample HC #16. Downsampling of the binary

odel was performed by volume averaging which solely simulates

he partial volume effect and ignores any other image degrada-

ions. Fig. 4 c illustrates how the error of the SSA estimate devel-

ps for an Otsu segmentation, a segmentation at the 50% porosity

evel and the greyscale approach. Herein, the latter two approaches

erformed similarly well (or rather poor) providing an SSA esti-

ate of less than 10% relative error for a downsampling factor ≤ 3

equivalent to a voxel size of 121.5 nm). With moderate downsam-

ling the error in the Otsu segmented dataset was dominated by

he misplaced threshold resulting in an overestimated SSA for the

enchmarked sample. 

It is thus no surprise that SSA values for the samples scatter

ildly depending on the technique used. At 25 nm voxel resolu-

ion Müter et al. reported an SSA of 2.1 m 

2 /g for Sample HC #16
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Fig. 4. (a) Slice through a binarized sample of Upper Maastrichtian Chalk used for studying the effects of downsampling via volume averaging on (b) porosity, (c) specific 

surface area and (d) tortuosity. The size of the dataset before downsampling was 732 × 732 × 732 voxels at 40.5 nm voxel resolution. White denotes void space with porosity 1, 

black denotes material phase with porosity 0. The downsampling factor refers to multiples of the initial voxel resolution. Results for greyscale analysis (orange) segmentation 

via Otsu thresholding (pink) and thresholding at 0.5 porosity (olive) are shown relative to the parameter estimate provided without downsampling ( �0 , SSA 0 , τ 0 ). Dashed 

lines delineate a 10% margin of error. (For interpretation of the references to colour in this figure legend the reader is referred to the web version of this article.) 

a  

F  

p  

0  

a  

#  

o  

p  

p

3

 

C  

a  

m  

t  

p  

u  

f  

s  

c  

H  

e  

1  

A  

e  

t  

f  

h  

s

≈  

c  

a  

m  

3

3

 

r  

c  

h  

b  

i  

a  

t  

v  

h  

t  

b  

c  

s  

t  

d  

N  

d  

5  

fi  

t  

a  

a  

r  
nd 0.22 m 

2 /g for sample HC #70 and HC #72 ( Müter et al., 2014 ).

rom greyscale analysis we found a lower SSA of 1.4 m 

2 /g for Sam-

le HC #16 and a higher SSA of 0.28 m 

2 /g for Sample HC #70 and

.39 m 

2 /g for Sample HC #72, whereas BET measurements suggest

 SSA of 7.7 m 

2 /g for Sample HC #16 and 0.76 m 

2 /g for samples HC

70 and HC #72. Evidently, greyscale analysis cannot prevent res-

lution bias of the SSA estimate without considering a more com-

lex system for subvoxel surface area but still enables extracting a

arameter from the greyscales that relates to the surface area. 

.3.3. Statistical representative elementary volume 

A poor accuracy does not imply poor precision or repeatability.

urves for intrasample variability at 50 nm voxel resolution provide

 decent continuation of the curves resulting from the measure-

ents at 25 nm voxel resolution ( Fig. 3 b, right panel). This suggests

hat the sREV for specific surface area increases with decreasing

orosity. For Sample HC #16 the 10% RSD criterion is met for a vol-

me with a ∼7 μm edge length and at an edge length of 14.5 μm

or Sample HC #72. The lowest porosity Sample HC #70 requires a

ampled volume of at least 30 μm edge length, which can still be

overed with a spatially limited high-resolution PXCT experiment.

owever, the intersample variability for Sample HC #70 volume a-

 of 21% is higher than it is for porosity and intrasample curves for

00 nm voxel resolution are shifted towards higher values as well.

t this resolution the edge length of the sREV for Sample HC #16 is

stimated to be 10 μm and 24.5 μm for Sample HC #72. This hints

hat higher scale heterogeneities have a larger impact on the sur-

ace area estimate than they have on the porosity estimate but the

eterogeneities of the bulk matrix material are well described with

ample sizes typical for high resolution PXCT in any case (RSD intra 

1%–10% at 30 μm sample edge length). Consequently, overall pre-
ision can only be improved by broadly spaced repetitive sampling

nd the imaging system with the highest available resolution re-

ains the obvious choice for image based surface characterization.

.4. Diffusive tortuosity 

.4.1. Limitations of hard segmentations 

We initially stated that fluid flow simulations in binary rep-

esentations of compacted chalk are destined to fail because tiny

racks and fractures constitute important flow paths that require

igh resolution to be visualized and even then, are obliterated

y the segmentation process. This can be illustrated by consider-

ng a percolation threshold for the analyzed greyscale images as

 test for connectedness. We define this percolation threshold by

he lowest value of local voxel level porosity that has to be tra-

ersed to connect two opposing faces of the reconstruction. The

igher the value, the better resolved are the major flow paths in

he microstructure. The measurement is not a material property

ut characteristic for each reconstruction. It can be expected to in-

rease with resolution. If it is lower than the Otsu threshold that

egments the volume image, a binary rock model acquired with

hat method would appear impermeable. The plot in Fig. 3 c imme-

iately reveals that this is the case for Sample HC #72 and HC #70.

otably, the percolation threshold does not increase but rather

rops for Sample HC #70 when the voxel resolution increases from

0 nm to 25 nm. This indicates that the sampled volume is insuf-

cient to characterize the microstructure of that material. In addi-

ion, the percolation threshold is quite volatile. For Sample HC #16,

 cubic volume with an edge length of 10 μm is enough to char-

cterize it with about 10% RSD but Sample HC #72 and HC #70

equire a cubic volume of more than 50 μm edge length for a mea-
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surement of comparable precision. This uncertainty carries over

to the derivation of any parameter that depends on flow paths,

whether it is based on binary data or greyscale data. 

3.4.2. Diffusive tortuosity simulation for greyscale images 

Diffusive tortuosity lends itself to a characterization by

greyscale analysis because it can be modelled by a statistical pro-

cess. It is a parameter that is sensitive to pore shape and connec-

tivity, i.e. that we expect the sREV for diffusive tortuosity to be

on a similar scale as the sREV for single phase liquid permeability

and/or formation resistivity factor. Thus, we chose to characterize

the diffusive tortuosity of our samples by modelling molecular dif-

fusion with a discrete lattice random walk (1 ·10 4 walkers, 1 ·10 6 

time steps, reflective boundary conditions) in a simple cubic lat-

tice ( Nakashima et al., 2004 ; Nakashima and Kamiya, 2007 ). The

tortuosity was calculated as the inverse of the slope of the mean

square displacement in the final 2 ·10 5 time steps. This can only

provide reasonable results when the structure is permeable, i.e. use

of greyscale information is mandatory for the compacted samples.

Without a clearly defined material-void interface, the reflection of

a walker is a probability. Within the model assumption of a taper-

ing flow path that was used to relate the greyscales to surface area

in Section 3.3 reflections may only occur when a walker moves to

a higher density voxel. We consider the displacement at each time

step to be sufficiently small to apply the assumptions made for the

surface area estimate to this problem as well. A walker encoun-

tered at any timestep and position needs to be in the void space

with probability 1. This means that a successful walking step de-

pends on finding another void location in location b which is the

conditional probability provided with Eq. (3 ). The probability for

encountering an interface reflection p reflect is therefore given by: 

p reflect = lim 

r→ 0 
1 − p 1 ( b| a ) = 1 − ε ( b ) 

ε ( a ) 
. (6)

3.4.3. Resolution dependence 

Fig. 4 d illustrates how accurate diffusive tortuosity is recov-

ered in the presence of partial volume voxels given the benchmark

dataset considered. While segmenting the dataset at 50% porosity

served reasonably well for porosity ( Fig. 4 b) and identical to the

greyscale approach for specific surface area ( Fig. 4 c) it is the worst

performing approach for diffusive tortuosity. The tendency to un-

derestimate porosity results in rapid disconnection of important

flow paths and the 10% error mark is already exceeded when the

test volume image is downsampled by a factor of two. Otsu thresh-

olding performs better in this specific case because for the bench-

mark sample this segmentation technique overestimates porosity

and pores are disconnected at a later downsampling stage. Thus

the error is smaller than 10% with downsampling factors ≤ 3. With

the greyscale approach pores can never be disconnected (within

the benchmark experiment) but tortuosity may be underestimated

once the voxels are large enough that pores start to get merged.

This was first observed for a downsampling factor of 6 and an er-

ror of less than 10% was maintained up to a downsampling factor

of 10. 

The application to the chalk samples studied was similar

promising as it did not result in an identifiable resolution depen-

dency of the diffusive tortuosity ( Fig. 3 d). All values for 100 nm,

50 nm and 25 nm voxel resolution were within the expected mar-

gin of error that would result from finite size effects, i.e. greyscale

information on fractures resolved at 25 nm voxel resolution is also

contained in the images recorded at 100 nm resolution. 

3.4.4. Statistical representative elementary volume 

Upon inspection of the intrasample variance we see that Sam-

ple HC #16 is precisely characterized without major precision loss
ecause of finite size effects with τ = 1.7 for sample sizes ≥ 10 μm

dge length which agrees well with the sREV suggest by Yoon and

ewers (2013 ). Increasing the sample size further does not im-

rove precision below 4% RSD indicating the presence of larger

cale heterogeneities. Results on the compacted samples, HC #72

nd HC #70, are not as clear. The intrasample variability com-

ares well to the variability observed for the percolation threshold.

t 25 nm and 50 nm voxel resolution, we cannot expect a preci-

ion considerably higher than ∼25% RSD, whereas the uncertainty

rops to the scale of intersample variability ( ∼10% RSD) at 100 nm

oxel resolution ( Fig. 3 d, right panel) for an edge length ∼50 μm.

his has two fundamental implications for the future analysis of

ermeability and further flow related parameters in compacted

halk samples. The network of flow paths is only captured rep-

esentatively with sample volumes of 50 μm diameter or larger.

t present this can only be accomplished (in a reasonable time-

rame without making mosaics) by relaxing the resolution require-

ents in the data acquisition step to the point where fractures

re marginally resolved. As a result, quantitative greyscale analy-

is cannot be avoided for deriving the petrophysical parameters of

uch samples. This requires further development because segmen-

ation based characterization methods give away too much signal

nformation. 

. Summary and conclusions 

Characterizing the petrophysical parameters of compacted chalk

amples poses a challenge to digital rock physics because of their

arrow pore network. The heterogeneity of the rock requires com-

arably large volumes, to produce data that are representative for

he structure. Given a target RSD of 10%, porosity and specific sur-

ace area of the compacted samples were not necessarily accu-

ately but precisely characterized with a cubic region of ∼20 μm

nd ∼30 μm edge length. For diffusive tortuosity, the same crite-

ion is only met for an edge length of ∼50 μm or more. Acquir-

ng volumes of that size at a physical resolution below 100 nm is

sually not a default option in high resolution imaging methods,

uch as PXCT or FIB-SEM. Still, our analysis shows that the resolu-

ion power of these methods is required, to resolve the surface of

he pore interface and all fractures and thin pore throats that are

ecessary for modelling fluid flow and material transport in pore

ystems, with a binary representation of the porous medium. 

We demonstrated that quantitative greyscale analysis provides

 viable workaround out of the dilemma of requiring both large

olumes (or at least a large number of samples) and maximum

esolution power whenever finite size effects outweigh potential

ains in precision by higher resolution imaging. Greyscale analy-

is relaxes requirements in image resolution ( Müter et al., 2014 )

or pore network related parameters and porosity analysis. This is

ecause greyscale images maintain more of the signal information

hat is available in the recorded images than a segmentation based

haracterization. Basis for the presented quantitative analysis was a

ransformation to voxel level porosity that we performed by iden-

ifying the greyscale levels for calcite and void pore space with

 Gaussian mixture model optimized with expectation maximiza-

ion. Estimating the material density by identifying two phases al-

ows comparing image data of differing origin. The transformed

ata were analyzed in terms of porosity, specific surface area and

iffusive tortuosity revealing the predominant sources of variance

n the image based analysis of these parameters. The precision

f porosity estimates was limited by the presence or absence of

igher scale heterogeneities and requires extensive sampling to be

mproved. As expected, the determined specific surface area largely

epends on image resolution and will always be smaller than a

ET surface. The precision of image based estimates for the diffu-

ive tortuosity was found to be limited primarily by the size of
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he reconstructed sample volume. This is especially problematic

or heterogeneous compacted samples because without image mo-

aicking, the material cannot be imaged on a scale and resolution

hat allows quantification by segmentation. Relating the specific

urface area and diffusive tortuosity to greyscale images was made

ossible by making a model assumption about the geometry of the

nresolved open pore network, i.e. the voxels that were affected

y the partial volume effect. This illustrates how typical tools for

uantitative image analysis can be reformulated for material den-

ity based greyscale data with this assumption, using straightfor-

ard Bayesian theory. 

Our method provides a sound approach for characterizing sam-

les where data are at the limits of resolution so diffusive tortuos-

ty can be derived for samples that could not otherwise be evalu-

ted. Yet, the canny reader will have noticed that we do not dis-

uss permeability, which is one of the key petrophysical parame-

ers. Deriving permeability from greyscale image information is a

ask that is beyond the scope of this study but it is an ongoing

roject in our group. This paper provides the basis for that work

nd underlines the importance of developing greyscale measures

or more complex flow path related parameters with better accu-

acy than our simple approach can deliver. Yet, definite conclusions

an be drawn on the expected precision of a 3D imaging experi-

ent and knowing beforehand, the expected precision of measure-

ents in compacted samples, as a worst case scenario, provides us

nd other researchers with a framework for more effective plan-

ing of such experiments. 
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