ESRF	Experiment title: Synthesis and structural characterization of novel metal borohydrides for hydrogen storage and lithium batteries.	Experiment number: 01-02-970
Beamline:	Date of experiment:	Date of report:
BM01-A	from: Sept 20 to: Sept 24, 2011	
Shifts: 12	Local contact(s):	Received at ESRF:
	Dr.V.Svitlyk	
Names and affiliations of applicants (* indicates experimentalists):		
*R.Cerny, Laboratoire de Cristallographie, Geneve, Switzerland		
*P. Schouwink, Laboratoire de Cristallographie, Geneve, Switzerland		
*Ya. Filinchuk, Université de Louvain, Belgium		
*Dorthe Ravnsbeak, University of Aarhus, Dennmark		
*Torben Jensen, University of Aarhus, Dennmark		

Several bimetallic systems prepared by mechanosynthesis were studied. The systems which show formation of novel bimetallic borohydrides are:

$\mathbf{KBH}_{4}:\mathbf{ZnCl}_{2}\left[1\right]$

Three novel potassium-zinc borohydrides/chlorides are described. KZn(BH₄)₃ and K₂Zn(BH₄)_xCl_{4-x} form in ball milled KBH₄:ZnCl₂ mixtures with molar ratios ranging from 1.5:1 up to 3:1. On the other hand, K₃Zn(BH₄)_xCl_{5-x} forms only in the 2:1 mixture after longer milling times. The new compounds have been studied by a combination of in situ synchrotron powder diffraction, thermal analysis, Raman spectroscopy and DFT calculations. Rhombohedral KZn(BH₄)₃ contains an anionic complex $[Zn(BH_4)_3]^-$ with D₃(32) symmetry, located inside a rhombohedron K₈. KZn(BH₄)₃ contains 8.1 wt% of hydrogen and decomposes at ~385 K with a release of hydrogen and diborane similar to other Zn-based bimetallic borohydrides like MZn₂(BH₄)₅ (M=Li, Na) and NaZn(BH₄)₃. The decomposition temperature is much lower than for KBH₄. Monoclinic $K_2Zn(BH_4)_xCl_{4-x}$ contains a tetrahedral complex anion $[Zn(BH_4)_xCl_{4-x}]^{2-}$ located inside an Edshammar polyhedron (pentacapped trigonal prism) K_{11} . The compound is a monoclinically distorted variant of the paraelectric orthorhombic ht-phase of K_2ZnCl_4 (structure type K_2SO_4). $K_2Zn(BH_4)_xCl_{4-x}$ releases BH₄ starting from 395 K, forming Zn and KBH₄. As the reaction proceeds and x decreases, the monoclinic distortion of $K_2Zn(BH_4)_xCl_{4-x}$ diminishes and the structure transforms at 445 K into the orthorhombic ht-phase of K₂ZnCl₄. Tetragonal K₃Zn(BH₄)_xCl_{5-x} is a substitutional and deformation variant of the tetragonal (I4/mcm) Cs₃CoCl₅ structure type possibly with the space group $P4_2/ncm$. K₃Zn(BH₄)_xCl_{5-x} decomposes nearly at the same

temperature as $KZn(BH_4)_3$, *i.e.* at ~400 K with a formation of $K_2Zn(BH_4)_xCl_{4-x}$ and KBH_4 , indicating that the compound is an adduct of the two latter compounds.

Figure 1: Triangular anionic complex $[Zn(BH_4)_3]^-$ located in a deformed alkali metal cage K₈ in the crystal structure of KZn(BH₄)₃ (left) and tetrahedral anionic complex $[Zn(BH_4)Cl_4]^{2-}$ located in Edshammar polyhedron (pentacapped trigonal prism) K₁₁ (right).

KBH₄ : **Mg**(**BH**₄)₂ and **KBH**₄ : **Mn**(**BH**₄)₂ [2]

Four novel bi-metallic borohydrides have been discovered $K_2M(BH_4)_4$ (M = Mg or Mn), $K_3Mg(BH_4)_5$, KMn(BH_4)_3, and are carefully investigated structurally as well as regarding their decomposition reaction mechanism by means of in-situ synchrotron radiation powder X-ray diffraction (SR-PXD), vibrational spectroscopies (Raman and IR), thermal analysis (TGA and DTA) and ab initio density functional theory (DFT) calculations. Mechano chemical synthesis (ball-milling) using the reactants KBH₄, α -Mg(BH4)₂ and α -Mn(BH₄)₂ ensures chlorine free reaction products. A detailed structural analysis reveals significant similarities as well as surprising differences among the two isomorphs $K_2M(BH_4)_4$, most importantly concerning the extent to which the complex anion [$M(BH_4)_4$]²⁻ is isolated in the structure. Anisotropic thermal expansion and an increase in symmetry at high temperatures in $K_3Mg(BH_4)_5$ is ascribed to the motion of BH₄ groups inducing hydrogen repulsive effects, the dynamics of $K_3Mg(BH_4)_5$ are investigated. Decomposition in the manganese system proceeds via the formation of KMn(BH₄)₃, the first perovkite type borohydride reported up to date.

$LiBH_4: KBH_4: Mg(BH_4)_2$

Formation of a novel framework borohydride $LiKMg(BH_4)_4$ is observed. Its orthorhombic structure was verified by DFT calculations, and studied IR and Raman spectroscopies. The high temperature decomposition/phase transition is currently studied by in-situ synchrotron radiation powder diffraction, IR and mass spectroscopies, and by TG and DSC.

$LiBH_4$: $M(BH_4)_2$: $ZnCl_2$ (M=Mg, Mn)

Formation of a first trimetallic borohydride $\text{Li}(\text{Li}_2M)\text{Zn}_5(\text{BH}_4)_{15}$ (M = Mg, Mn) is observed. Its hexagonal structure was verified by DFT calculations. As part of lithium is loosely located in octahedral coordination, the ionic Li^+ conductivity is currently studied by impedance spectroscopy.

(1) Cerny R., Ravnsbæk D., Schouwink P., Filinchuk Ya., Penin N., Teyssier J., Smrcok L. and Jensen T.R. *J. Phys. Chem.* C, 116(2012)1563-1571.
(2) Schouwink P., D'Anna V., Ley M.B., Lawson Daku L.M., Richter B., Jensen T.R., Hagemann H. and Cerny R. *J. Phys. Chem.* C, submitted.