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Report: 

 
Topological crystalline insulators (TCIs) are new class of topological insulators where topological surface states are 

protected by crystal symmetries and not by time reversal symmetry as in the so far intensively studied Z2 topological 

insulators such as Bi2Se3, Bi2Te3 or BixSb1-x. In a recent paper, Fu has predicted that SnTe and the ternary alloys of 

SnTe or SnSe with PbTe and even MnTe have the proper crystal group symmetry to qualify them for a novel 

manifestation of nontrivial topology [1]. 

By Mn doping with concentrations up to 15% ferromagnetic order up to above 20 K has been observed in Pb1-x-

ySnxMnyTe[2,3] due to free carrier mediated RKKY interactions. In the ongoing discussion on the origin of surface 

band gaps in magnetically doped topological insulators of the Z2 class, the role of surface, bulk impurities and 

vacancies has been pointed out in Ref. [4] and has recently been invoked in the interpretation of temperature 

independent band gaps in (Bi1-xMnx)2Se [5] where an appreciably amount of Mn was found to be incorporated non-

substitutionally. 

The aim of the beamtime was to contribute to the solution of the crucial problem of the lattice positions of Mn ions in 

SnTe and SnSe, using x-ray standing-wave technique. We have investigated a series of Sn1-xMnxTe layers with various 

Mn content x, deposited by molecular beam epitaxy onto (111)BaF2 substrates. The experiments have been performed 

in a standard diffraction setup, using the photon energy of 10 keV, a linear detector for diffracted radiation and a solid-

state fluorescence detector. 

For each sample in the series, we have measured standard coplanar reciprocal-space maps (symmetric in diffractions 

111, 222, 333 as well as asymmetric 331), standard specular reflectivity scans, and the dependence of the fluorescence 

spectra on the grazing-incidence angle i. For selected samples, we have performed x-ray standing-wave (XSW) scans 

in asymmetric diffraction 2 2 2 . In Figs. 1-3 we displayed examples of measured data for sample with the Mn content 

of 4%. 

From the reciprocal-space maps we determine the lattice parameters of the layer as well as the degree of plastic 

relaxation of the layer with respect to the substrate. From the i-dependence of the fluorescence intensities of various 

elements we determine the vertical profile of chemical composition of the layers and confirm their chemical 

homogeneity. 



 

 

 

 

 
 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analysis of the XSW curves is complicated by two facts: (i) the fluorescence detector was almost saturated by the 

BaL1,2,3 fluorescence lines from the substrate, and (ii) the epitaxial layers consist of randomly rotated mosaic blocks 

caused by the mosaic structure of the substrate. The presence of the mosaic blocks is not apparent from omega/2theta 

diffraction scans, but it is obvious from the reciprocal space maps in Fig. 1.  

The following analysis of the data will concentrate to a detailed comparison of measured diffraction data with 

simulations based on dynamical diffraction theory. We hope that from the structure factors of the layer in diffractions 

111, 222, 333 and 331 it will be possible to determine unambiguously the Mn lattice positions. The XSW data will be 

analysed as well, however the analysis will not be straightforward, due to the facts mentioned above. 
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Fig. 1: Coplanar reciprocal space maps of the sample xMn = 4% 

taken in symmetric 333 (left) and asymmetric 331 diffractions 

(right). 

Fig. 2: Dependence of the fluorescence intensities on 

the glancing incidence angle, sample xMn = 4% 

Fig. 3: X-ray fluorescence intensities from sample xMn = 4% as 

functions of the angular deviation from then diffraction maximum 

(XSW curves). The dotted line represents the measured diffraction 

maximum (not in vertical scale). 


