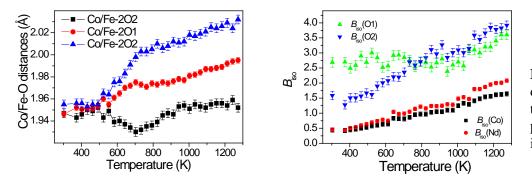

ESRF	Experiment title: High-temperature structural anomalies in the mixed neodymium cobaltites-ferrites	Experiment number: MA2320
Beamline:	Date of experiment:	Date of report:
ID22	from: 04. February to: 08. February 2015	24. 02. 2016
Shifts:	Local contact(s):	Received at ESRF:
12	FITCH Andy	
Names and affiliations of applicants (* indicates experimentalists):		
*PROTS Yurii MPI Chemische Physik Fester Stoffe, Nöthnitzer Straße 40 DE–01187 Dresden *VASYLECHKO Leonid Lviv Polytechnic National University Semicond. Electronics Dept., 12 Bandera St. UA–79013 Lviv		
WEIDENKAFF Anke Chemische Materialsynthese IMW, Heisenbergstr 3 DE–70156 Stuttgart		
YOON Songhak EMPA Lab. for Solid State Chemistry & Catalysis, Überlandstrasse 129 CH–8600 Dübendorf		

Report:

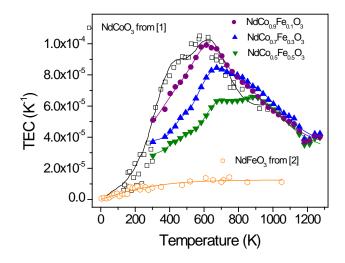
Series of X-ray synchrotron powder diffarction experiment has ben performed at the high-resolution powder diffractometer at ID22 beamline in order to study of phase and structural behaviour of the mixed cobaltites-ferrites $NdCo_{1-x}Fe_xO_3$ in the temperature range of 298–1100 K.

The interest in the rare earth (*R*) cobaltites and ferrites is stimulated by their unique fundamental physical properties. In particular, $RCoO_3$ compounds exhibit temperature induced metal-insulator (*M*–*I*) transitions and different types of magnetic ordering, which are strongly dependent on the spin state of Co^{3+} cations, whereas $RFeO_3$ ferrites exhibit spin-reorientation transitions at 80–200 K and the para- to antiferomagnetic transitions at 620–750 K. Probing of the thermal expansion is very sensitive tool to study the spin-state transitions and crystal-field excitations as well as their coupling to the lattice. Especially this is important for the Pr- and Nd-based compositions, where the spin-state transition is much better detectable in the thermal expansion data than in the magnetic susceptibility due to the large contribution of the 4*f* moments of Pr and Nd ions on the magnetic properties.



In situ powder diffraction investigations of the Nd cobaltites-ferrites beamline ID22 of at ESRF revealed anomalous lattice expansion, which is reflected in a sigmoidal dependence of the unit cell dimensions and in anomalous anisotropic increase of the thermal expansion coefficients (TEC) with

Fig. 1. Temperature dependence of the unit cell dimensions (left) and thermal expansion coefficients (right) of NdCo_{0.7}Fe_{0.3}O₃.


(several) broad maxima in the temperature range of 500-1000 K, depending on the composition. Corresponding examples for NdCo_{0.7}Fe_{0.3}O₃ are shown on Fig. 1.

Pronounced anomalies were also detected in the selected bond lengths and octahedra tilt angles, as well as in the atomic displacement parameters (Fig. 2).

Fig. 2. Temperature dependence of intraoctahedral distances (left) and atomic displacement parameters (right) in NdCo_{0.7}Fe_{0.3}O₃.

The observed anomalies in the mixed cobaltites-ferrites are less pronounced comparing with the "pure" NdCoO₃ phase and decrease progressively with decreasing cobalt content in the NdCo_{1-x}Fe_xO₃ series (Fig. 3).

Fig. 3. Temperature dependence of average linear thermal expansion coefficients of $NdCo_{1-x}Fe_xO_3$ series (x = 0.3, 0.5 and 0.1) in comparison with the literature data for the "pure" NdCoO₃ and NdFeO₃.

Obviously, the detected structural anomalies in NdCo_{1-*x*}Fe_{*x*}O₃ series are associated with the magnetic and electronic phase transitions occurred in the end members of the system. In particular, NdCoO₃ undergoes magnetic, spin-spin and metal-insulator transitions at 337 K, 466 K and 635 K [1], whereas corresponding ferrite NdFeO₃ shows the spin-reorientation transitions at 160 K and para- to antiferomagnetic transitions at 760 K [2,3]. It is evident that the coupling of the electronic and magnetic transitions with the lattice will result in extremely complicated magnetic and electronic phase diagram of the mixed cobaltite-ferrite systems.

References

- K. Knížek, J Zirák, J. Hejtmánek, M. Veverka, M. Maryško, G. Maris, T.T.M. Palstra, *Eur. Phys. J. B47*, 213 (2005).
- [2] W. Sławiński, R. Przeniosło, I. Sosnowska, E Suard, J. Phys.: Condens. Matter 17, 4605 (2005)
- [3] J.-H. Lee, Y. K. Jeong, J. H. Park, M.-A. Oak, H. M. Jang, J. Y. Son, J. F. Scott, Phys. Rev. Lett. 107, 117201 (2011)