

ESRF	Experiment title: RIXS and dynamical diffraction in NiO	Experiment number: HC-1532
Beamline:	Date of experiment:	Date of report:
ID20	from: 18 Feb 2015 to: 24 Feb 2015	11/3/2017
Shifts:	Local contact(s):	Received at ESRF:
18	Roberto Verbeni	

Names and affiliations of applicants (* indicates experimentalists):

Mr. Kari Ruotsalainen* (SOLEIL), Dr. Stephen Collins* (Diamond), Dr. Marco Moretti* (ESRF), Dr. Jaakko Koskelo (Univ.Helsinki), Prof. Simo Huotari* (Univ.Helsinki)

Report:

The results of this experiment have been published in <u>K. O. Ruotsalainen, A.-P. Honkanen, S.</u> <u>P. Collins, G. Monaco, M. Moretti Sala, M. Krisch, K. Hämäläinen, M. Hakala & S. Huotari:</u> <u>Resonant X-ray emission with a standing wave excitation, Scientific Reports 6, 22648 (2016),</u> <u>DOI: 10.1038/srep22648.</u>

Abstract:

The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-

ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems.