

ESRF	Experiment title: Structure of epitaxial silicene on diboride thin films	Experiment number: MA-2480
Beamline:	Date of experiment:	Date of report:
ID03	from: 04-03-2015 to: 10-03-2015	30 April 2015
Shifts:	Local contact(s):	Received at ESRF:
18	Maciej Jankowski	
Names and affiliations of applicants (* indicates experimentalists): Wester de Poel*, Eleanor Townsend*, Anthonius Engwerda*, Elias Vlieg*		
Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135,		

6525ED Nijmegen, The Netherlands

Report:

Thiol monolayers on noble metal surfaces are of tremendous scientific interest and have been used in thousands of publications. They have a wide variety of possible applications¹ like the production of conducting nanometre thin sheets² or biosensors³. Gold is usually evaporated onto silicon wafers or on muscovite mica to produce a flat interface for the thiol monolayer. Mica is arguably one of the most convenient substrates around, because cleaving the crystal leads to a flat and clean surface⁴ that has been used in many studies, e.g. single DNA strands and the gold-thiol system mentioned above.

Several thiol monolayers were prepared at the Radboud University, inspected using atomic force microscopy, and brought to the ESRF for surface X-ray diffraction measurements. Seven different thiols were used to prepare monolayers on K⁺- and Cu²⁺- terminated muscovite mica. A full dataset of several crystal truncation rods of muscovite mica was measured for all fourteen samples, and also for a Cu²⁺-terminated muscovite mica reference sample. We have looked for in-plane diffraction peaks for all these surfaces, to find out if the thiol layers exhibited in-plane order. No fractional order diffraction peaks were found. The data has been fully processed (see figure), but a feasible model that fits the data has not yet been found for every dataset.

Figure 1 Data of a biphenylthiol monolayer (dots) with a preliminary fit (line) with one biphenylthiol molecule and the muscovite mica surface to fit the data. The vertical axis depicts the measured structure factor, the horizontal axis shows the l-value, indicated on top are the (h, k) of the measured CTR.

In conclusion, this was a very successful experiment in which several good data sets for 15 different systems, containing thiol monolayers on K^+ - and Cu^{2+} -terminated muscovite mica, have been obtained. Data analysis is in progress and will take time due to the large number of systems investigated.

- 1. Kind, M.; Woll, C., Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. *Prog. Surf. Sci.* **2009**, *84* (7-8), 230-278.
- Turchanin, A.; Beyer, A.; Nottbohm, C. T.; Zhang, X. H.; Stosch, R.; Sologubenko, A.; Mayer, J.; Hinze, P.; Weimann, T.; Golzhauser, A., One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness. *Advanced Materials* 2009, *21* (12), 1233-+.
- 3. Chaki, N. K.; Vijayamohanan, K., Self-assembled monolayers as a tunable platform for biosensor applications. *Biosens. Bioelectron.* **2002**, *17* (1-2), 1-12.
- De Poel, W.; Pintea, S.; Drnec, J.; Carla, F.; Felici, R.; Mulder, P.; Elemans, J. A. A. W.; van Enckevort, W. J. P.; Rowan, A. E.; Vlieg, E., Muscovite Mica: Flatter than a Pancake. *Surface Science* 2014, 619, 19-24.