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Report:

Introduction

Noble metal nanoparticles (NPs) supported on noeddle substrates have been widely used in heteeogsn
catalysis with high activities in many reactiong. [Rreviously, many works have clearly demonstrates
size and components of metal NPs are crucial fagtoch affect the catalytic performances. On theeot
hand, the interface between NPs and metal oxidaélsl @bso play a very important role. However, mafsthe
metal oxide supports in previous works was focusedlifferent components and crystal structures with
irregular shapes. Very few works have investigated crystal-plane effect in metal-oxide catalysts.
Therefore, in the current work, we investigatedriied driven CO oxidation over Pt/TiQvith different
facets ({101}, {100}, {001}) by operando XANES/EXAFS to understand how the crytsal-plankeds the
CO oxidation activity. We expect to build a relahip among crytal-plane-catalytic activity-reantio
mechanisms.

Experimental

TiO, with different crystal facets including {101}, {100{001}through a hydrothermal method [2]. The
Pt/TiO, catalysts were prepared through a impregation ndethor catalytic measurements the catalysts were
pressed, crushed and sieved to obtain the fra@tith— 0.20 mm.

The synchrotron XANES/EXAFS study was performedBM26A of the ESRF. All the catalysts were
placed in 1.0 mm quartz capillaries with 0.01 mnckhwalls (approx. 6 mm bed length, ca.8 mg of a
catalyst, sieve fraction 0.1 — 0.2 mm). The capjilas placed in the X-ray beam above a hot aiwbto
(Oxford GSB-1300). The catalysts were pretreatechf20 to 230°C with a ramp rate of 10 K/min under
flow of 4%H,/N, (50 ml/min). For CO oxidation experiments, thedf@@mposition is 1000 ppm CO and 5%
O, in He with total gas flow 50 ml/min. The catalystere heated from 20 to 220°C with a ramp rate of 5
K/min. X-ray absorption spectra were recorded ansmission geometry with Pt foil used as a standard



Spectra were treated and linear combination arsalyas done by using Athena software [3]. For therieo
transform R-weighing and 2.5 — 11 A Hanning-type window wagdis The relative contributions of the
formed species were quantified by linear combimafitting (LCF) of XANES spectra using the Athena
software in the range from -10 to 30 eV relativéh® threshold energy. The energy was fixed dilL@B.

Results

The amount of Pt loaded on the Fi@as ca. 1 wt.% estimated from the intensity of XANES. The
metallic Pt prepared from the impregation method wahleady oxidized in air for all the Pt/TiGamples.
However, these samples are easily reduced as #rebe reduced by X-ray beam in the absence,ajad
(Fig. 1 left). After pretreatment under 4%N, flow at 230°C, all the samples were fully reduc&dble 1
shows the EXAFS fitting results for the samplegratite pretreatment. No Pt-O bond was observed;hwki
in line with the linear combination analysis result is worth to note that Pt-Ti bond was obserfgedall the
samples, indicating strong interactions betweemrfel TiQ substrates. Nevertheless, the crysal-plane has
remarkably influences on the CO oxidation activiiy© oxidation activities of Pt/Tigcatalysts follow this
order: Pt/TiQ {101}> Pt/TiO,{100}> Pt/TiO,{001}. The full CO conversion can be achieved oR#fTiO;,
{101} at temperature as low as 180
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Fig.1 (left)The oxidation states of Pt on Ti@ith differents facets determined throughear combination analysis
using PtQ and Pt as references; (right) the heating cuwe€© oxidation over Pt/TiQwith different crystal facets.

Table 1 EXAFSTitting resultsfor the samples after the preteatment

. . 2 -3, 2
Catalyst Pt-Ti (A) N (Ti) Pt-Pt (&) N (Pt) 6 (10A) AE (eV) p (%)
PUTIO, {100} 2.67+0.03 1.0+0.25 2.64+0.02 2.7+0.8 7+2 1.3+1.3 3.6
PUTiO, {001} 2.64+0.04 0.8+0.4  2.71+0.02 3.4+1.4 6%3 3.0¢1.7 4.2
PUTIO, {101} 2.68+0.02 0.8+0.2  2.67+0.001 3.1+0.7 9+1 3.1¢0.9 24

To explore how the crytsal-plane affects the CQlation activity, we also fitted the EXAFS data &bir
the samples under full CO conversion (typical shawnFig. 2). Two interesting phenomenons were
observed: first of all, the different crytsal-plaoeTiO, can affect the CO adsorption ability. No Pt-C bond
was observed in Pt/TgJ001}, revealing that this sample has very low Cd3arption. We also performed in
situ diffuse reflectance infrared Fourier-transfa@pectroscopy (DRIFTS) measurements on these ssiimple
our lab. In line with EXAFS results, Pt/Ti@001} exhibited the lowest CO adsorption abilityec®ndly, , it
was observed that the coordination number of Rixd?eased from 3.4 (before CO oxidation) to 6.7t
CO conversion) over Pt/Tigd001}, indicating formation of Pt nanoparticles. Wever, Pt stays in a highly
dispersed state on Ti@100} and TiO, {101} under CO oxidation up to 2. All of these results clearly
demonstrated the crystal-plane effect in Ptiid@ialysts during thermal driven CO oxidation.
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Fig.2 Representative EXAFS fit of Pt/TiQ100} after pretreatment (left) and under full @Onversion (right).

Conclusions
EXAFS and XANES were usedd-situ for the characterisation of Pt/Ti@ith different facets including

{101}, {100} and {001} under CO oxidation conditi@ All of these samples exhibited strong interangio
between Pt and Tixsubstrates reflected from the formation of Pt-dmth. CO oxidation activities of Pt/TO
catalysts follow this order: Pt/Tid101}> Pt/TiO, {100}> Pt/TiO,{001}. The low CO oxidation acivity of
Pt/TiO, {001} was ascribed to the lowest CO adsorptionigb#dnd the sintering of Pt nanoparticles. On the
basis of our results, we believe that modifying thgstal plane of TiQ substrate is an effecive route to
enhance the catalytic activity of Pt/TiCatalysts.
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