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Report: 

Fe2O3 is an important magnetic carrier mineral for 
deciphering planetary magnetism and a proxy for 
Fe in the planetary interiors. High pressure and 
temperature behaviour of Fe2O3 is important for 
analysis of the behaviour of banded iron formations 
in subducting slabs (Dobson and Brodholt, 2005) It 
is an end member in ferrites systems and is a model 
for studying of physical properties of M2O3 
compounds. One of the fundamental characteristics 
of magnetic materials is their critical temperature 
(i.e. the temperature above which a magnetic 
material becomes paramagnetic) and its pressure 
dependence. The aim of the project is to investigate 
pressure dependence of Curie (Néel) temperatures 
of different Fe2O3 phases in the megabar pressure 
range by means of energy domain Mössbauer 
spectroscopy. Energy domain 57Fe Mössbauer 
spectroscopy generally enables an unambiguous 
resolution of all hyperfine parameters which can be 
used to study electrical and magnetic properties of 
iron; however high pressure measurements using 
conventional radioactive point sources require 
extremely long counting times (generally more than 
one week per spectrum). The recently developed 
Synchrotron Mössbauer Source (Potapkin et al., 
2012)  allows  measurements  of  high  quality  and 

Figure 1. Temperature evolution of Mössbauer 
spectra of Fe2O3 at 19 GPa. Temperatures are 
determined from the change of the center shift 
except marked with * which was measured by 

common spectroradiometry method. 



 

well resolved energy-domain spectra in the timescales of several hours that allows its coupling with the laser 
heating in the diamond anvil cell technique for in situ investigations at extreme conditions. We studied 
magnetic ordering in different phases of Fe2O3 at various pressures and temperatures employing SMS with 
portable laser-heating system for diamond anvil cells (Kupenko et al., 2012). 

We measured temperature dependence of SMS spectra and derived hyperfine parameters of different phases of 

Fe2O3, namely α-Fe2O3 (0-26 GPa pressure range, Fig. 1), ι-Fe2O3 (~26-46 GPa pressure range), and η-Fe2O3 

(~50-120 GPa pressure range). In order to determine critical temperature at each pressure we used empirical 

formula  𝐻 = 𝐻0(1 −
𝑇

𝑇𝐶
)𝛽  (Eibschütz, 1970),  where  𝐻  is  a  measured  hyperfine  magnetic  field,  𝐻0  is  a 

hyperfine field  at zero temperature, 𝛽 ≈
1

3
, 𝑇 is temperature, and 𝑇𝐶 is a fitted critical temperature. For α-Fe2O3 

we were able also to trace a pressure dependence of Morin transition temperature i.e. the transition from 

antiferromagnetic to weak ferromagnetic ordering due to spin canting. Our results on Morin transition are in 

good agreement with neutron diffraction data (Klotz et al., 2013). Preliminary results are summarized on a Fig. 

2. The detailed analysis is underway.

 
Figure 2. Magnetic phase diagram of Fe2O3. Modified after Bykova et al. (2016). 
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experiments at synchrotron facilities with diamond anvil cells. Rev. Sci. Instrum. 83, 124501. 
doi:10.1063/1.4772458 

Potapkin, V., Chumakov, A.I., Smirnov, G. V, Celse, J.P., Rüffer, R., McCammon, C., Dubrovinsky, L., 2012. 
The 57Fe Synchrotron Mössbauer Source at the ESRF. J. Synchrotron Radiat. 19, 559–69. 
doi:10.1107/S0909049512015579 


