ESRF	Experiment title: Microscopic compatibility and cation diffusion in complete solid-oxide fuel cells	Experiment number : ME-1396
Beamline:	Date of experiment:	Date of report:
ID21	from: 17/02/2016 to: 23/02/2016	06/09/17
Shifts:	Local contact(s):	Received at ESRF:
18	Wout De Nolf	
Names and affiliations of applicants (* indicates experimentalists):		
* Dr. Francesco Giannici – Dpt. di Fisica e Chimica, Università di Palermo, Italy		

* Ms. Marianna Gambino – Dpt. di Fisica e Chimica, Università di Palermo, Italy

Prof. Antonino Martorana – Dpt. di Fisica e Chimica, Università di Palermo, Italy

* Dr. Alessandro Longo - CNR-ISMN, Palermo, Italy and NWO@BM26, Grenoble, France

* Dr. Giovanna Canu – CNR-IENI, Genova, Italy

Report:

The complete SOFC were prepared by screen-printing with a novel five-layer architecture consisting of the following materials (cathode) LSC / LSCF / LSCF+GDC / GDC / YSZ / YSZ+Ni (anode). This is shown in Figure 1.

Figure 1 – microXRF concentration maps of the complete cell measured at the Fe Kedge. From top to bottom: LSC / LSCF / LSCF+GDC / GDC / YSZ / YSZ+Ni. Iron in green, cerium in blue, yttrium in red. The topmost layer constisting of LSC is not visible. Map size: 70 x 100 micron. Cathode-electrolyte bilayers were also investigated at the Fe and Mn K-edges and Ce L₃edges: the bilayers were prepared by placing the sintered electrolyte and cathode powder in contact, and aging the bilayer at 1150 °C for several hours (12 to 72h). The materials under investigation were the cathode La_{0.8}Sr_{0.2}MnO₃ (LSM), with different electrolytes: Ce_{0.8}Sm_{0.2}O₂ (SDC), BaCe_{0.9}Y_{0.1}O₃ (BCY) and LaW_{0.16}Nb_{0.84}O₄ (LWN); and the cathode La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O₃ (LSCF) with the electrolyte BCY. The bilayer was then cast in resin, cross-cut to expose the interface and polished at < 1 micron roughness.

In all the samples the interdiffusion of the cations is observed. Some diffuse more than others, for example Sr^{2+} showing higher mobility. In some cases it's possible to see the formation of new phases: two possible morphologies (islands vs. continuous layer) are shown in Figure 2.

Figure 2 – Different morphology of secondary phase formation at the electrolyte/cathode interface. Map size: 65 x 100 micron; 78 x 100 micron.

Although the microXANES spectra of the different cations generally show space-dependent oxidation state changes in almost all samples, the most interesting results were acquired on the Mn K-edge, possibly hinting at the presence of Mn⁵⁺ in the LSM/SDC bilayer.

Figure 3 – microXANES at the Ce L_3 -edge, showing the transition from Ce⁴⁺ to Ce³⁺ due to the formation of CeMnO₃.

In a further test (3 shifts in July 2017) we confirmed the feasibility of Co K-edge microXANES mapping: by acquiring several maps at 4 energies on the Co absorption edge, we were able to differentiate the Co oxidation and coordination state across one LSCF/SDC bilayer.