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Report: 

 

Introduction. With this visit we started an investigation on the structural basis of the Frank-Starling 

law of the heart,  the mechanism that allows the force during the contraction (systole) to be adapted to 

the volume attained by the ventricle at the end of the relaxation (end-diastolic volume). At the level of 

the sarcomere (the structural unit of heart muscle cell in which myosin motors work cooperatively, 

generating steady force and shortening by cyclic ATP-driven interactions with the interdigitating actin 

filaments) the Frank-Starling law consists in the so called length-dependent activation (LDA), that is 

the increase in the force of contraction with the increase in sarcomere length (SL). A crucial 

prerequisite of this research is therefore to record and control the SL changes underlying the 

modulation of the mechanical performance and the related structural dynamics of motor and 

cytoskeletal proteins. For this fast sarcomere mechanics in intact trabeculae is combined with X-ray 

diffraction from synchrotron light, to achieve the mechanical and structural resolution adequate to 

define the function of the motor protein, while preserving the control of the sarcomere. This is possible 

due to the recent upgrade of the high brilliance beamline ID02 of the European Synchrotron (ESRF, 

Grenoble, France), which makes this beamline unique worldwide for the  possibility to vary the 

sample-to-detector distance from 0.6 to 30 m, so that the nanometer-scale signals originating from the 

two arrays of myosin motors in each thick filament and from the double hexagonal lattice formed by 

the myosin and actin filaments can be recorded together with the micrometer-scale changes in the 

length of the sarcomeres interrogated by the X-ray beam.  

Methods. The trabecula was vertically mounted in a thermoregulated trough (27°C), perfused with 

oxygenated physiological solution, and electrically paced at a frequency of 0.5Hz. A FReLoN CCD 

detector was placed at either 1.6 m from the preparation to collect up to the 6th order of the myosin-

based meridional reflections, or 30 m to measure sarcomere length (SL) during diastole-systole cycles 

(see Fig 1). SL was held constant during force development (sarcomere isometric conditions) by 

feeding the motor-servo system with a signal based on the changes in SL recorded in the preceding 

 



 

fixed-end contraction (Caremani et al.,  PNAS, 113:3675-3680, 2016).  

Results. In diastole the spacings of the M3 meridional reflection (SM3, associated with the myosin 

heads axial periodicity) and of its second order M6 (SM6, associated with the myosin-containing thick 

filament backbone periodicity) are 14.361  0.004 (mean  SD) and 7.195  nm respectively (SL 2.25 

µm and [Ca
2+

]o 2.5 mM, four trabeculae). At the maximum of systolic force attained with [Ca
2+

]o 2.5 

mM and SL 2.1 µm both SM3 and SM6 were 1% larger.  The M3 reflection was sampled by X-ray 

interference between half-sarcomeres, showing a dominant peak with two small satellites on either side 

in diastole, while at the maximum of systolic force in sarcomere isometric conditions it was split in two 

peaks of comparable size. These results indicate that in diastole myosin heads are folded back towards 

the thick filament midpoint in agreement with the OFF state of the filament in skeletal muscle (Zoghbi 

et al., PNAS, 105, 2386–2390, 2008; Linari et al., Nature, 228, 576-579, 2015). Consistent with the 

transition to the ON state described in the skeletal muscle thick filament, the development of systolic 

force is associated with the 1% increase of  thick filament extension and the movement of the myosin 

heads by ca 10 nm away from the filament midpoint (Reconditi et al., PNAS, 108, 7236-7240, 2011). 

A paper is in preparation to report the first in situ description of the cardiac myosin dynamics during 

systole-diastole cycle.  

 

 

 
Fig. 1. X-ray diffraction patterns from a trabecula collected on a FReLoN  CCD detector at 30 m (10 

ms total exposure)  to collect  the first orders of sarcomere periodicity in diastole (A, SL 2.25 µm) and 

at the peak of force developed during the systole (B,  SL 1.95 µm). The abscissa scale denotes 

reciprocal spacing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


