EUROPEAN SYNCHROTRON RADIATION FACILITY

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: Understanding Charge Transfer and Redox Cascade Phenomena in Photoelectrode Architectures by in- operando XAS: a BAG proposal. ROUND 2			Experiment number: 08-01-1004
Beamline:	Date of experiment:			Date of report:
	from: 14	/06/2016 to:	21/06/2016	17/10/2016
Shifts:	Local contact(s):			Received at ESRF:
18	Francesco d'Acapito			
Names and affiliations of applicants (* indicates experimentalists):				
Alessandro Minguzzi*		Alberto Naldoni	Martina Fracchia*	
Tomasz Baran		Sara Morandi	Paolo Ghigna	
Cristina Locatelli		Sandra Rondinini	Elisabet Ahlberg	
Alberto Visibile		Itai Panas	Francesco Malara*	
Alberto Vertova		Elisabetta Achilli*		

Report:

As proposed in the BAG project and after the encouraging results obtained in previous experiments on α -Fe₂O₃/IrO_x photoanodes (CH-4209) and in the first round of the present BAG proposal, we continue the spetro-photoelectrochemical investigation of photoelectrodes made of one or more components (architectures).

In this second round, we focussed our attention onto Ni(OH)₂/NiO(OH) electrocatalysts for oxygen evolution reaction in alkaline media and on its use as overlayer for an hematite (α -Fe₂O₃) n-type semiconductor.

The (photo-) electrochemical cell coincides with the one adopted in the round-1 experiment and all experiments are carried out in 0.1 M aqueous NaOH. A Pt wire and a AgCl/Ag (in 1M KCl) were used as the counter and reference electrode. The visible light source was a 400 nm LED that can be controlled through the beamline software for precise timing and synchronization with the X-ray absorption acquisition system. All experiments were carried out in the fluorescent mode using a 13-elements detector.

The materials under investigation were:

- 1) Hematite semiconductor, prepared as reported in reference 1. The support is a 10mm X 20 mm X 1 mm glass covered by a fluorine doped tin oxide film (FTO, purchased by Solaronix)
- 2) Ni(OH)₂ layers electrodeposited onto FTO by applying 16 mA/cm^2 for 10 s.
- 3) A composite photoanode made by electrodeposition of the Ni(OH)₂ layer onto the hematite/FTO photoelectrode.

The aims of the present experiments were:

1) Study the hematite photoanode, i.e. detecting any oxidation state or local structure variation occurring in the hematite film in dependence on the applied potential and/or after illumination with 400 nm light.

- Study the electrochemical behavior of the Ni(OH)₂ electrode, a system previously studied by operando electrochemial XAS²⁻⁴ but only in the framework of supercapacitors, thus not considering potentials at which water is oxidized to O₂. The results and the conclusions will serve for the interpretation of the results obtained in 3).
- 3) Study the complete system, thus detecting any sharge state or local structure modification of Ni when hematite is excited by 400 nm light.

Part 1 didn't lead to any observation of Fe charge state or local structure modification under illumination or under different applied potentials on hematite/FTO photoelectrodes. This is likely due to the fact that Fe surface/bulk atoms ratio is quite low (crystallytes are about 50 nm in size¹) and photogenerated holes likely localize at the surface. On the other hand, part 2 and 3 were successful.

Moreover, the electrochemically induced transition of $Ni(OH)_2$ to NiO(OH) is clearly apparent as reported in Fig.2. Interestingly, the spectra at 1.6 V is significantly different from that at 1.7V, the latter condition corresponding to the observation of high currents due to water oxydation.

In part 3, spectra of Ni(OH)₂/ α -Fe₂O₃/FTO composites were recorded under different applied potentials (namely, 0.5, 0.7 and 1.3 V vs RHE, i.e. the potentials indicated in Fig.1 by arrows) in the dark and under 400 nm light.

The results, reported in Fig. 3, clearly show that at 0.5 V the illumination of hematite has no influence on the Ni oxidation state, while at increasing potential a progressive oxydation of Ni(OH)₂ into NiO(OH) is clearly detected.

- 1. F. Malara, A. Minguzzi, et al. ACS Catal. 2015, 5, 5292-5300
- 2. K. I. Pandya, R. W. Hoffman, et al. J. Electrochem. Soc., 1990, 137, 383
- 3. J. McBreen, W.E. O'Grady, et al. Langmuir. 1987, 3, 428–433
- 4. Y. Hu, I.T. Bae, et al. Can. J. Chem. 1997, 75, 1721–1729.
- 5. A. Minguzzi, O. Lugaresi, et al. Anal. Chem. 2013, 85, 7009-7013